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Abstract. An important aspect of improving modern computer systems and 
their components is an increasing the speed of arithmetic calculations, including 
due to the use of new mathematical models and methods based on non-
positional residue number systems. The increase in the volume of processed da-
ta in modern computer systems leads to the additional risks and threats of unin-
tentional failures and denials of service. This is especially important when 
building fault-tolerant critical information systems in which failure or denial of 
service can lead to catastrophic consequences. The article discusses arithmetic 
operations in the ring of residue classes. These techniques make it possible to 
implement fast and fault-tolerant computing for modern computer systems and 
telecommunication networks. We propose an algorithm for calculating the resi-
dues of integer data in a complex numerical domain. The algorithm is based on 
the use of the first fundamental Gauss theorem, which establishes an isomor-
phism between complex and real residues. Examples of determining the resi-
dues of integer data in a complex numerical domain are presented, which clear-
ly demonstrate the constructiveness of the proposed techniques. 
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1 Introduction and Literature Review 

The increase in the volume of processed and transmitted data in modern computer 
systems leads to the additional risks and threats of non-intentional failures and denials 
of service [1–3]. In this sense, an important direction of research is to increase the 
speed of computing devices based on the use of new mathematical models and com-
putation methods [4–6], including non-positional residue number systems.  

It is known, that in present time performance increasing of the integer data han-
dling computer system and components (CSC), which are functioning in the binary 
positioning notation (PN), is connected, first of all, with increasing of the elements 
working frequencies and using of the formal synthesis patterns and methods, tempo-
rary multi parallel systems and programs [7–10]. At the same time it is theoretically 
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and practically shown, that non-positional notation in the system of residue classes 
(SRC) usage allows fundamentally performance increasing and other CSC technical 
features improvement [11–16]. Besides the above-mentioned material, based on the 
research results, the fact of the efficient SRC usage in a hyper complex numeric area 
is important.  

The integer rational numbers generalization is integer complex (Gaussian) numbers 
(CN) [8, 10]. Integer Gaussian numbers form a ring: its sum, difference, and multipli-
cation are also (as the numbers in SRC) integer Gaussian numbers [7, 9].  

Based on the SRC features, a set of the patentable components of the integer data 
handling computer system in the complex area was developed [17–20]. Nowadays, 
there is increasing the interest of the non-positional notation in SRC between infor-
mation and telecommunication systems developers, which are implementing process-
es of forming, transferring and handling signals – physical data carriers, cryptograph-
ical data transforming, video data compression, etcetera [21–24].  

The aim of the article is a consideration of the algorithm of the residues definition 
of the integer data in the complex numeric area. In particular, an algorithm of the real 
residue h  defining of the integer complex number A a bi= +  by complex modulo 
m p qi= +  is considered. 

2 Determining Residues Modulo in a Complex Numerical 
Domain 

In SRC there is the possibility for complex numbers to be presented in the form of 
their real residues, which means establishing the isomorphism between complex and 
real numbers residues. It gives a possibility of replacing arithmetical operations for 
integer Gaussian numbers to the same operations for the real numbers system by real 
modules, which are equal to norms of chosen complex SRC bases. In this aspect, 
there is an important task of transforming the number’s residue in SRC from a com-
plex number area to the area of a real number. The task of transforming the number’s 
residue in SRC from a complex number area to the area of a real number is being 
solved by the way of the first fundamental Gauss’s law usage. Above-mentioned ma-
terial leads to the first fundamental Gauss’s law. The law establishes isomorphism 
between complex and real residues.  

Law formulation. By the given complex modulo m p qi= + , norm N  of which 
equals to 2 2N p q= + and for which p  and q  are relative primes, each integer CN 
A a bi= +  by complex modulo m is being compared to one and only one real residue 

from the set of numbers 0, N 1− , which means, that (mod )A h m≡ . 
Proof. It is known from the number theory, that for two relatively primes p  and q  

it is possible to find such two integers u  and v , that condition  

 1u p v q⋅ + ⋅ =  (1) 

is being met.  



