
A Multi-shot ASP Encoding for the Aircraft Routing
and Maintenance Planning Problem ?

Pierre Tassel1, Martin Gebser1??, and Mohamed Rbaia2

1 University of Klagenfurt, Klagenfurt, Austria
{pierre.tassel,martin.gebser}@aau.at

2 Amadeus IT Group, Villeneuve-Loubet, France
mohamed.rbaia@amadeus.com

Abstract. The Aircraft Routing and Maintenance Planning problems are inte-
gral parts of the airline scheduling process. We study these relevant combinatorial
optimization problems from the perspective of Answer Set Programming (ASP)
modeling and solving. In particular, we contrast traditional single-shot ASP solv-
ing methods to a novel multi-shot solving approach, geared to rapidly discover
near-optimal solutions to sub-problems of increasing granularity. As it turns out,
our multi-shot solving techniques can heavily speed up the optimization process
without deteriorating the solution quality in comparison to single-shot solving.
We also provide a customizable instance generator and a solution viewer to facil-
itate intensive investigation of Aircraft Routing and Maintenance Planning as a
benchmark problem. Our multi-shot solving techniques are however not limited
to this benchmark alone, and the underlying ideas can be naturally applied to a
variety of scheduling problems.

1 Introduction
Combinatorial optimization problems are usually solved in a single shot, but some-
times, we can decompose them into sub-problems (for example with a time-window
approach [17]) that are then solved with some kind of local search. In this paper, we
present an approach to solve the Aircraft Routing and Maintenance Planning problem in
Answer Set Programming (ASP) [4,9] by decomposing it with a time-window approach
using a paradigm called multi-shot solving [10]. Multi-shot ASP solving methods have
already been successfully applied in areas like automated planning [7], automated the-
orem proving [11], human-robot interaction [6], multi-robot (co)operation [19] and
stream reasoning [15]. Presumably closest to our work, proposing multi-shot solving
techniques to successively increase the granularity of hard combinatorial optimization
problems, is the Asprin system [3] that implements complex user preferences by se-
quences of queries, yet without decomposing the underlying problem representation.

An airline operator scheduling process is divided into six major steps [13], sometimes
seen as independent sub-problems, sometimes with or without communication between
the sub-problems.

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0).

?? also affiliated with the Graz University of Technology



2 P. Tassel, M. Gebser, M. Rbaia

1. Flight Schedule Preparation: The airline designs a set of flights to perform, choos-
ing which airports to serve, at which period, and the frequencies of visits to maxi-
mize the profit.

2. Fleet Assignment: Define the type of aircraft that should perform each specific
flight, where each type of aircraft has different characteristics: total number of seats,
fuel consumption, number of first-class seats, number of crew members needed to
perform the flight, etc.

3. Aircraft Routing: Each flight gets a specific aircraft assigned to it, and a sequence
of flights assigned to the same aircraft forms a route. We need to respect some
constraints like airport turnaround time (called TAT): This is the minimum time
on ground between two consecutive flights needed to perform operations preparing
the aircraft for the next flight. Another condition is airport continuity: The start
airport of an aircraft’s next flight is the same as the end airport of the previous flight.

4. Maintenance Planning: We assign maintenance slots to each aircraft to respect
limits defined by a certain number of cycles (i.e., flights), the number of hours
from the last maintenance or hours of flight. Maintenance can only be performed
at specific airports (with required equipment and skill-set), they have a minimal
duration and they need to be performed before the aircraft has reached the limit. A
good solution usually maximizes the usage of the aircraft.

5. Crew Scheduling: Assign a crew to cover each flight, while respecting all legal re-
strictions. A good solution tries to fulfill all crew members’ preferences in addition.

6. Disruption Recovery: Manage the disruption events happening on the day of oper-
ation as a result of unforeseen events such as bad weather conditions, crew strikes,
aircraft mechanical failures, airport closure, etc. and minimize the impact of differ-
ent actions like cancellations, delays, diversions, etc. on passenger services.

We aim to solve the Aircraft Routing and Maintenance Planning together, considering
one type of maintenance to be performed every seven days on each aircraft. It is possible
to add other types of maintenances that deal with different due limits (e.g., cycles and
hours of flight) without too much overhead, but it is out of the scope of this paper. Our
encoding is able to find a solution when there is no perfect route that respects all TAT
constraints. We show how to address this problem with ASP using multi-shot solving,
and we implement our approach with Clingo [8].

This paper is organized as follows. In Section 2, we begin with brief introductions
of solving techniques for Aircraft Routing and Maintenance Planning from the litera-
ture and of ASP. Section 3 presents our customizable instance generator along with a
solution viewer enabling comprehensive benchmarking. In Section 4, we develop and
experimentally evaluate a variety of multi-shot ASP solving techniques for near-optimal
Aircraft Routing and Maintenance Planning. Finally, Section 5 concludes the paper.

