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Abstract. We propose a new method to compare and analyze symbol sequences 
based on the convolution function calculation, where the latter is defined over 
the binary numeric sequences obtained by a specific transformation of the 
original symbol sequence. The method allows highly parallel implementation 
and it is of great value for the insertion/deletion mutations search. To calculate 
the convolution function, a fast discrete Fourier transform is implemented. 
Some genomic applications are provided and discussed. The applications are 
used to illustrate and overcome the problem of signal/noise selection, and 
alignment localization.  
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1 Introduction 

Here, we present a new method to compare and/or search for common subsequences 
in symbol sequences based on convolution. Additionally, fast Fourier transformation 
is used to compute the convolution, as well as a special representation of the symbol 
sequences under consideration. We illustrate it with a few biologically inspired 
examples. Also, the studies reveal some difficulties in the method implementation, 
signal/noise extraction and localization of the coinciding subsequences being the most 
acute among them. 

Currently, alignment is the most popular method to compare two (or several) 
sequences, either exact matching, or with some errors. In spite of tremendous 
investigations both in hardware and software for alignment, this method is still very 
complicated and has a number of drawbacks which are impossible to eliminate. The 
worst of them are divergence, arbitrariness in the fine function determination, and 
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very low efficiency for InDel mismatches search (see, e. g. [1, 2, 8, 7] for details). 
The proposed method is free from these crucial disadvantages. Moreover, it is highly 
potential for coarse grained parallelism in various implementations. 

In brief, the method implies the following steps. 
Preprocessing. Each symbol sequence under consideration must be converted into 

𝐾 binary ones, where 𝐾 = |ℵ| is the capacity of the alphabet. Next, one sequence (𝔗 , 
for certainty) must be inverted. Then, expand each binary sequence to the length 𝐿 =
𝑁 + 𝑁 − 1, adding zeros (upright, for certainty). Finally, expand each binary 
sequence of the lenth 𝐿 to the nearest upper power of 2, to proceed to a fast Fourier 
transform (FFT). 

Processing. Calculation of Fourier images of those binary sequences. 
Postprocessing. Term by term multiplication of the images, thus obtaining a new 

sequence. 
Result. Calculation of the inverse Fourier transform to obtain a convolution. 

2 Method Description 

2.1 Basic Concepts 

Convolution S = A ∗ B of two number sequences A = {𝑎 }  and B = {𝑏 }  is the 

sequence S{𝑠 }  with 

 𝑠 =

∑ 𝑎 𝑏  , 𝑖 < 𝐿 ,

∑ 𝑎 𝑏  , 𝐿 ≤ 𝑖 < 𝑁 ,

∑ 𝑎 𝑏  , 𝑁 ≤ 𝑖 .

 (1) 

The convolution is a key tool to compare two sequences, to seek for a specific 
subsequence within the latter. To do the search, we must introduce the convolution 
S = A ∗ B of the inversed sequence B = {𝑏 } . Following (1), one obtains 𝑠 =
𝑎 𝑏 , 𝑠 = 𝑎 𝑏 + 𝑎 𝑏 , 𝑠 = 𝑎 𝑏 + 𝑎 𝑏 + 𝑎 𝑏 , and so on. 

The convolution is a key tool to compare two sequences, to seek for a specific 
subsequence within the latter. To do the search, we must introduce the convolution 
S = A ∗ B of the inversed sequence B = {𝑏 } . Following (1), one obtains 𝑠 =
𝑎 𝑏 , 𝑠 = 𝑎 𝑏 + 𝑎 𝑏 , 𝑠 = 𝑎 𝑏 + 𝑎 𝑏 + 𝑎 𝑏 , and so on. 

A brute force way to calculate the convolution of two sequences is rather hard. To 
overcome this problem, we consider the convolution as a product of two polynomials 
(of the power 𝐿 − 1 and 𝑁 − 1, respectively). In other words, we consider two 
number sequences A and B as sets of coefficients of the corresponding polynomials. 
Thus, the convolution is converted to a product of two polynomials. 

The next step comes from the well-known theorem stating that Fourier transform 
of a convolution is a product of Fourier transforms of the convolution of functions 
(sequences, in our case) under consideration. Hence, an idea is to apply (fast) Fourier 
transform to both sequences, multiply the Fourier images, and then to apply the 
inverse Fourier transform to obtain the convolution of the original sequences. Fourier 
transform is, in turn, the convolution. Meanwhile, there is a specific algorithm of a 
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very fast calculation of Fourier image of any number sequence called fast Fourier 
transform (FFT). 