Showing the correctness of the following equation:  

 ( )i u p v q m v ui= ⋅ − ⋅ + ⋅ + . (2) 

Indeed  

2(p ) ( ) ( )
( )

( )

i u q v p q i v u i u q v p p v p u i q v i q u i
u q v p p v p u i q v i q u
u q q u v p p v p u i q v i u p v q i

= ⋅ − ⋅ + + ⋅ ⋅ + ⋅ = ⋅ − ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ =
= ⋅ − ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ =
= ⋅ − ⋅ − ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ = ⋅ + ⋅ ⋅

 

Basing on the expression (1) i i= . Thus, equation (2) is correct.  
If CN A a bi= + , then basing on the expression (2) there is:  

 [ ( )] ( ) ( ).a bi a b u q v p m v ui a u q v p b m v b a bi+ = + ⋅ ⋅ − ⋅ + ⋅ + = + ⋅ − ⋅ ⋅ + ⋅ ⋅ + ⋅  (3) 

Defining h  as the smallest positive real residue of number ( )a u q v p b+ ⋅ − ⋅ ⋅  by 
modulo N  means that  

 [ ( ) ]modh a u q v p b N≡ + ⋅ − ⋅ ⋅ . (4) 

Expression (4) is represented as an equation 

 ( )a u q v p b h s N+ ⋅ − ⋅ ⋅ = + ⋅  (5) 

Representing the expression (5) in the following form  

 ( ) ( ) ( ).h s N h s p qi p qi h m p s q si+ ⋅ = + + ⋅ − = + ⋅ ⋅ − ⋅  (6) 

Then, based on expression (3), the equation is being fulfilled:  

 ( ) ( ) [ ( ) ],a bi h m p s q si m v b u bi h m p s v b u b q s i+ = + ⋅ ⋅ − ⋅ + ⋅ ⋅ + ⋅ = + ⋅ ⋅ + ⋅ + ⋅ − ⋅  

or in the form of congruence relation 

 ( ) (mod )a bi h m+ ≡ . 

Thus, it is proved, that the smallest complex residue x vi+  of CN a bi+  is said to be 
congruent modulo m  with one and only one from the real numbers 0,1, 2, , N 1− . 

Using the method of indirect proof defines that this number is unique. Assume, that 
there are two congruent relations as follows 

1( ) (mod );a bi h m+ ≡  2( ) (mod ).a bi h m+ ≡  

Basing on the feature of congruent relations there is 

1 2 (mod )h h m≡  

or 



1 2( ) 0(mod )h h m− ≡ , 

which means  

 1 2( ) ( )h h m e f i− = ⋅ + ⋅ . (7) 

Expression (7) leads to fulfilling of the following equation  

 ( )m p qi= + , 1 2( ) ( ) ( )h h p qi e fi− = + ⋅ + . 

Multiplying both parts of the equation by the value p qi−  leads to 

1 2( ) ( ) ( ) ( ) ( )h h p qi p qi p qi e fi− ⋅ − = + ⋅ − ⋅ + , 2 2
1 2( ) ( ) ( ) ( )h h p qi p q e fi− ⋅ − = + ⋅ + , 

1 2( ) ( ) ( )h h p qi N e fi− ⋅ − = ⋅ + , 1 2 1 2( ) ( )h h p h h qi N e N fi− ⋅ − − ⋅ = ⋅ + ⋅ . 

The last expression is equivalent to the next two real equation 

 1 2

1 2

( ) ,
( ) .
h h p N e
h h q N f
− ⋅ = ⋅

 − ⋅ = − ⋅
 (8) 

Because CNs are equal, their real and imaginary parts are equal too. Multiplying the 
first equation of expression (8) by the value u  and the second one by the value v , 
and then summing the results up leads to the following equation 

 1 2( ) ( ) ( )h h u p v q N e u f v− ⋅ ⋅ + ⋅ = ⋅ ⋅ − ⋅ . 

Paying attention to an expression (1) 1u p v q⋅ + ⋅ = , it follows, that  

 1 2( ) ( )h h N e u f v− ≡ ⋅ ⋅ − ⋅  

or 

 1 2( ) 0(mod )h h N− ≡ . (9) 

Since there is a suggestion 1 2,h h N< , congruent relation (9) is possible only in the 
case 1 2h h= . Therefore, the possibility of existing the two different numbers 1h  and 

2h smaller than N , which would be congruent to a bi+  modulo m , is eliminated. 
There is only one such number h , which is defined by the expression (4) and is repre-
sented in the form of congruent relation (10) 

 [ ( ) ] (mod )a u q v p b h N+ ⋅ − ⋅ ⋅ ≡ . (10) 

In this case, there is usage of the following expression ( )Z a b ρ= + ⋅ , in which ex-
pression u q v pρ = ⋅ − ⋅ , by using which the relation between complex and real resi-



due by modulo m p qi= +  is being established, is called as coefficient of isomor-
phism (CI). Thus, expression (10) is going to be presented in the following form 

 (mod )Z h N≡ . (11) 

Data from the expressions (10) and (11) allows to define values of real residues  

(mod )i iZ h N≡ , ( 0, N 1)i = − ,  

corresponding to the smallest complex residues x yi+  by modulo 1 2m i= + . At first, 
there is defining the value of CI  

2 1p u q v p u v= ⋅ − ⋅ = ⋅ − ⋅ .  