2 Background
In this section, we first introduce the works previously done in Aircraft Routing and
Maintenance Planning, and then we give a brief introduction on ASP.

2.1 Aircraft Routing and Maintenance Planning
Aircraft Routing is usually considered as a feasibility problem, which is NP-hard and
can be reduced to a multi-commodity flow problem [18]. Its combination with Mainte-
nance Planning can be viewed as an Euler tour problem with side constraints [14].



Multi-shot ASP for Aircraft Routing and Maintenance Planning 3

(a) Flight connection network (b) Time-space network

Fig. 1: Two principal models used for Aircraft Routing and Maintenance Planning

Either kind of problem is usually solved using mixed integer programming, for-
mulated as multi-commodity flow problem with one commodity per aircraft and side
constraints related to maintenance allocation [12,16]. There are two principal models
(where maintenance slots can be understood as flights from and to the same airport):
1. Flight connection network (Fig. 1a): In abscissa the time, in ordinate the airport,

each flight is a node, and there is an arc between two flights if they are compatible,
i.e., the end airport of flight A is the same as the start airport of flight B, and flight
A ends before the departure of flight B [12].

2. Time-space network (Fig. 1b): In abscissa the time, in ordinate the airport, each
node is an airport at a given time, i.e., flight start or end. Also, there is an arc be-
tween two nodes if there is a corresponding flight from one airport to another [20].

2.2 Answer Set Programming
Answer Set Programming (ASP) is a declarative paradigm oriented towards solving
combinatorial problems [4,9]. We represent a problem as a logic program, and the solu-
tions are given by models called answer sets. ASP systems like Clingo [8] and DLV [5]
use a grounder to replace variables by constants and a solver to search for answer sets.

A logic program consists of atoms, literals and rules. An atom is a proposition, literals
are atoms with or without default negation in front of them, and a rule is an implication

a1, ..., an ← b1, ..., bm, not c1, ..., not co.

where a1, ..., an is a disjunction of literals called head, and b1, ..., bm, notc1, ..., notco
is the body. From the body, we can derive that the head must be true. A special case of
disjunctive rules with head a1, not a1 are choice rules written as

{a1} ← b1, ..., bm, not c1, ..., not co.

This means that a1 can but need not be derived from the body of the rule. A rule with
an empty head is called a constraint, and it forbids the body to be true:

← b1, ..., bm, not c1, ..., not co.

Multi-shot ASP solving is an iterative approach geared for problems where the logic
program is continuously changing [10]. In this paper, we use multi-shot solving to de-
compose the optimization process into a sequence of queries of increasing complexity.

3 Instance generator
The following subsections discuss how instances for our benchmarks are generated, us-
ing the generator provided at [1]. We start by introducing the parameters of the instance
generator, then explain the allocation of maintenance slots in order to obtain a draft so-
lution, further describe how a cost indicating the draft solution’s quality is calculated,
and finally we present a visual solution format.



4 P. Tassel, M. Gebser, M. Rbaia

3.1 Parametric generation
We have developed an instance generator that is able to create random instances along
with draft solutions, configured with the following parameters:

– number of aircrafts
– number of airports
– maintenance due limit
– number of airports able to perform the maintenance
– length of maintenance
– average number of flights per aircraft
– average length of flights
– average length of flights’ TAT
– average ground time between two flights

The flights per aircraft, flight lengths, TATs and ground times are generated following a
truncated normal distribution with a parametric mean, standard deviation, min and max
value. We also prevent the creation of flights with the same origin and destination but
different flight length or TAT, so that the length and TAT will be the same for all flights
from A to B.

3.2 Maintenance allocation
Initial maintenance counters, expressing the time left before performing maintenance at
the start of a route, are generated following a truncated normal distribution with a mean
of 3.5 days, a standard deviation of 1 day, a minimum of 0 and a maximum of 6 days.
While the generator builds the flight routes of a solution, it also places maintenance slots
to ensure that the solution is feasible from a maintenance perspective. To do so, when
an aircraft has reached at least 50% usage (i.e., 3.5 days for our 7 days maintenance),
a maintenance slot is included with a probability of the usage plus a random value
uniformly sampled between 0 and 0.5, or 1 if the usage is above 90%. In case the
end airport of the previous flight is incompatible with the maintenance, we change the
destination to a compatible airport, picked randomly among the airports able to perform
the maintenance. Moreover, we add the length of the maintenance to the ground time
between consecutive flights (meaning that we can have more ground time than needed).

The draft solution generated along with an instance witnesses that all flights can
be routed and maintenance due limits be respected. Instead of the entire routes, the
generated instance fixes the first flight for each aircraft and dates of remaining flights
only, accompanied by information about initial maintenance counters, airports at which
maintenance can be performed, the maintenance length and due limit. That is, allocat-
ing aircrafts to all but the first flights of routes and incorporating maintenance slots is
subject to Aircraft Routing and Maintenance Planning.

