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Abstract
Cyber-Physical Systems (CPS) are required to operate over a longer lifetime. As such, their requirements
can change, requiring updates to the system to be be rolled out continuously (Continuous Deployment)
throughout the system’s lifetime. The DevOps methodology provides a structured, quality assuring
way to do so, as it integrates Development and Operations of a system in a continuous cycle. DevOps
is generally applied in software development, however in the design of CPS, which follows a Model-
Based Systems Engineering (MBSE) approach, it is not. This is because many challenges remain in the
application of DevOps in MBSE. Our focus is on creating the foundations for continuous deployment of
safety-critical CPS using digital twins of the CPS.k.
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1. Introduction

The design of future Cyber-Physical Systems (CPS), is faced with multiple challenges, as noted
in [1, 2]. Because of the required increasing lifetime, systems are continuously improved,
rather than the more traditional deliver and maintain lifecycle. Components can be modified,
added, the scope of the system can be extended, the requirements changed, or the system
repurposed. While the initial design of the system is done entirely at design time, future changes
happen at runtime. The authors in [2] note that a flexible approach is needed for those CPS,
and that models of the system are invaluable in creating such a flexible approach. Similarly,
the authors in [1] argue that models of the system can be continuously updated as to follow
the reality as closely as possible (a digital twin as a synchronized digital representation of
the system), however, new methods are needed. Furthermore, Combemale and Wimmer [2]
propose the DevOps methodology to integrate the design and operation cycle of a CPS. DevOps
(Development and Operations) is a method that tightly integrates the design and operations
of a system, reducing the time between the need for a change and the implementation of the
change. However, they note that within the context of CPS, which are mostly designed in a
Model-Based Systems Engineering (MBSE) approach, the use of models in DevOps is still faced
with challenges: such challenges include but are not limited to the monitoring of the CPS in
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harsh conditions, reasoning about the redesign of the system, synchronization between the
system in operation and its models, the virtual deployment of system changes in model-based
testing of these heterogeneous systems.

Inspired by these challenges, our aim is to create the foundations for continuous deployment
of safety-critical CPS using a digital twin. We aim to do this by applying the DevOps cycle for
the MBSE of CPS. In relation to DevOps, we specifically tackle the challenges in the release,
deploy and monitor phases, visually represented in green/dots in Figure 1. Additionally, we
only tackle the challenges at the technical side of the engineering process, while challenges in
the human aspect of the process are disregarded. In summary, our focus is the development of
new digital-twin enabled methods and techniques to allow the continuous deployment of CPS.
With these techniques, we aim to solve the challenges in the monitoring, release management
and deployment of CPS.

Figure 1: The DevOps cycle, with applicable stages marked in green/dots.

The remainder of this paper is structured as follows: in Section 2 we cover the state-of-the-art.
Section 3 describes our objectives and approach, after which Section 4 lists past work and
preliminary results. In Section 5, we look at the future, and lastly Section 6 concludes the paper.

2. State-of-the-Art

We find relevant research in the areas of (1) digital twins, (2) run-time monitoring in real-time
systems and (3) continuous integration in MBSE.

2.1. Digital Twins

The digital twin is a popular concept in the industry 4.0 domain. In essence a digital twin is
a virtual version of a physical entity, with which it shares data in both directions. As such,
the application potential in the DevOps cycle is high, since it also exchanges information in
such a way. In [3], the current state of research in digital twins is reviewed. Among their
conclusions is the wide range of applications, and the adoption of digital twins by industry
leaders. One of the noted applications is in System Design and Development. Strikingly is the
fact that the list of current challenges as observed in research is still extensive, from scalability
to trust/privacy issues. Furthermore, the authors note that within manufacturing, the use of



fully integrated digital twins is minimal. Besides Industry 4.0, there are ideas from other fields
that show application potential for digital twins. One such idea is the data driven simulation
paradigm, as demonstrated by Hu for wildfire simulation in [4]. In [4], the state of a wildfire
simulation is continuously adjusted to match the real state of the wildfire based on sensor
readings, showing strong similarities to digital twins.