Values of v  and u are defined by well-known in the number theory equation 
1u p v q⋅ − ⋅ = , meaning 1 2 1u v⋅ − ⋅ = . By the way of selection 1u = − , 1q =  are 

being defined.  
Thus,  

( 1) 2 1 1 3p = − ⋅ − ⋅ = −   

or  

( 3) mod5 2− = 2 2 2 2( 1 2 5)N p q= + = + = .  

Defining source values of the smallest real residues ih , isomorphic to the smallest 
complex residues, which are represented in table 2.  

For 0 0A i= + .  

0 0 0 0Z a bp p= + = + ⋅ = . 0 0(mod5)h = . 

For 1A i= − + .  

1 1 1 ( 3) 4Z = − + ⋅ − = − . 1 1(mod5)h = . 

For A i= .  

2 0 1 ( 3) 3Z = + ⋅ − = − . 2 2(mod5)h = . 

For 1 2A i= − + .  

3 1 2 ( 3) 1 6 7Z = − + ⋅ − = − − = − . 3 3(mod5)h = . 

For 2A i= .  

4 0 2 ( 3) 6Z = + ⋅ − = − . 4 4(mod5)h = . 



The results of the calculations of the smallest real remainders (residues) ih  are in 
table 1. 

Table 1. The results of the calculations of the smallest real residues 

The smallest complex 
residues x yi+   

CI Value 
iZ a b p= + ⋅   

Real residues 
(Z (mod )i i ih h N≡ ; 0, 1i N= −   

0 2 0 0 
-1+i 2 -4 1 
i 2 -3 2 
-1+2i 2 -7 3 
2i 2 -6 4 
Basing on the results of Gauss’s law it is simple to show the following relation be-
tween the smallest complex and real residue. Considering, that for two numbers 

1 1 1A a b i= +  and 2 2 2A a b i= +  there are such values of numbers 1h  and 2h , h±  and 
h× , that if 1 1(mod )A h m≡  and 2 2 (mod )A h m≡ , then the relations 

1 2 (mod )A A h m±± ≡  and 1 2 (mod )A A h m×⋅ ≡  are being fulfilled. Then, 

1 2( ) modh h h N± ≡ ±  and 1 2( ) modh h h N× ≡ ⋅ , where 2 2N p q= + .  
There are examples of solution of congruent relations in complex area, i.e. exam-

ples of defining the smallest real residue h  of complex numbers A a bi= +  by com-
plex modules m p qi= + . 

Example 1. There is a congruent relation (16 7 ) mod(5 2 )i h i+ ≡ +  to be solved. It 
means, that it is necessary to find the smallest real residue h  of complex number 
(16 7 )i+ by complex modulo (5 2 )i+ . 

Because GCD (5,2) 1= , the condition of the first fundamental Gauss’s law is ful-
filled, accordingly, there is a complete residue system modulo 

2 2 2 25 2 29N p q= + = + = . Real residue is being defined by congruent relation (11), 
i.e.  

(16 7 ) (mod 29)p h+ ⋅ ≡ . 

Coefficient of isomorphism ρ  is equal to  

2 5u q v p u vρ = ⋅ − ⋅ = ⋅ − ⋅ .  

Values of u  and v  are defined from the expression (1) by selecting values ,u v . 
Thus, 1u =  and 2v = − . Checking the expression (1) shows, that  

1 5 ( 2) 2 5 4 1⋅ + − ⋅ = − = . 

In this case, CI is equal to  

1 2 ( 2) 5 2 10 12ρ = ⋅ − − ⋅ = + =   



and  

(16 7 ) 16 7 12 100Z ρ= + ⋅ = + ⋅ = .  

Solving the congruent relation 100 (mod 29)h≡  shows, that 13(mod 29)h ≡ . Thus, 
(16 7 ) 13mod(5 2 )i i+ ≡ + . 

Example 2. There is a congruent relation (1 ) mod(1 2 )i h i+ ≡ +  to be solved. Or it 
is necessary to find the smallest real residue h  of complex number (1 )i+ by complex 
modulo (1 2 )i+ . 

In this case, GCD  

( , ) (1, 2) 1p q = = , 2 2 2 21 2 5N p q= + = + = .  