3.3 Solution cost
Along with the actual instance, our generator reports its draft solution together with
a cost indicating the solution quality. The latter is calculated as the sum of cost 500
for each TAT violation (i.e., too short turnaround time) and 101 for each maintenance
slot, where the ratio reflects a higher priority of avoiding TAT violations and the odd
cost of 101 is taken to facilitate reading off the number of maintenance slots contained
in the draft solution. This information can be used for analysis, considering that the
draft solution does not include TAT violations and is thus optimal from a flight routing
perspective, yet potentially sub-optimal from a maintenance perspective. However, the



Multi-shot ASP for Aircraft Routing and Maintenance Planning 5

(a) Gantt chart for a small instance

flight(1, 1, 366701, 3, 379361). tat(1, 4520).
flight(2, 3, 385901, 1, 392321). tat(2, 3300).
flight(3, 1, 401861, 3, 414521). tat(3, 4520).
flight(4, 3, 421961, 1, 428381). tat(4, 3300).
flight(5, 1, 366417, 3, 379077). tat(5, 4520).
flight(6, 3, 391617, 2, 404517). tat(6, 2640).
flight(7, 2, 409497, 1, 422517). tat(7, 3300).
first(1, 1). first(5, 2).
maintenance(seven_day).
airport_maintenance(seven_day, 3).
length_maintenance(seven_day, 9000).
start_counter(seven_day, 366701, 416288, 1).
start_counter(seven_day, 366417, 470841, 2).
limit_counter(seven_day, 604800).

(b) ASP facts for the instance shown in Fig. 2a

Fig. 2: Chart and facts for an Aircraft Routing and Maintenance Planning instance

quality of the draft solution can be assumed to be rather good, given that the usage of
each aircraft is at more than 50% before maintenance is performed.

3.4 Solution viewer
To inspect a solution, we support exporting a graphical representation of it as Gantt chart
(Fig. 2a and Fig. 4). Every flight is represented by a bar, using a unique color for each
pair of origin and destination airport, and maintenance slots after flights are indicated
similarly. The tail at the right of each (non-maintenance) bar represents the TAT of a
flight, and a next flight covering part of this tail would point out a TAT violation. Each
row gives the route of a separate aircraft, with the first flight on the very left and further
flights and maintenance slots to the right.

4 ASP-based Aircraft Routing and Maintenance Planning
In this section, we present our multi-shot ASP encoding for Aircraft Routing and Main-
tenance Planning. Then we specify the parameters used to furnish a benchmark suite
by means of the generator described in Section 3. The remaining subsections introduce
a variety of hyper-parameters for multi-shot ASP solving and experimentally evaluate
their impact on the solution quality and convergence of the optimization process.

4.1 Problem encoding
As customary in ASP, we model Aircraft Routing and Maintenance Planning by facts
describing a problem instance along with a general first-order encoding specifying
(optimal) solutions. Our modeling approach follows the idea of flight connection net-
works,3 where two flights can be connected if they are compatible (i.e., flight A arrives
before flight B departs from the destination airport of flight A). In the following, we
present a simplified yet logically similar version of the full encoding provided at [1].

Fig. 2a sketches (the optimal solution to) the small Aircraft Routing and Maintenance
Planning instance described by the facts in Fig. 2b. We have the flights 1 to 7, declared
by facts of the flight/5 predicate whose first argument is the flight identifier, the sec-
ond stands for the start airport, the third for the start time, the fourth for the destination
airport and the fifth for the arrival time. For each of the seven flights, a fact of the tat/2
predicate provides the TAT required before the next flight on the route of some air-
craft, e.g., 4520 time units (resembling about 75 minutes) for flight 1. Two facts of the

3 We have also devised prototype encodings based on time-space networks and observed dras-
tically increased difficulty of finding feasible routings that incorporate all flights. Hence we
chose flight connection networks as basic principle of problem encodings to elaborate further.



6 P. Tassel, M. Gebser, M. Rbaia

first/2 predicate indicate that flight 1 is the first on the route of aircraft 1, and sim-
ilarly flight 5 for aircraft 2. The remaining facts address conditions for a maintenance
kind labeled seven_day, declared by a fact of maintenance/1. Such maintenance
can be performed at airport 3 and requires at least 9000 units of ground time (amount-
ing to 2.5 hours), as expressed by facts of the predicates airport_maintenance/2
and length_maintenance/2. The two facts of start_counter/4 denote initial time
periods in which the seven_day maintenance is (still) covered: This period stretches
from time 366701 to 416288 for aircraft 1, and from 366417 to 470841 for aircraft 2.
Finally, the fact of the limit_counter/2 predicate expresses that 604800 time units
(7 days) get covered when seven_day maintenance is performed for an aircraft. The
(optimal) routing, depicted in Fig. 2a, happens to be such that aircraft 1 takes the flights
1, 6 and 7 with a maintenance slot after flight 1, while aircraft 2 does the remaining
flights in the order 5, 2, 3 and 4.