2.2. Runtime Monitoring

Runtime monitoring in literature mainly covers the system monitoring itself but does not take
the critical part of data-transfer into account for the DevOps cycle of CPS systems. Medhat
et al. [5] investigated the run-time monitoring of CPS without a task model under timing and
memory constraints. In their research, they propose a dynamic monitoring scheme based
on control theory that monitors the system and tweaks itself based on multiple objectives.
Similarly, in [6] models are instrumented statically for run-time monitoring under hard real-
time constraints. Different data-transmission strategies for grouping and sending messages
exist in literature e.g. grouping is possibly done statically or dynamically, at the local node or
edge device, and other choices as seen in [7]. A CPS can also engage communication itself to
notify peers and digital twins of state changes. In [8] the authors propose an architecture for
such a case, where a filtering method makes sure that the system remains scalable.

2.3. Continuous Integration and Deployment in MBSE

In [9], the authors surveyed industrial companies for their adoption of continuous integration
(CI) techniques in an MBSE setting. In summary, there is a lack of base functionality for
CI in MBSE. Functional, non-functional, human and business difficulties where identified,
some examples of which are: lack of tool interoperability, lack of synchronization between
models, long build and test times, lack of willingness to model. Nonetheless, the paper shows
that DevOps in the context of model-based (embedded) system design is possible, but that
several challenges need to be resolved. In [10], the author proposes simulation as a solution to
automate the difficult task of CI for embedded systems where dependencies exist between the
software and the hardware platform. In [11], a study on continuous deployment for dependable
systems concludes that the state of practice of agile development for safety critical systems
is still immature. They also note that while the basic technologies to perform the continuous
deployment do exist, some challenges remain, again on the topic of tool support and integration.

3. Research Objectives and Methodological Approach

3.1. Main Objective

The main goal is to define new methods that overcome current challenges concerning the
continuous deployment of CPS, and tools that facilitate the integration of the digital twins
in these methods. The underlying framework is the DevOps cycle for Model-Based Systems
Engineering. Our approach is to apply multi-paradigm modeling principles to create such
methods and techniques. Multi-paradigm modeling advocates the explicit modeling of all parts



of a system, at different abstraction levels using multiple formalisms [12]. At the center of our
approach is a model based digital twin of the system as a shared common knowledge base,
which allows further integration of design and operations.

3.2. Sub-Objectives

(i) Definition of a method to optimize data capture from a system in operation for
the calibration and initialization of digital twins. To use a digital twin, there must be a
synchronization between the real and physical world. This can be achieved by monitoring the
system in operation and using the monitored data to initialize the digital twin. The data logging
is done in the Monitor phase of the DevOps cycle. The problem at hand is a co-design problem.
On the one hand, the initialization of a digital twin is a state estimation of the system, which
is more accurate when more data is used. On the other hand, the CPS being monitored is a
heterogeneous real-time system with limited resources. The system instrumentation introduces
penalties in memory, execution time and, latency. As such, there is a trade-off between the
accuracy of the initialization and the real-time behavior of the system. Additionally, the data
must get to the digital twin. If the digital twin is physically separated from the system, network
transmission is required. A network introduces additional limits and uncertainties: bandwidth,
latency, packet loss.

(ii) Definition of a method to support release management and software deployment
using the digital twin for viability checking. The goal is to create a method that can
perform automated viability checking (testing) of a release on a product family and its un-
documented variants. The challenge lies in the fact that within one product family, various
system variants reside. These variants are either documented (variant by design, e.g. more
expensive, faster) or undocumented (variant due to runtime changes, e.g. replaced parts, wear
and tear, new environments that differ from the initial test conditions). In the testing phases
of a piece of software, it can only be tested against the variants by design. Variants due to
runtime changes should also be tested to ensure compatibility. The shared knowledge of the
digital twin(s) of the system(s) implicitly contains the undocumented changes and can therefore
exclude incompatible candidate systems through viability checking.

