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Preface

Science, technology, and commerce increasingly recognise the importance of ma-
chine learning approaches for data-intensive, evidence-based decision making.
This is accompanied by increasing numbers of machine learning applications
and volumes of data. Nevertheless, the capacities of processing systems or hu-
man supervisors or domain experts remain limited in real-world applications.
Furthermore, many applications require fast reaction to new situations, which
means that first predictive models need to be available even if little data is
yet available. Therefore approaches are needed that optimise the whole learning
process, including the interaction with human supervisors, processing systems,
and data of various kind and at different timings: techniques for estimating the
impact of additional resources (e.g. data) on the learning progress; techniques
for the active selection of the information processed or queried; techniques for
reusing knowledge across time, domains, or tasks, by identifying similarities and
adaptation to changes between them; techniques for making use of different types
of information, such as labeled or unlabeled data, constraints or domain knowl-
edge. Such techniques are studied for example in the fields of adaptive, active,
semi-supervised, and transfer learning. However, this is mostly done in separate
lines of research, while combinations thereof in interactive and adaptive ma-
chine learning systems that are capable of operating under various constraints,
and thereby address the immanent real-world challenges of volume, velocity and
variability of data and data mining systems, are rarely reported. Therefore, this
workshop aims to bring together researchers and practitioners from these differ-
ent areas, and to stimulate research in interactive and adaptive machine learning
systems as a whole. It continues a successful series of events at ECML PKDD
2017 in Skopje (Workshop and Tutorial), IJCNN 2018 in Rio (Tutorial), ECML
PKDD 2018 in Dublin (Workshop), and ECML PKDD 2019 in Würzburg (Work-
shop and Tutorial).
The workshop aims at discussing techniques and approaches for optimising the
whole learning process, including the interaction with human supervisors, pro-
cessing systems, and includes adaptive, active, semi-supervised, and transfer
learning techniques, and combinations thereof in interactive and adaptive ma-
chine learning systems. Our objective is to bridge the communities researching
and developing these techniques and systems in machine learning and data min-
ing. Therefore, we welcome contributions that present a novel problem setting,
propose a novel approach, or report experience with the practical deployment of
such a system and raise unsolved questions to the research community.



II Preface

All in all, we accepted four regular papers (4 papers submitted) and four short
papers (6 submitted) to be published in these workshop proceedings. The au-
thors discuss approaches, identify challenges and gaps between active learning
research and meaningful applications, as well as define new application-relevant
research directions. We thank the authors for their submissions and the program
committee for their hard work.

September 2020 Adrian Calma, Andreas Holzinger
Daniel Kottke, Georg Krempl, Vincent Lemaire
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When Humans and AI Collide

Kori Inkpen

Microsoft Research, USA
kori@microsoft.com

Abstract. As the use of AI in society grows and evolves, we see both op-
portunities and risks for these technologies. While AI has already shown
strong performance in some areas, there are still many domains where the
potential impact of AI will depend on the interaction between Humans
and AI. So what happens when Humans and AI disagree? Who do you
trust? And what happens when the Human, the AI, or both are biased?
We need to continue to evolve our understanding of how humans and
AI systems can work together, effectively harnessing the benefits of both
systems, and mitigating their inherent biases. This talk will share results
from our work on Human-AI complementarity, and the intersection of
Human and AI bias.
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The rapid growth of Human-in-the-Loop
Machine Learning

Robert Munro

Machine Learning Consulting, USA
robert.munro@gmail.com

Abstract. In the last few years Human-in-the-Loop Machine Learning
has quickly become the dominant paradigm in many industries adopting
AI for the first time. More than 90% of machine learning applications to-
day are powered by supervised machine learning, including autonomous
vehicles, in-home devices, and every item you purchase on-line. There are
thousands of professional annotators and subject matter experts fine-
tuning each underlying model by annotating new data. This talk will
highlight different use cases in Human-in-the-Loop Machine Learning in
industries including finance, healthcare, entertainment, retail, and disas-
ter response.
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How to measure uncertainty in Uncertainty
Sampling for Active Learning