Our multi-shot ASP encoding in Fig. 3 starts by defining constants for levels and
weights to penalize TAT violations and maintenance slots along the routes of aircrafts.
In addition, the constant time_window is crucial for when to consider compatible flight
connections in a routing, and the value 3600 expresses that the gap admitted between
the arrival and departure of connected flights shall be successively increased by win-
dows of one hour. This gap is reflected by the TIME_G and WINDOW arguments in atoms
of the compatible/6 predicate. E.g., we derive the atoms compatible(1,3,379361,
2,6540,2) and compatible(1,3,379361,6,12256,4), indicating a ground time
of 6540 time units between the arrival of flight 1 at time 379361 and the departure of
flight 2 from airport 3, while this ground time amounts to 12256 time units for flight 6.
Given the window size of 3600 time units, the last argument in both atoms expresses
that the potential connection between flight 1 and 2 shall be considered from the second
step on during multi-shot solving, and the connection continuing with flight 6 becomes
admissible from the fourth step on.

The second kind of auxiliary atoms derived from the facts of an instance, those of the
maintainable/5 predicate, provide flights FLIGHT1 with their arrival TIME such that
performing MAINTENANCE after them covers (later) flights whose arrival and departure
times lie in the interval from TIME_M to TIME_N. For our instance in Fig. 2b, we obtain
maintainable(seven_day,1,379361,388361,984161) and maintainable(
seven_day,5,379077,388077,983877), signaling the possibility of seven_day
maintenance after flight 1 and 5, both of which arrive at airport 3 and admit connec-
tions to later flights with more than the maintenance length of 9000 time units in-
between. Unlike that, performing seven_day maintenance after flight 3, which also
arrives at airport 3, would be meaningless because its single available connection with
flight 4 does not include sufficient ground time, i.e., 7440 time units only, so that no
maintainable/5 atom is derived for flight 3.

While flight connections are to be made available step-wise during multi-shot solv-
ing, an #external declaration introduces respective atoms of the route/4 predicate
right at the beginning. This avoids need for re-instantiating conditions expressed by
#count aggregates, enforcing a routing with at most one (direct) successor per flight
and exactly one predecessor for flights that are not the first on the route of any aircraft,
in case new compatible connections become admissible in a step. The same applies to
rules for the assign/2 predicate, which trace connections given by atoms of route/4



Multi-shot ASP for Aircraft Routing and Maintenance Planning 7

% constants for levels and weights of costs, and time window for connections
#const level_tat = 2. #const weight_tat = 1.
#const level_maintenance = 1. #const weight_maintenance = 1.
#const time_window = 3600.
% compatible flights with number of time window
compatible(FLIGHT1, AIRPORT_E1, TIME_E1, FLIGHT2, TIME_G, WINDOW) :-

flight(FLIGHT1, AIRPORT_S1, TIME_S1, AIRPORT_E1, TIME_E1),
flight(FLIGHT2, AIRPORT_E1, TIME_S2, AIRPORT_E2, TIME_E2),
not first(FLIGHT2, _),
TIME_G = TIME_S2 - TIME_E1, 0 <= TIME_G,
WINDOW = TIME_G / time_window + 1.

% feasible maintenance slots after flights
maintainable(MAINTENANCE, FLIGHT1, TIME, TIME_M, TIME_N) :-

compatible(FLIGHT1, AIRPORT, TIME, FLIGHT2, TIME_G, WINDOW),
airport_maintenance(MAINTENANCE, AIRPORT),
length_maintenance(MAINTENANCE, LENGTH), LENGTH <= TIME_G,
limit_counter(MAINTENANCE, LIMIT),
TIME_M = TIME + LENGTH, TIME_N = TIME + LIMIT.

% declare incrementally generated routing as external
#external route(FLIGHT1, FLIGHT2, TIME_G, WINDOW) :

compatible(FLIGHT1, AIRPORT, TIME, FLIGHT2, TIME_G, WINDOW).
% enforce routing sequences that include all flights
:- flight(FLIGHT1, AIRPORT_S, TIME_S, AIRPORT_E, TIME_E),

#count{FLIGHT2 : route(FLIGHT1, FLIGHT2, TIME_G, WINDOW)} > 1.
:- flight(FLIGHT2, AIRPORT_S, TIME_S, AIRPORT_E, TIME_E),

not first(FLIGHT2, _),
#count{FLIGHT1 : route(FLIGHT1, FLIGHT2, TIME_G, WINDOW)} != 1.

% propagate assigned planes along routing
assign(FLIGHT1, PLANE) :-

first(FLIGHT1, PLANE).
assign(FLIGHT2, PLANE) :-

assign(FLIGHT1, PLANE), route(FLIGHT1, FLIGHT2, TIME_G, WINDOW).

% generate maintenance slots for planes
{maintain(MAINTENANCE, TIME, TIME_M, TIME_N, PLANE)} :-

maintainable(MAINTENANCE, FLIGHT, TIME, TIME_M, TIME_N),
assign(FLIGHT, PLANE).