(mod )A h m≡ . ( ) modh a b Nρ≡ + ⋅ . 

Value of CI is equal to 2 1u q v p u vρ = ⋅ − ⋅ = ⋅ − ⋅ , values of u  and v are defined 
from the expression (1)  

1u p v q⋅ + ⋅ = , 1 2 1u v⋅ + ⋅ = , i.e. 1u = − , 1v = . 

Thus,  

( 1) 2 1 1 2 1 3ρ = − ⋅ − ⋅ = − − = − , 1 1 2 3h = + ⋅ = , 4 2 , 3x yi i h+ = + = , 

i.e.  

(1 ) 3mod(1 2 )i i+ ≡ + . 

Examples 3 – 8 of defining the complex and real residues of integer complex number 
by complex modulo m (1 2 )i= + are going to be considered. Initial data for the exam-
ples solving is represented in table 2. 

Table 2. Initial data for the examples solving 

 Γ  
3 (mod5),′Γ = ⋅Γ  

( 3)t =  

The smallest complex residues 
x yi+  by complex modulo 

1 2m i= +  of complex number 

A a bi= +  

Real residues h  by 
modulo  

2 2 5N p q= + =  

0 0 0 0i+  0 
1 3 1 i− +  1 
2 1 i  2 
3 4 1 2i− +  3 
4 2 2i  4 
Example 3. To define complex residue x yi+  of CN 1A i= +  by complex modulo 
m (1 2 )i= + , i.e. the aim is to find  



( ) modA x yi m≡ + , ( 1a = , 1b = ; 1p = , 2q = ; 5N = ).  

Because of the famous equation, there is [8, 9] 

(1 1 1 2) ( 1 2) mod5,
(1 1 1 2) ( 1 2) mod5.

x y
y x

⋅ + ⋅ ≡ ⋅ + ⋅
 ⋅ − ⋅ ≡ ⋅ − ⋅

  

3 2 ,
1 2 .

x y
x y

= +
− = − +

 

3 2x y= − , 1 2 (3 2 )y y− = − ⋅ − + , 1 6 4y y− = − + + , 5 5y = , 1y = . 
3 2 3 2 1x y= − = − = ; 1x = . 

Answer: complex residue x yi+  of CN 1A i= +  by complex modulo m (1 2 )i= +  
equals to complex number 1x yi i+ = + . 

Example 4. To define the smallest residue x yi+  of CN 1A i= +  by complex 
modulo , i.e. the aim is to find a value  

1 ( ) mod(1 2 )i x yi i+ ≡ + + ,  ( 1a = , 1b = ; 1p = , 2q = ; 5N = ).  

Because of the famous equation, there is [7–10] 

(1 1 1 2) mod5 3Γ = ⋅ + ⋅ = ; (1 1 1 2) mod5 ( 1) mod5 4′Γ = ⋅ − ⋅ = − = . 
3 1 4 2 4 1 3 2 5 10 1 2

5 5 5 5
x yi i i i⋅ − ⋅ ⋅ + ⋅
+ = + = − + = − +

.
 

Thus, the smallest residue x yi+  of CN 1A i= +  by complex modulo m (1 2 )i= +  
equals to value 1 2x yi i+ = − + . This solution can be represented in the form  

(1 ) ( 1 2 ) mod(1 2 )i i i+ ≡ − + + . 

Example 5. To solve congruent relation modA h m≡  of form  

(1 ) mod(1 2 )i h i+ ≡ + , ( 1a = , 1b = ; 1p = , 2q = ; 5N = ),  

expressions (1), (10), (11). 

1u p v q⋅ + ⋅ = , 1u = − , 1 2 1u v⋅ + ⋅ = . 1v = . u q v pρ = ⋅ − ⋅ . 
,Z a b ρ= + ⋅ mod .Z h N≡  ( 1) 2 1 1 2 1 3ρ = − ⋅ − ⋅ = − − = − .  

1 1 ( 3) 2.
h ( 2) mod5 3.
Z = + ⋅ − = −
≡ − =

 

Thus, real residue h  of CN 1A i= +  by complex modulo m (1 2 )i= +  equals to value 
3h = . 



Solution check. Achieved results should be checked. In example 4 there is the 
smallest complex residue ( 1 2 )i− + , and in example 5 there is real residue 3h = . 
According to data from table 2 ( 1 2 ) 3i− +  . Which is what it had to be shown.  

Example 6. To define complex residue x yi+  of CN 3 4A i= +  by complex mod-
ulo m (1 2 )i= + .  

2 2 2 21 2 5N p q= + = + = . 