Eyke Hüllermeier

University Potsdam, Germany
eyke@uni-paderborn.de

Abstract. Various strategies for active learning have been proposed in
the machine learning literature. In uncertainty sampling, which is among
the most popular approaches, the active learner sequentially queries the
label of those instances for which its current prediction is maximally
uncertain. The predictions as well as the measures used to quantify the
degree of uncertainty, such as entropy, are traditionally of a probabilistic
nature. Yet, alternative approaches to capturing uncertainty in machine
learning, alongside with corresponding uncertainty measures, have been
proposed in recent years. In particular, some of these measures seek to
distinguish different sources and to separate different types of uncer-
tainty, such as the reducible (epistemic) and the irreducible (aleatoric)
part of the total uncertainty in a prediction. This talk elaborates on
the usefulness of such measures for uncertainty sampling and compares
their performance in active learning. To this end, uncertainty sampling
is instantiated with different measures, the properties of the sampling
strategies thus obtained are analyzed and compared in an experimental
study.
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From Explainable AI to Human-Centered AI

Andreas Holzinger

Medical University Graz, Austria
andreas.holzinger@human-centered.ai

Abstract. The problem of explainability is as old as AI itself and classic
AI represented comprehensible retraceable approaches. Their weakness
was in dealing with non-linearities and the intrinsic uncertainties of med-
ical data. Advances in data-driven statistical machine learning have led
to the current renaissance of AI, but the solutions are becoming increas-
ingly complex and opaque. Due to increasing social, ethical, and legal
aspects of AI in medicine, explainable AI (xAI) is attracting much inter-
est within the international research community. While xAI deals with
the implementation of transparency and traceability of statistical black-
box machine learning methods, there is a pressing need to go beyond xAI,
e.g. to extent explainability with causability. The integrative backbone
for this approach is in interactive machine learning with the human-in-
the-loop because a human domain expert complements AI with implicit
knowledge. Humans are robust, can generalize from few examples, un-
derstand relevant representations and concepts and are able to explain
causal links between them. Consequently, more research is needed on how
human experts explain their decisions by examining their strategies, as
they are (but not always) able to describe the underlying explanatory fac-
tors. Formalized, these can be used to build structural causal models of
human decision making and characteristics can be mapped back to train
AI. Finally, such an AI-ecosystem needs advanced Human-AI interfaces,
that allow to ask questions of why, but also to ask for counterfactuals, i.e.
what-if. This interactivity between human and AI will contribute to en-
hance robustness, reliability, accountability, fairness and trust in AI and
foster ethical responsible machine learning with the human-in-control.
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Improving Unsupervised Domain Adaptation
with Representative Selection Techniques

I-Ting Chen and Hsuan-Tien Lin

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan
{r06922136,htlin}@csie.ntu.edu.tw

Abstract. Domain adaptation is a technique that tackles the dataset
shift scenario, where the training (source) data and the test (target) data
can come from different distributions. Current research works mainly fo-
cus on either the covariate shift or the label shift settings, each making
a different assumption on how the source and target data are related.
Nevertheless, we observe that neither of the settings can perfectly match
the needs of a real-world bio-chemistry application. We carefully study
the difficulties encountered by those settings on the application and pro-
pose a novel method that takes both settings into account to improve the
performance on the application. The key idea of our proposed method
is to select examples from the source data that are similar to the tar-
get distribution of interest. We further explore two selection schemes,
the hard-selection scheme that plugs similarity into a nearest-neighbor
style approach, and the soft-selection scheme that enforces similarity by
soft constraints. Experiments demonstrate that our proposed method not
only achieves better accuracy for the bio-chemistry application but also
shows promising performance on other domain adaptation tasks when
the similarity can be concretely defined.

Keywords: Domain Adaptation, Dataset Shift, Covariate Shift, Label
Shift.