% get covered flights from initial and dynamic maintenance slots
covered(MAINTENANCE, FLIGHT, PLANE) :-

start_counter(MAINTENANCE, TIME_M, TIME_N, PLANE),
flight(FLIGHT, AIRPORT_S, TIME_S, AIRPORT_E, TIME_E),
TIME_M <= TIME_S, TIME_E <= TIME_N.

covered(MAINTENANCE, FLIGHT, PLANE) :-
maintain(MAINTENANCE, TIME, TIME_M, TIME_N, PLANE),
flight(FLIGHT, AIRPORT_S, TIME_S, AIRPORT_E, TIME_E),
TIME_M <= TIME_S, TIME_E <= TIME_N.

% enforce coverage of all flights
:- maintenance(MAINTENANCE), assign(FLIGHT, PLANE),

not covered(MAINTENANCE, FLIGHT, PLANE).
% associate costs with dynamic maintenance slots
:˜ maintain(MAINTENANCE, TIME, TIME_M, TIME_N, PLANE).

[weight_maintenance@level_maintenance, TIME, PLANE]

#program step(t). % incremental program to generate routing
% generate new flight connections for current time window
{route(FLIGHT1, FLIGHT2, TIME_G, t)} :-

compatible(FLIGHT1, AIRPORT, TIME, FLIGHT2, TIME_G, t).
% enforce sufficient ground time for dynamic maintenance slots
:- compatible(FLIGHT1, AIRPORT, TIME, FLIGHT2, TIME_G, t),

maintainable(MAINTENANCE, FLIGHT1, TIME, TIME_M, TIME_N),
length_maintenance(MAINTENANCE, LENGTH), TIME_G < LENGTH,
maintain(MAINTENANCE, TIME, TIME_M, TIME_N, PLANE),
assign(FLIGHT2, PLANE).

% associate costs with TAT violations
:˜ route(FLIGHT1, FLIGHT2, TIME_G, t), tat(FLIGHT1, TAT), TIME_G < TAT.

[weight_tat@level_tat, FLIGHT1]

Fig. 3: Multi-shot ASP encoding for Aircraft Routing and Maintenance Planning



8 P. Tassel, M. Gebser, M. Rbaia

and associate each flight with its corresponding aircraft. Maintenance slots can then be
scheduled for aircrafts assigned to flights indicated by the maintainable/5 predicate,
and the arguments TIME_M and TIME_N in maintain/5 atoms provide the respective
time period covered. The flights included in the initial interval or by performing mainte-
nance for an aircraft are signaled by atoms of the predicate covered/3, where a subse-
quent constraint makes sure that each assigned flight is indeed covered. Reconsidering
the instance in Fig. 2b, the initial seven_day maintenance period for aircraft 2 in-
cludes all flights that can belong to its route, while the flights 4 and 7 exceed the initial
interval for aircraft 1. Hence, aircraft 1 needs to be maintained after its first flight, as in-
dicated by the atom maintain(seven_day,379361,388361,984161,1) in an (op-
timal) answer set. The allocation of maintenance slots is however penalized by a weak
constraint, and the particular instance :˜ maintain(seven_day,379361,388361,
984161,1). [1@1,379361,1] associates the weight 1 at level 1 with the mainte-
nance of aircraft 1 at time 379361.

In contrast to the upper part of the encoding in Fig. 3, the one below the #program di-
rective is instantiated in steps during multi-shot solving, where t is replaced by succes-
sive integers starting from 1. The choice rule for route/4 atoms, which were declared
external before, then allows for taking the connections newly admitted at the current
step or integer for t, respectively. E.g., route(1,2,6540,2) is introduced as a poten-
tial connection in the second step, and route(1,6,12256,4) in the fourth step. The
subsequent constraint enforces sufficient ground time when a maintenance slot is allo-
cated in-between two connected flights.4 This rules out route(1,2,6540,2) for an
aircraft subject to seven_day maintenance after flight 1, as it is the case for aircraft 1
whose first flight is 1. Hence, the routing given by an (optimal) answer set is such that
the flights 1, 6 and 7 are assigned to aircraft 1, and aircraft 2 takes 5, 2, 3 and 4. One
can check that this schedule does not involve TAT violations, which would otherwise
be penalized by a weak constraint according to the corresponding level and weight. As
the greatest step associated with some flight connection in the routing happens to be
4 (indicated by the last argument in route(1,6,12256,4)), the multi-shot encoding
requires four steps to lead to an answer set, which then describes an optimal solution
for the instance in Fig. 2b.

Finally, let us note that a traditional single-shot version can be easily derived from the
more sophisticated multi-shot encoding in Fig. 3 by simply omitting the WINDOW and t
arguments from atoms related to flight connections, as well as dropping the #external
and #program declarations. A respective single-shot encoding is also provided at [1].