(iii) Exploration of computational architectures to support continuous deployment.
The goal is to explore different architectures that enable the continuous deployment of sys-
tem updates, specifically with regards to the release viability checking of (ii). Not all system
architectures are efficient in this viability checking, especially with regards to the location of
the digital twin. Examples of architectures could be: (a) running centralized digital twins and
performing individual tests. (b) Running centralized digital twins, but grouping systems in
compatible groups, and testing the group. (c) Running decentralized digital twins on edge nodes
and performing individual test. These examples show the variability in the testing architecture.
Finally, complex event processing can lump specific events together in the monitoring hierarchy.



4. Past Work and Preliminary Results

Our past and current work has mainly focused on sub-objective (i). As described in section 3.2,
this objective concerns the co-optimization of a system and its digital twin to find the optimal
trade-off between the instrumentation load on the system and the accuracy of the digital twin.
For this trade-off analysis it is essential to have: (a) a method of verifying the instrumentation
load on the system, and (b) a method to determine the sensitivity of parts of the model. Thus
far, we have tackled the problem of verifying the load on the system in [13]. We did so through
formal verification under the assumption of running a priority-preemptive scheduled Real-Time
Operating System on our embedded system with only periodic tasks. Under the prescribed
problem formulation, one obtains a non-linear problem, which we solve with a branch-and-
bound solver. We have applied this method to two toy-examples, but also to the use-case of an
autonomous radio-controlled 1/10th scale-car.

In the work on (a), we made various assumptions regarding the expected output from (b),
which is only logical given the co-optimization approach. The focus of our current work is
thus to replace those assumptions with factual data from developing (b). Currently, we are
researching different types of data-assimilating digital twins of systems, of which we aim to
generate sensitivity analyses as input for our method from (a). Then, the goal is to combine (a)
and (b) in a single method.

5. Future Work and Expected Results

The objectives in section 3.2 are formulated in what we deem chronological order. After
completing objective (i), we aim to first complete objective (ii), and then (iii), since objectives
(ii) and (iii) are inherently linked. The goal for objective (ii) is to perform automated viability
checking in the release and deploy stages of the DevOps cycle. This viability checking will
be based on the current digital twin of the system, we envision an approach similar to virtual
commissioning. In objective (iii) we then specifically aim to look at architectures supporting
this release management. The reason being that we believe the needs for release management
vary greatly between different CPS, e.g. the needs for an automated factory are different than
those from a fleet of vehicles.

Lastly, we foresee that various assumptions will be made throughout this work, e.g. in
our current partial solution to sub-objective (i), we still have assumptions with regards to the
data-communication between the digital and physical world. After the first iteration through
the objectives, we aim to perform a second development cycle, which will allow us to further
elaborate on the assumptions made throughout the course.

6. Conclusions

In this paper we presented our views on using digital twins to enable continuous deployment in
the field of model-based systems engineering for cyber-physical systems. We briefly introduced
the challenges as covered in literature, and reviewed the related work most relevant to those



challenges we tackle. We described our main objective and three sub-objectives as well as our
past, present and future work on these topics.
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A. Work Plan

A.1. Timeline

The work plan shown in Figure 2 is divided in 4 work packages. Three of these are for the
sub-objectives, whereas the fourth foresees time for writing papers and general communication.
Each year is divided in 4 quarters, each quarter is further split to 3 months. The People’s months
(PM) column gives an indication of the amount of hours each task receives. In the case of WP4,
the timeline is colored light gray. This indicates that this is working time allotted throughout
the entire 4 years. The work plan timeline cannot show the dependence of tasks on one-another,
which is why the dependency relationship is provided by a design structure matrix.

Figure 2: Timeline of the work plan indicating the time spent on each work package.



A.2. Design Structure Matrix

The design structure matrix shown in Figure 3 shows only one dependence problem, which is
that the definition of the use case depends on the method being developed in T2.2., T3.1. and
T3.2.. Depending on the abilities of this method, the use case must be defined, yet these abilities
are not known beforehand. In our case we tackle this dependence by making assumptions
on those abilities. By then iterating a second time through the design, as can be seen in the
timeline, we can alter the implemented use case where necessary.

Figure 3: Design structure matrix indicating the dependencies between the tasks.

B. Poster

A visual poster summarizing the challenges discussed in this paper can be seen in Figure 4.
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Figure 4: Poster summarizing the challenges in this paper.
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