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Abstract  

The paper proposes a stochastic model, on the basis of which estimates are given of the 
parameters at which extreme situations occur due to the interruption of the electrical 

contact between the electro-rolling stock current collector (EPS) and a contact wire for 

the wear and tear of the contact network as a result of acts of arcing. The model takes into 
account the influence of random factors, which are temporary and sometimes 

repetitive. The probabilities of deviating from the coordinates of the breakdowns of the 

contact network from the values given in advance as a result of acts of arcs with defined 

repeatability periods are obtained. 
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1. Introduction 

A topical problem encountered in the operation of 

an electric rolling stock is the reduction of the wear 

and tear of the contact network and the extension of 

its useful life under the influence of electric arc 
discharges arising from the breakdown of 

mechanical contact1. 

In the present operating conditions (soft soils, low 
air temperature for most of the year, high humidity, 

icing and insufficient quality of contact suspension 

surface treatment), it is not possible to improve the 
elasticity of the contact suspension. As a result, 
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when electric rolling stock moves along high-speed 

motorways, there are multiple disconnections of the 
current conductors from the contact wire - a 

violation of the mechanical and electrical contact, 

which result in high-potential arc 

discharges. Repeated acts of discharges result in 
severe wear on the surface of the overhead wire, 

leading to the breakdown of the electrical contact 

and, in the worst case, the breakdown of the contact 
network. 

It should be noted that the above-mentioned 

mechanical and electrical contact defects also lead to 
the deterioration of the traction equipment of the 

electric rolling stock [4].  

According to the available static data on the 

overhaul of the contact suspension at the different 
offices of the October Railway, the frequency of 

major repairs for the replacement of the contact 

suspension is on average from 1,5 to 3 months 
depending on the season of operation and the flow of 

trains on the main line. 

The paper proposes a stochastic model, which 
makes it possible to assess the important quantitative 

characteristics of said extreme situation, which is 

temporary and sometimes repetitive. These 

characteristics include the intensity function, the 
repeatability period and the probability of deviation 
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of the disconnect coordinate from the specified value 

[1], [3]. The above characteristics make it possible to 
assess the periods of inter-service service service and 

the probability of wear on the overhead wires, which 

includes breakages from electric arc discharges, to 

optimize the time and cost of drip repairs and to 
adjust the repair plan for both the main lines and the 

sections of the road [9]. 

2. Problem statement  

The key object in the study of extreme situations 
[5],[6],[7] arising from the breakage of the current 

carrier from the contact wire is the random value 

position of the breakpoint on the overhead wire. The 

model parameter is the pair   T, , where   – 

intensity function, аnd T  –  repeatability period of 

the random distribution  . The distances between 

the two disconnections of the current collector and 

the contact wire that exceed this are random. The 

mean of these distances is the repeatability 

period. Another important parameter for the 
distribution of extremes is the intensity function [1]. 

Thus, the starting point of a mathematical model 

describing periodic extremes [15], [16] is the pair 

  T, . 

2.1. Intensity function of the position of 

the current probe  

The intensity function is defined as [1],[3]. 
Considers the probability that the position of the 

current probe on the overhead wire will be equal to 

or greater than a certain value s :  

   sFs   1P ,                    (1) 

where F  random value distribution function  . 

Enter the conditional probability that the 

position of the current collector’s disconnect on the 

contact wire will lie within the interval  ss, , 

provided that its meaning is greater than or equals s , 

which is expressed by the following formula: 

 

        
 

  .:

:
,
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    (2). 

The function   is called the intensity function 

or fault intensity function. It determines the 
probability of a current probe being removed at a 

point with a coordinate s  more to the right s   by 

the amount величину  . 

2.2. Distribution intensity function 

properties 

From (2) for the intensity function follows the 

expression:  
 

 tF

tp
t
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probability density function of the distribution  ), 

which specifies the following properties: 

1. f the current probe position takes a value 

greater than a given value s , that is, the 

distribution function  less than one: 

    10  sFsP   for any end value 

s , then  dtt
s
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 , would be divergent, 
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
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t
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1
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
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2. from equality  

      tptFt   1  the differential 

equation linking the intensity function and the 

density function follows:  
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2
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



 . 