4.2 Problem instances
Our benchmark suite comprises 20 random instances, generated with the parameters:

– number of aircrafts: 25
– number of airports: 30
– average number of flights per aircraft: 20 ≤ X ∼ N (50, 10) ≤ 80 flights5

– average length of flights: 80 ≤ X ∼ N (140, 120) ≤ 600 minutes
– average length of flights’ TAT: 30 ≤ X ∼ N (45, 10) ≤ 60 minutes
– average ground time between two flights: 0 ≤ X ∼ N (240, 120) ≤ 1000 minutes

4 Our full encoding at [1] includes a more general version of this constraint that is also able to
deal with multiple maintenance kinds.

5 N (µ, σ2) denotes a normal probability distribution of mean µ and standard deviation σ.



Multi-shot ASP for Aircraft Routing and Maintenance Planning 9

Fig. 4: Gantt chart of the draft solution used to generate an instance

Such instances are quite large in order to make optimal Aircraft Routing and Mainte-
nance Planning challenging. While detailed inspection of a draft solution like the one
displayed in Fig. 4 would be intricate, we can still observe that the numbers of flights
and resulting time spans of aicrafts’ routes vary significantly. As a consequence, we
obtain a planning period stretching almost over one month, which necessitates the allo-
cation of a high number of maintenance slots.

4.3 Basic multi-shot solving approach
The main bottleneck of flight connection networks is the large number of arcs when
flights with long ground times in-between are taken as connection candidates, e.g.,
linking the first flight arriving at an airport to the last flight in the planning period
departing from it. Such connections could be dropped by imposing a hard constraint on
the maximum admissible ground time, yet to the risk of ruling out (optimal) solutions
up to making Aircraft Routing and Maintenance Planning infeasible for tricky instances
where some connection with long ground time has to be taken.

Rather than constraining ground times, our multi-shot ASP solving approach works
by successively increasing the maximum ground time of the considered connections
over iterations. For guaranteeing the progress to connections with longer ground times
(and eventually all connections), we limit the runtime allotted for optimizing the routing
and maintenance allocation in each iteration by means of the following intra-iteration
stop criterion: An iteration is aborted when the empirically determined timeout of 60
seconds for finding some better solution is reached, in which case we continue to the
next iteration with an increased maximum ground time of connections. The rationale of
this strategy is to avoid getting stuck on infeasible sub-problems, when the admissible
ground time is yet to small in the first iterations, or on (near-)optimal solutions that can
neither be improved nor verified as optimal in reasonable runtime. Note that the timeout
is reset to 60 seconds whenever the optimization comes up with a better solution, as we
do not want to abort iterations in phases where the optimization makes progress. Upon
proceeding to the next iteration, either due to timeout or search space exhaustion, we
check that new connections become admissible, or increase the maximum ground time
further without relaunching the optimization otherwise. Moreover, the cost of the best
solution found so far, if any, is passed on as upper bound to admit better solutions only.

Our experiments consider the 20 random instances whose generation has been de-
scribed in the previous subsection. As time window for increasing the maximum ground
time of connections, we use the value 3600 (one hour), corresponding to the default of
our encoding in Fig. 3. Unless noted otherwise, we also stick to the level 2 for weight



10 P. Tassel, M. Gebser, M. Rbaia

Fig. 5: Solution costs for single-shot and multi-shot solving

(a) Solution costs per runtime for instance 14 (b) Solution costs per runtime for instance 15

Fig. 6: Instance-wise solution costs per runtime for single-shot and multi-shot solving

constraints penalizing TAT violations, and the smaller level 1 for maintenance slots im-
plies strictly lower priority of minimizing their number, where each maintenance slot or
TAT violation is counted with the weight 1. Note that this scheme is different from the
weighted sum taken to calculate the cost of a draft solution in Section 3.3, and we reuse
the latter for comparability when plotting solution costs in the sequel. All experiments
were run with Clingo version 5.4.0, each run limited to one hour wall clock time, on an
Ubuntu 18.04 machine with two 8-Core Intel Xeon E5520 processors and 48GB RAM.

Fig. 5 plots the costs of best solutions found in one hour with traditional single-shot
solving, where the full problem with all flight connections is considered, and with our
(basic) multi-shot solving approach in relation to the costs of draft solutions generated
together with the instances. Although multi-shot solving with its intra-iteration stop
criterion merely probes the search space of sub-problems without guaranteeing that a
globally optimal solution will be obtained, it usually finds better solutions than single-
shot solving in the time limit, and sometimes its best solution also improves on the draft
solution that is of good quality by construction.

Fig. 6a and 6b show the optimization progress in detail for two representative in-
stances, where single-shot solving leads to a better solution for one instance and multi-
shot solving for the other.6 We observe that multi-shot solving finds its solutions much
faster and gets then stuck on unsuccessful iterations aborted after 60 seconds each.
Tackling the full problem by single-shot solving makes finding the first feasible routing
and then achieving improvements much harder and time-consuming, so that granting

6 Occasionally rising solution cost over time is due to the weighted sum function used for plot-
ting the solution quality, while the optimization strictly reduces TAT violations in such cases
and also leads to lower weighted sum values in the long run.