1 Introduction

Machine learning has been a high-profile topic and succeeded in various kinds
of real-world tasks due to the vast amount of labeled data. However, collecting
well-labeled data from scratch is time and labor-consuming. Therefore, in many
applications [21], we hope that the model trained on one task could generalize
to another related task. For example, consider an object recognition task that
tries to distinguish ten different products based on their images on e-commerce
websites. It is relatively easy to crawl and gather well-labeled data from the
websites to train a classifier. After training the classifier, we may encounter
another task where we hope that the users can easily recognize a product by
taking pictures with their smartphones. Given that it is harder to gather well-
labeled data from the users to train a classifier, we hope to reuse the data
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and/or the classifier obtained in the former task to tackle the latter one. Owing
to the differences in brightness, in angle, and in picture quality between images
taken from the two tasks, the same-distribution assumption on the training and
test data may not hold. This scenario is called dataset shift [17], where the
training(source) and test(target) data can come from different distributions.

A family of techniques that aim at tackling the dataset shift problem is
domain adaptation (DA). In this work, we try to solve the more challenging
unsupervised domain adaptation (UDA) problem, where we can only access the
labeled source data and unlabeled target data in the training phase. The goal of
UDA is to learn a model from these data and to achieve good performance on
the target domain. Intuitively, learning under UDA is not possible if the source
and target domains do not share any properties. Previous works on UDA thus
make assumptions about the properties shared by the two domains and design
algorithms based on the assumptions. Two major assumptions, covariate and
label shift, have been considered separately in previous research works.

The assumption of covariate shift considers the mismatch of feature distribu-
tion between the source and target domains. Furthermore, it is assumed that the
labels of both domains are drawn from the same conditional distribution given
the features. There are two main families of methods designed under this assump-
tion, namely, the re-weighting method [8, 20, 25], and the adversarial training
method [3, 12, 13, 19]. They solve the same problem from different perspectives:
Re-weighting based method estimates the difference in feature distributions be-
tween the source and target domains, whereas an adversarial training method
aligns those distributions directly. The label shift assumption refers to the change
of label distributions between the source and target domain while assuming that
the features of both domains are drawn from the same conditional distribution
given the label. Previous works focus on utilizing re-weighting [1,11,26] to solve
this task. They estimate the difference between source and target domain label
distributions.

Most recent works extend from the two settings and demonstrate promising
performance. However, motivated by a real-world bio-chemistry application, we
find that current domain adaptation methods designed for only one of the two
assumptions cannot cope with all the application needs. We carefully examine the
application and find it comes with the shift of label distribution that can be easily
observed from the polarity of label distribution. However, the assumption that
the conditional distribution given label does not seem to be the same, violating
label shift assumption. Accordingly, we must use covariate shift assumption to
model this application. Here comes the problem: If the application is tackled with
the covariate shift assumption using adversarial training, the label distribution
should be the same on the aligned data, violating the polarity property of the
dataset. Therefore, we conclude that this application requires considering both
the covariate shift and label shift properly. In this paper, we study how to follow
the covariate shift assumption while taking the possible label shift into account
for the bio-chemistry application. [24] also tries to tackle the same issue. They

6 I-Ting Chen and Hsuan-Tien Lin
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use adversarial training while imposing the constraint on the model. Therefore,
the model would not perfectly align the distribution of source and target data.

Inspired by some intuitive toy examples, we find that selecting representa-
tive examples from the source data allows us to construct a similar-feature and
similar-label subset of the source data that resolves both covariate shift and label
shift. If the feature space implicitly encodes the distance between two features
with physical meaning, we can construct the subset through the nearest-neighbor
algorithm by considering the distance as the similarity measure. Based on this
finding, we propose two methods, Hard/Soft Distance-Based Selection, to handle
different situations. The hard selection directly uses the subset of the source data
we construct to train the model, whereas the soft selection enforces similarity
on the subset by adding a soft constraint.

Experiments show that our methods successfully capture the structural in-
formation and utilize the distance-based similarity and thus mitigate the impact
from the label shift in the application. To test the performance of our methods in
high-dimension space (e.g., image space), we also do experiments on the bench-
mark dataset (digits). Further, we extend our methods to tackle this scenario
and have promising experimental results. Finally, we discuss what are the good
situations to utilize our methods, through a simple noisy source data experiment.