Let 𝔽 denote FFT; it transforms a number sequence A into a sequence A′ = 𝔽(A) 
of the same length 𝑁 − 1. Let 𝔽 (A′) = A denote the inverse FFT. Let now 
introduce the operation X • Y for two number sequences X = {𝑥 }  and Y = {𝑦 }  
of the same length:  

 X • Y = {𝑥 𝑦 }  (2) 

2.2 Algorithm Description 

Consider two finite symbol sequences P = {𝑝 }  and Q = {𝑞 }  from the 
alphabet ℵ = {A, C, G, T}. The algorithm comprises the following steps.   

1. Inverse the sequence Q, yielding Q = {𝑞 }  .  
2. Change P and Q into |ℵ| (that is 4, in our case) binary sequences, provided by the 

following: 

─ (0,1) sequence P  is obtained by the substitution of all the symbols A in P with 1, 
while all the others are changed for 0;  

─ (0,1) sequence P  is obtained by the substitution of all the symbols C in P with 1, 
while all the others are changed for 0;  

─ (0,1) sequence P  is obtained by the substitution of all the symbols G in P with 1, 
while all the others are changed for 0; finally  

─ (0,1) sequence P  is obtained by the substitution of all the symbols T in P with 1, 
while all the others are changed for 0.  

Similarly, Q = {𝑞 }  must be changed for Q , Q , Q  and Q . It should be kept in 
mind that here Q sequence must be used. 

3. Expand the sequences with zeros for further application of FFT to obtain a 
sequence of the length 𝑁 + 𝐿 − 1. To do this, all 2 × |ℵ| binary sequences must be 
accomplished with zeros (upright, for certainty) to that length. Additionally, an 
effective implementation of FFT requires the sequence to be as long as the power 
of 2, so we must add zeros to obtain the length 𝑁 = 2⌈ ( )⌉. 

4. Apply FFT to each of the binary sequences:  

P ′ = 𝔽(P ) ,    P ′ = 𝔽(P ) ,    P ′ = 𝔽(P ) ,    P ′ = 𝔽(P ) , 
Q ′ = 𝔽(Q ) ,    Q ′ = 𝔽(Q ) ,    Q ′ = 𝔽(Q ) ,    Q ′ = 𝔽(Q ) . 

5. Following (2), multiply the relevant Q ′ (here 𝜈 runs A, C, G and T) and sum them 
up:  

S′ = P ′ • Q ′ + P ′ • Q ′ + P ′ • Q ′ + P ′ • Q ′ . 

6. Apply the inverse FFT to S′ to obtaining the convolution S = 𝔽 (S′). 
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3 Results 

We illustrate the method efficiency by applicaton to the search of transposons in plant 
mitochondrial genomes. We use the well-established results of the search provided by the 
Censor software which was carried out at the Siberian Federal University as a diploma project 
[3]. Transposon is defined as a chromosomal segment which can undergo transposition, 
especially in a bacterial DNA that can be translocated as a whole between the chromosomal, 
phage, and plasmid DNA in the absence of a complementary sequence in the host DNA. The 
typical length of the transposon ranges from 30 to 500 nucleotides. Meanwhile, the typical 
length of a mitochondrial DNA of a plant is about ∼ 10  nucleotides. Fig. 1(a) shows the total 
pattern, for the entire chromosome, and Fig. 1(b) shows the detailed site of the exact matching 
transposon. InDel detection with the convolution comparison technique is shown in Fig. 1(e) 
(the total pattern, for the entire chromosome), and in Fig. 1(f) (the detailed site of the InDel 
mismatch). Figs 1(c) and 1(d) show the total (left) and the detailed (right) patterns for the case 
of 18 point mismatches. 

  

  

 

Fig. 1. Detection of exact matching with the convolution comparison technique. 
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Since the convolution yields the sequence 𝑁 + 𝑁 − 1 symbols long, then two 
essential problems arise: the former is localization, and the latter is signal/noise 
distinction [6]. Let us explain the first problem in few detail. Suppose, there is a 
common subsequence of the length 𝐿 ≈ √𝑁, where 𝑁 = min{𝑁 , 𝑁 }. Then, the peak 
indicating the exact (or highly likely) coincidence of two copies of the subsequence 
appears somewhere at the convolution. The point is that the exact location of this 
highly scored coincidence could be located within the resulting convolution with 
accuracy of ±𝐿, depending on the location of a copy of the subsequence in each 
sequence under comparison. To avoid this discrepancy, we illustrate the efficiency of 
the method with the search of very small (in terms of the localization problem) 
template subsequences that are the transposons. 