Multi-shot ASP for Aircraft Routing and Maintenance Planning 11

(a) Solution cost per iteration for instance 7 (b) Solution cost per iteration for instance 8

Fig. 7: Instance-wise solution cost per iteration for multi-shot solving

(a) Runtimes for the early-stop criterion (b) Solution costs for the early-stop criterion

Fig. 8: Runtimes and solution costs for the early-stop criterion

non-negligible runtime is a necessity to obtain solutions of good quality. Notably, all
runs exhaust the time limit of one hour due to the size and combinatorics of instances.

4.4 Early-stop multi-shot solving approach
Picking again two representative instances, Fig. 7a and 7b indicate the optimization pro-
gress over the iterations of multi-shot solving, where we observe substantial improve-
ments by step-wise increases of the maximum ground time at the beginning, followed
by little and then no improvement at all for a substantial number of unsuccessful itera-
tions aborted after 60 seconds. This suggests the addition of an inter-iteration stop cri-
terion to avoid spending time on unpromising iterations, and our early-stop multi-shot
solving approach thus aborts the entire run after timing out without any improvement for
three iterations in a row. The deliberate stop of runs constitutes a trade-off between solu-
tion quality and computational efforts, and the number of three consecutive timeouts of
iterations without improvement is again problem-specific and determined empirically.

The plot in Fig. 8a shows that runtimes are indeed substantially reduced by early-stop
multi-shot solving, with the median around 20 minutes instead of fully exhausting the
one hour per instance. Comparing the solution costs in Fig. 8b yields a rather modest
quality decline in exchange for runtime savings, which can presumably be tolerated in
application scenarios where the time taken for decision making is critical.

4.5 Weighted sum vs level cost function
The results reported so far rely on distinct priority levels for TAT violations and main-
tenance allocation, and now we compare the performance of optimization relative to the
weighted sum function given in Section 3.3. Switching to the latter can be easily done by



12 P. Tassel, M. Gebser, M. Rbaia

(a) Runtimes for weighted sum and level
function

(b) Solution costs for weighted sum and level
function

Fig. 9: Runtimes and solution costs for weighted sum and level function

(a) Solution costs per runtime for instance 4 (b) Solution costs per runtime for instance 12

Fig. 10: Instance-wise solution costs per runtime for weighted sum and level function

setting the values for the constants level_tat, level_maintenance, weight_tat
and weight_maintenance used by the encoding in Fig. 3 to 1, 1, 500 and 101.

Fig. 9a and 9b plot runtimes and solution costs for early-stop multi-shot solving with
either the weighted sum function or distinct priority levels to penalize TAT violations
and maintenance slots. Switching to the weighted sum greatly reduces runtimes, yet be-
cause optimization turns out to be much harder and the three iterations in a row without
improvement are reached way more quickly. Accordingly, the solution quality suffers
heavily, even despite the previously considered optimization based on distinct priority
levels merely approximates the weighted sum function used for plotting and now in the
optimization process as well. The quick outage of improvements after more or less sub-
stantial progress in the first iterations becomes also apparent on the detailed inspections
of two instances in Fig. 10a and 10b. We conjecture that higher weighted sum values
due to incorporating costs from several sources at the same level complicate recogniz-
ing and discarding partial assignments that can eventually not lead to any improvement,
so that more search efforts are spent on such fruitless assignments.

4.6 Parallel solving
While we merely considered single-threaded Clingo before, it also allows for running
multiple solver threads with complementary search strategies in parallel. The remark-
ably reduced runtimes and solution costs obtained with eight parallel solver threads
are summarized in Fig. 11a and 11b. Notably, the best solutions found by early-stop
multi-shot solving with parallel threads consistently improve on the draft solutions for
instances, thus showing that high-quality results can be achieved with reasonable com-



Multi-shot ASP for Aircraft Routing and Maintenance Planning 13

(a) Runtimes for sequential and parallel
solving

(b) Solution costs for sequential and parallel
solving

Fig. 11: Runtimes and solution costs for sequential and parallel solving

(a) Solution costs per runtime for instance 0 (b) Solution costs per runtime for instance 11

Fig. 12: Instance-wise solution costs per runtime for sequential and parallel solving

putational efforts. Fig. 12a and 12b additionally plot the much more rapid optimization
progress for two representative instances. This robustness is certainly related to the par-
allel use of complementary search strategies, also considering that the discovery of a
better solution by one thread resets the timeout to another 60 seconds for all threads.