Using the famous equation [8, 9], there is system of congruent relations in form 

(3 1 4 2) ( 1 2) mod5,
(4 1 3 2) ( 1 2) mod5.

x y
y x

⋅ + ⋅ ≡ ⋅ + ⋅
 ⋅ − ⋅ ≡ ⋅ − ⋅

 

or 

11 ( 2 ) mod5,
( 2) ( 2 ) mod5.

x y
x y

≡ +
 − ≡ − +

 

Basing on the system of congruent relations there is system containing two linear 
equation  

2 11,
2 3,

x y
x y
+ =

− + = +
 

because of ( 2) 3mod5− = .  

11 2x y= − , 2 (11 2 ) 3y y− ⋅ − ⋅ + = , 22 4 3y y− + + = ,  

5 25y = , 5y = . 11 2 11 10 1x y= − = − = . 

Thus, complex residue x yi+  of CN 3 4A i= +  by complex modulo m (1 2 )i= +  
equals to value  

1 5x yi i+ = + . 

Example 7. To define the smallest complex residue x yi+  of CN 3 4A i= +  by com-
plex modulo m (1 2 )i= + . 5N = . 

According to famous expressions, the smallest complex residue equals to value  

( ) p q p qx yi i
N N

′ ′Γ ⋅ − Γ ⋅ Γ ⋅ + Γ ⋅
+ = +  

Firstly, values Г  and Г ′  need to be defined 

( ) mod (3 1 4 2) mod5 11(mod5) 1a p b q NΓ = ⋅ + ⋅ = ⋅ + ⋅ = = ; 



( ) mod (4 1 3 2) mod5 ( 2) mod5 3b p a q N′Γ = ⋅ − ⋅ = ⋅ − ⋅ = − =  

In this case, there is  

1 1 3 2 3 1 1 2 5 5( ) 1
5 5 5 5

x yi i⋅ − ⋅ ⋅ + ⋅
+ = + = − + = − + . 

Thus, the smallest complex residue x yi+  of CN 3 4A i= +  by complex modulo 
m (1 2 )i= +  equals to value 1 i− + . 

Example 8. To define real residue h  of CN 3 4A i= +  by complex modulo 
m (1 2 )i= + . 5N = . The task can be formulated in another way. To solve a congru-
ent relation (3 4 ) mod(1 2 )i h i+ ≡ + . 

According to expression (11), there is ( ) (mod )a b h Nρ+ ≡ , where CI ρ  is equal 
to u q v pρ = ⋅ − ⋅ . Based on expression (1), values u  and v  are defined 

1u p v q⋅ + ⋅ =  or 1 2 1u v⋅ + ⋅ = . 

So, the condition (1) will be fulfilled if 1u = −  and 1v = , i.e. ( 1) 1 1 2 1− ⋅ + ⋅ = .  
Basing on calculations  

( 1) 2 1 1 3u q v pρ = ⋅ − ⋅ = − ⋅ − ⋅ = − . Z ( ) 3 4 ( 3) 9a b ρ= + ⋅ = + ⋅ − = − . 

There is ( ) (mod )a b h Nρ+ ≡  or ( 9) 1(mod5)− ≡ , i.e. 1h = . 
Thus, there is the solution of a congruent relation (3 4 ) 1mod(1 2 )i i+ ≡ + . 
Solution check. Achieved results should be checked. In example 7 there is the 

smallest complex residue ( 1 )i− +  and in example 8 there is real residue 1h = . Ac-
cording to data from table 2 ( 1 ) 1i− +  . Which is what it had to be shown. 

3 Conclusions 

In the article algorithms of defining the residues by modulo in complex numeric area 
were considered. The main attention was paid to the algorithm of defining real residue 
of integer complex number by complex modulo, based on usage of first fundamental 
Gauss’s law. The examples of defining residues of integer data in the complex numer-
ic area were provided. The results, achieved in the article, should be considered while 
implementing tasks and algorithms in SRC for the complex numeric area. Usage of 
represented methods contributes to performance increasing of SRC using for the 
quick implementation of integer operations in the complex numeric area. These com-
puting techniques can be useful in various applications, for example, when processing 
data in complex computer systems, implementing reliable and fault-tolerant comput-
ers, and also for implementing cryptographic transformations [21, 25, 26]. 

The results can be used to build computer devices and components of fault-tolerant 
critical information systems. Increasing the speed of computing operations due to the 



use of non-positional residue number systems leads to a decrease in the risks of unin-
tentional failures or denials of service of computer systems. 
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