Similarly, the noise-to-signal problem is also closely related to the length of the 
sequences under comparison. The worst case from the point of view of the signal 
deterioration occurs if two sequences of close lengths are compared; again, the 
genetic entities we use to illustrate the method allow one to bypass this problem at the 
moment. 

Thus, below we provide three typical situations of a search for homology in two 
genetic sequences: these are exact matching, subsec. 3.1; point mutations (point 
mismatches), subsec. 3.2 and insertion/deletion mismatch, subsec. 3.3. Yet, a 
combination of these three situations might bring some problems; thus, some further 
studies should address them. To show that all these three types of mismatches can be 
detected by the convolution technique, we use Aegilops speltoides mitochondrial 
genome (AC NC_022666.1 in GenBank). 

Three different transposons have been tested against the mitochondrial genome 
mentioned above. Fig. 1 illustrates the feasibility of the convolution based homology 
search for these transposons over the mitochondrial genome. In this figure, the left 
subfigures show the entire convolution trend; the right subfigures show the detailed 
pattern of the convolution variation at the site of homology. 

3.1 Exact Matching Search 

Exact matching search is the classical problem of pure and applied mathematics. A lot 
has been done in this area. Figs. 1(a) and 1(b) show the case of exact matching search. 
Due to the low resolution of the picture (the convolution total length is about 455 000) 
a point diagram is used in the left part (i. e., for the total convolution trend); the red 
dot shows the location of the site exactly matching the transposon. Fig. 1(b) shows an 
inset with the convolution, so that only 200 values are shown which are presented in 
bars. Obviously, the jump in the convolution is evident, which proves the feasibility 
of the method. 

3.2 Point Mutations 

Point mutation search has made great progress in the editing distance methodology [4, 
5]. Probably, this type of mutations is the most suitable for alignment and relevant 
approaches. Figs. 1(c) and 1(d) show the result of the convolution based search of a 



113 

template with 18 point mismatches. Again, Fig. 1(c) shows the entire genome, and the 
red dot indicates the location of the highest homology to the transposon. Fig. 1(d) 
shows the detailed pattern of the convolution behavior; here the red bar represents the 
coincidence of the template and the site in the genome. 

3.3 Insertion/Deletion 

This is the hardest mismatch type from the point of view of detection with regular 
alignment tools. Figs. 1(e) and 1(f) show the result of the convolution calculation to 
detect the transposon. Note that the location of the site corresponding to the 
transposon is absolutely the same, as in the case of the exact search (see Figs. 1(a) and 
1(b)). It should be said that here we tested another transposon differing in two 
insertions. 

4 Discussion and Conclusion 

Here, we present a new method of the homology search in symbol sequences for 
genetic applications. The method is based on the convolution calculation for digital 
sequences obtained from the symbol ones through special transformation. The method 
enables an innovative application of the well-known Fourier transform to dramatically 
speed up computations for important class of bioinformatics problems. 

The results shown above demostrates the feasibility and efficiency of the new 
method to search for homologies in extended genetic sequences. Certainly, the 
method could be applied for the analysis of sequences of any nature ranging from 
linguistics to financial time series. Meanwhile, some further improvements are 
expected: signal/noise discrimination and localization of the site with the homology 
are the most challenging ones among them. 

Also, it should be stressed that the method allows coarse grained parallelism: 

1. the sequences P  and Q  where ν runs A, C, G and T could be treated 
simultaneously, and in parallel; 

2. similarly, the greater is the number of the sequences to be compared pairwise, the 
faster could be the software implementation of the method;  

3. parallelism grows up, as the capacity of an alphabet increases. Indeed, for amino 
acid sequences (that is very important in a number of applications), parallelism 
may accelerate the methods ten times and faster; 

4. finally, very long biological sequences (up to 10  symbols) could be treated by 
parts, with the subsequent concatenation of the convolutions.  

The detailed discussion of these issues falls beyond the scope of this paper. 
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