5 Conclusion
The Aircraft Routing and Maintenance Planning problem lends itself to multi-shot ASP
solving based on successively increasing ground times of flight connections, given that
long ground times are undesirable in practice and should thus be avoided if possible.
A direct use of the incremental mode shipped with Clingo [10] would be (too) risky
though, as it minimizes the number of iterations and can easily get stuck on hard sub-
problems. We instead aim at discovering near-optimal solutions in affordable time, so
that approximating solution costs by means of (easier to optimize) priority levels, also
found to be advantageous for shift design [2], and interrupting exhaustive iterations,
as likewise done in automated planning [7], can be tolerated. The hyper-parameters we
used for aborting iterations or entire runs are clearly problem-specific and need retuning
when switching to another application, where related scheduling problems may benefit
from similar techniques as well, so that a general tool supplying them can be valuable.
Acknowledgments. This work was partially funded by KWF project 28472, cms elec-
tronics GmbH, FunderMax GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, In-
fineon Technologies Austria AG, Isovolta AG, Kostwein Holding GmbH, and Privats-
tiftung Kärntner Sparkasse. We thank the anonymous reviewers for helpful comments.



14 P. Tassel, M. Gebser, M. Rbaia

References
1. https://github.com/prosysscience/Aircraft_Scheduling
2. Abseher, M., Gebser, M., Musliu, N., Schaub, T., & Woltran, S. (2016). Shift Design with

Answer Set Programming. Fundamenta Informaticae, 147(1), 1-25.
3. Brewka, G., Delgrande, J., Romero, J., & Schaub, T. (2015). asprin: Customizing Answer

Set Preferences without a Headache. Proceedings of the AAAI Conference on Artificial In-
telligence, 1467-1474. AAAI Press.

4. Brewka, G., Eiter, T., & Truszczyński, M. (2011). Answer Set Programming at a Glance.
Communications of the ACM, 54(12), 92-103.

5. Calimeri, F., Dodaro, C., Fuscà, D., Perri, S., & Zangari, J. (2020). Efficiently Coupling
the I-DLV Grounder with ASP Solvers. Theory and Practice of Logic Programming, 20(2),
205-224.

6. Chen, K., Lu, D., Chen, Y., Tang, K., Wang, N., & Chen, X. (2014). The Intelligent Tech-
niques in Robot KeJia – The Champion of RoboCup@Home 2014. Proceedings of the An-
nual RoboCup International Symposium, 130–141. Springer.

7. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., & Schaub, T. (2019). plasp 3: Towards
Effective ASP Planning. Theory and Practice of Logic Programming, 19(3), 477-504.

8. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J., Schaub,
T., & Thiele, S. (2019). Potassco User Guide. https://potassco.org, University of
Potsdam.

9. Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer Set Solving in Prac-
tice. Morgan and Claypool Publishers.

10. Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2019). Multi-shot ASP Solving with
clingo. Theory and Practice of Logic Programming, 19(1), 27-82.

11. Gebser, M., Sabuncu, O., & Schaub, T. (2011). An Incremental Answer Set Programming
Based System for Finite Model Computation. AI Communications, 24(2), 195-212.

12. Grönkvist, M. The Tail Assignment Problem. (2005). Ph.D. thesis, Chalmers University of
Technology.

13. Jamili, A. (2017). A Robust Mathematical Model and Heuristic Algorithms for Integrated
Aircraft Routing and Scheduling, with Consideration of Fleet Assignment Problem. Journal
of Air Transport Management, 58, 21-30.

14. Liang, Z., & Chaovalitwongse, W. (2009). The Aircraft Maintenance Routing Problem. Op-
timization and Logistics Challenges in the Enterprise, 327-348. Springer.

15. Obermeier, P., Romero, J., & Schaub, T. (2019). Multi-Shot Stream Reasoning in Answer
Set Programming: A Preliminary Report. Open Journal of Databases, 6(1), 33-38.

16. Orhan, İ., Kapanoğlu, M., & Karakoç, T. (2011). Concurrent Aircraft Routing and Mainte-
nance Scheduling. Journal of Aeronautics and Space Technologies, 5(1), 73-79.

17. Ovacik, I., & Uzsoy, R. (2012). Decomposition Methods for Complex Factory Scheduling
Problems. Springer.

18. Roy, K., & Tomlin, C. (2007). Solving the Aircraft Routing Problem Using Network Flow
Algorithms. Proceedings of the American Control Conference, 3330-3335. IEEE.

19. Schäpers, B., Niemueller, T., Lakemeyer, G., Gebser, M., & Schaub, T. (2018). ASP-Based
Time-Bounded Planning for Logistics Robots. Proceedings of the International Conference
on Automated Planning and Scheduling, 509-517. AAAI Press.

20. Vaaben, B., & Larsen, J. (2015). Mitigation of Airspace Congestion Impact on Airline Net-
works. Journal of Air Transport Management, 47, 54-65.

https://github.com/prosysscience/Aircraft_Scheduling
https://potassco.org

	A Multi-shot ASP Encoding for the Aircraft Routing and Maintenance Planning Problem 