These properties make it easy to construct an 

intensity function for models with modal 

distributions. It should be noted that the function of 
the density of the current probe is usually 

unimodal. This is because the probability of 

withdrawal at certain points of the wire is lower 
because of mechanical tension and the position of the 

centre of mass of the portion of the wire considered. 

2.3. Period of repeatability of 

separation positions  

If you look at a series of observations in which 
the position of the current probe is greater than or 

equal to  , this deviation of the position to the right is 

an event of interest to us. Let’s determine its 

probability    sFs   1P  for p , and the 

probability of the opposite event –   ps  1P . 

In the experiment, we’ll look at observations at 

regular intervals, and the experiment will stop as 
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soon as we have an event of interest, namely the 

deviation to the right of the current probe s .  

To interpret the results, consider the random 

value X  number of tests up to first to right (i.е. 

s ), it accepts values from set  ,...2,1,0 . X  is 

subject to geometric distribution with parameter p  

(  pX G~ ). Properties of this distribution are 

known: distribution series    kppkX  1P ; 

characteristic function  
 pe

p
t

it 


11
 ; expected 

value  
p

p
iX




1
0E , second starting point 

 
   

2

2 21
0

p

pp
X


 E  allow to find the 

required model parameters [8],[10]. 

Define the repeatability period as a mathematical 

expectation  XE:T  [3]. 

It follows from the definition that for a given 
model the repeatability period takes the form: 

 
 sF

sF









1
T    (3). 

It follows from formula (3) that for the 
repeatability period a bottom-up assessment is 

fair: 1T  .  

Standard deviation from repeatability period is 

given by 

expression:
 

 sF

sF
XX









1

: 22 EE , or 

using formula (2) to accept: 

 ТТ: 2   (4). 

Then the probability of deviating right from the 
set position of the current probe to the observation 

with the number k  or in the room k : 

     sFpkX kk

  111P  (5) 

If in the capacity of k  choose T , for probability 

(5) there is an expression:  

 

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Т

Т1

1
11Т
















XP  (6)  

Probability asymptotics (6) at large T : 

T  has the form: 

  63212,011Tlim
T


 e

X 


P . (7) 

The formulas (5) and (6) make it possible to 

estimate the probability of deviation from the 
specified position of the current probe detachment to 

the right, with certain repeatability periods. In 

addition, the formulae provide valid parameter 
estimates by the maximum likelihood method 

[11],[12],[14] Multimodal distributions should be 

chosen as model distributions: 

 for partitions located on one block, it is 

sufficient to choose a unimodal distribution 

with density: 

     Lttftp ,00 1  (8),  

where  L,0t0  , L– length of block - area; 

 it is sufficient to use linear combinations of 

functions of the form (8) for breaks occurring 

on an extended section comprising several 
blocks. 

2.4. Simulation example: case of one 

block - fixed length section 

The separation density function in this case 

belongs to a two-parameter family   0, th  

distributions and has the form: 

      LhttСthtp ,0

2

00,; 1 , here 
20

Lt  , h – 

the variation of the contact wire from the equilibrium 

position (can be determined by statistical 

evaluation). Random density normalization constant 

 , specified by the normalization condition: 

 
  1

,0

 dttp
L

 ,       LhLtCLhtp ,0

2
2,; 1  

and takes on the importance  hLL
С

12

12
2 

 . 

The distribution function has the form:  
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Ls 0 . 

Repeatability period in this model: 
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 (9). 

Probability of right deviation from a specified 

value: 
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here 
 

   sLhLsL

shLLs

T







1224
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12
2

3
24

33

33

 . 

Formulas (9), (10) express the functional dependence 

of the repeatability period and the probability of the 

right deviation of the current probe from a given 

position to the observation with the number k  or in 

the room k  from that of the s  on a wire, here 

Ls 0 . These functional relationships are 

complex and cumbersome for numerical estimates, 

which is particularly important for applications, the 

type. Given the symmetry in the probabilistic model 
described by the unimodal distribution (8), limit 

values were found (9), (10). 

2.4.1. Limit value of function  Lhs ,;T  

when 0s  

As a result of the cut-off 0s  repeatability 

period for the left end of the block: 

   LhsLh
s

,;Tlim,T
0

1 


 . 

Here  
  22

2

1
242

1

122
,T

LhhL

L
Lh





  (11). 

2.4.2. Limit value of  Lhs ,;T  when 

2Ls   

For the middle of the block 2Ls  the  

repeatability period dependent on model parameters 

will be:  

    1,;Tlim,T
2

2 


LhsLh
Ls

  (12). 

2.4.3. Limit value of  Lhs ,;T  when 

Ls  

For the right end of block - section а Ls   the 

repeatability period of the model will be: 

   
 

2

2

2

3

24
2

122
,;Tlim,T

L

h

L

hL
LhsLh

Ls











(13). 

Due to the symmetry of the partitions, the limits 

of the repeatability period on the right and left ends 

are linked by the ratio:    LhLh ,T,T -1
13  . 

From (11), (12), (13) it follows that when the 

bends are small h : 0h  The repeatability period 

will accept the following values at the appropriate 

points on the overhead wire:   21,T1 Lh , 

  1,T2 Lh ,   2,T3 Lh . 

The above dependency graphics are shown on 

figure 1. 

Accepted here as 1200L  meters, then  6002 L  

meters. 

 

 
 

Figure 1: Repeatability period dependent on 

contact position on overhead wire. 
Repeatability period limits are tabulated for ease 

of reference 1. 

Table 1 Repeatability period limit values 

 

Limit value 

 Lhs ,;T  

Extreme  
contact wire 

position 

Limit value 
when 

0h  

 
21

242

1
,T

Lh
Lh




 

0s    21,0T1 L

 

  1,T2 Lh  2Ls     1,T2 Lh  

 
23

24
2,T

L

h
Lh   

0Ls    2,T3 Lh  

 The asymptotic formulas for the repeatability 

period indicate its limitation to a segment  Ls ;0 ,  

corresponding to the length of the block - section 

( 1200L  meters). This feature of the repeatability 

period makes it possible to predict the frequency of 

major maintenance activities to replace worn-out 
parts of the network. It should be noted that in the 

operation of the network, the optimization of the cost 

of repairs is important, not only at the cost of the 

work carried out, but also at the cost of the time 
spent. The latter means that it is more advantageous 

to repair several sections in parallel (in one period) 

than to replace the overhead wire consecutively (after 
some time to return the repair crew to the same 
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section). The above-mentioned mode of repair makes 

it possible to substantially reduce the cost of idling of 
electrified rolling stock. Thus, the replacement of the 

overhead wire on at least one block - the section 

leads to the dysfunction of a fairly long stretch of the 

railway network, resulting in economic losses for the 
enterprises using the company’s services «Russian 

Railways» as the main carrier.  

 

2.5. Limit values for deviation from a 

specified value 
Based on the expression (10) for deviation 

probabilities and repeatability time limits (11), (12), 

(13), the probability limits are determined from: 

  
 

 LhT

j

j

j

LhT
LhX

,

,1

1
11,Т
















P  

In the least case with low bending values h : 

0h  refer: 

   3)33(,Т1  LhXP ; 

   21,Т2  LhXP ; 

   95,Т3  LhXP . 

These limits for probabilities indicate that the 

probability of a deviation increases with the 
coordinate of the detachment. 

 On figure chart of deviation probability from 

coordinates s . 

 

 
Figure 2: Probability of deviation chart along the 

overhead wire. 
This relationship reflects the fact that at the end 

of repeatability, as is the case for most contact 

networks,  the probability of deviation varies on a 

subset of the segment  1,0 , but it does not accept 

values close to 0 or 1. Probability as a function s – 

slowly changing in segment  L,0 , i.е. by the length 

of the wiring function. At the point 2L  probability 

function is bent, which means increasing the rate of 
growth of the function when approaching the right 

end. 

 Thus, for this unimodal two-parameter model (8), 

probability limit values   LhX j ,ТP  when 

0h  is not dependent on parameter L  

distributions of type (8) and have a uniform form for 

the whole family of distributions. Localize the values 

of the probability function on a segment  56,0;42,0  

results in high accuracy forecast of wear periods and 

major maintenance of contact suspension.  

 

2.6. Severance intensity function 
Intensity function of the probability of the current 

probe being removed at a point with a coordinate  s  

to the right s   by the amount  ,  introduced in 

paragraph 2.1 for this model is: 

 
    

   












hsLLsC

hLsC
Lhs

L

82
3

1
1

2
,;

33

,0

2
1

 (12),  

here  L,01 – segment indicator function  L,0 .  Here 

 hLL
С

12

12
2 

  – is the standard density constant of 

a random distribution  , specified by the 

normalization condition: 
 

  1
,0

 dttp
L

 ,  

      LhLtCLhtp ,0

2
2,; 1 . 

 Following,  on figure 3 is the graph of the 

intensity function   for the following values of the 

distributions: 05,0h  meters, 1200L  meters. 

Figure 3: Intensity function graph 

 

 
 

Analyzing the intensity function and its graph, 

you can see that it has at least in the middle of the 

segment  L,0 , which is fully consistent with the 

type of probability distribution and the presence of 

the latter mode also at a point  20 Lt  .  

The expression for the intensity function (12) has 
a rather cumbersome and difficult form for analysis. 
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Give an asymptotic intensity function in the vicinity 

of a fashion point 20 Lt  : 

 
 

 
 

   
 

  2
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2

2
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(1

3).  

The main part of the formula (13) asymptotics 

should be designated 
~ : 
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3

2
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2
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1
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2
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hLL

h

hLL

Lt
hLL

h

hLL

h
Lht
































(14). 

 Graph of the main part of the asymptotics of the 

intensity function in the vicinity of the point 20 Lt   

in the figure below 4.  
 

Figure 4: Graph of the main part of the 

asymptotics of the intensity function in the 

vicinity of the point 20 Lt   

 

 
 

Dependency graph analysis  t
~  shows that the 

main part of the intensity function in the 
neighborhood of the mode of the distribution has a 

quadratic view. Minimum value  t
~  is at a point 

20 Lt  . This is fully consistent with the fact that 

the intensity function acts as the density of the 

conditional distribution   sss   ,P  

probabilities of lead. 

 Note also that in this model the intensity function 

has no property:   









t
Ot

1
 , t . This is due 

to the fact that it is set in a non-trivial way on a 

compact segment  L,0 , outside which it lasts 0: the 

breakdowns of the current collector occur in a fixed-

length block, so the asymptotics at the large 

coordinates of the separation points are not 
meaningful. 

 

2.7. Conclusion 

The task of estimating the probability 

characteristics of an extreme situation occurring 

during the operation of the contact network as a 

result of the detachments of the current collector 
from the contact wire during the movements of high-

speed electric rolling stock was defined and solved, 

as a consequence of electric arc discharges between 
the overhead wire and the current collector. 

Precise formulas and their asymptotic 

expressions have been found in important extreme 
cases for the probabilities of deviations from a given 

value, repeatability periods and intensity function for 

a special type of unimodal distributions, in 

accordance with the load distribution over the length 
of the wire. This makes it possible to assess the most 

important characteristics and to predict the 

occurrence of said extreme situation - breakage of 
the wire as a result of heavy heating with an electric 

arc. It is equally important to draw up an optimal 

plan of work for periodic major maintenance, thus 

minimizing the cost. 
Note that this type of distribution of possible 

straps from the overhead wire, although 

approximate, is for evenly stretched contact 
suspensions without severe altitude variations and 

the absence of soft soils and underground floating 

lakes, It describes the processes of cutting off the 
current probes with sufficient precision. 

The work, according to the idea of the authors, 

has a natural continuation, where the type of 

distribution will be specified according to the 
geometrical characteristics of the contact wire, such 

as the coordinates of the attachment points, the 

amount of bending, the curvature, the natural profile. 
In addition, it is intended to assess the parameters of 

the working distributions on the basis of statistical 

data from different offices and company roads 
«Russian Railways» [17].  
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