Our contributions of this thesis include

1. We carefully study the difficulties encountered by concurrent UDA methods
on a real-world application.

2. We propose two methods based on representative selection to overcome the
difficulties.

3. We study how the proposed methods can be extended in different scenarios.

2 Background

2.1 Notation and Problem Setup

We consider a K-way classification task and let X and Y represent the random
variables for the feature and label respectively, where Y = {0, . . . ,K − 1}. We
denote the joint distributions for the source and target domains as PS(X,Y )
and PT (X,Y ). The marginal distributions of X and Y in the source domain
are defined as PS(X) and PS(Y ). Similarly, PT (X) and PT (Y ) represent the
marginal distributions of X and Y in the target domain. The conditional label
distributions in the two domains are denoted by PS(Y |X), PT (Y |X). PS(X|Y )
and PT (X|Y ) stand for the conditional feature distribution in the two domains.

We consider the UDA setting in this thesis. There exists a set of labeled data
DS = {(xi, yi)}ni=1 in the source domain, where each instance (xi, yi) is drawn
i.i.d. from PS(X,Y ). In the target domain, we have only a set of unlabeled data
DT = {x̃j}mj=1, where each instance x̃j is drawn i.i.d. from PT (X).

Our goal is to train a classifier f : X → Y , based on DS and DT and then
predict the corresponding labels of DT . Note that there are labels for the target
domain, but only used for testing.

Improving UDA with Representative Selection Techniques 7
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2.2 Related Work

DA has been studied in various fields, such as natural language processing for
sentiment analysis [4], health care for disease diagnosis [15], and computer vi-
sion [7] for object detection [2] and semantic segmentation [27]. Also, there are
many types of DA to conquer different scenarios. For instance, semi-supervised
domain adaptation where a small amount of labeled target domain data is pro-
vided is a common setting [18, 23]. In this paper, we focus on UDA [9, 16] and
make a comparison between two common settings.

Most UDA researchers put emphasis on covariate shift setting, which assumes
that PS(X) is different from PT (X). Among these methods, we can roughly
divide them into two main approaches. One is the re-weighting method. The
goal of this kind of method is to estimate the importance weight PT (X)/PS(X)
for each source data. After obtaining the importance weights, they can further
do importance-weighted empirical risk minimization to adapt their model to the
target domain. Different methods estimate the importance weight differently. [20]
utilizes the Kullback-Leibler divergence and some [8, 25] borrow the concept of
kernel mean matching [6] to estimate the weight. The other method trying to deal
with covariate shift is the adversarial training method [3,12,13,19]. Inspired by
the Generative Adversarial Network (GAN) [5], the adversarial training method
tries to learn a disentangle embedding by making use of discriminator. With these
disentangle embedding features that are domain invariant, they can reduce the
distribution difference between the source and target domains under covariate
shift setting.

Another setting named label shift is assumed that PS(Y ) 6= PT (Y ). In this
setting, previous works mostly utilize the re-weighting method to solve the prob-
lem. But different from covariate shift, they try to estimate the importance
weight PT (Y )/PS(Y ). The concept of kernel mean matching can spread to label
shift setting [26]. However, time-consuming is the drawback of the re-weighting
based method, because it requires calculating the inversion of the kernel matrix
which would be dependent on data size. Therefore, it is hard to extend to large
scale scenarios. Recently, [1,11] proposes the method by exploiting an arbitrary
classifier to estimate the importance weights and thus can easily be applied to
large scale scenarios.

Motivated by a real-world application, we find that current methods cannot
successfully tackle this application which contains the properties from covariate
and label shift. Therefore, how to promote domain adaptation methods to handle
more general cases is essential. Recently, [24] raises a problem that the adversarial
training method would cause a bad generalization to the target domain when
there exists label shift simultaneously, and proposed the method to handle this.

3 Motivation

Commissioned by the Industrial Technology Research Institute (ITRI), we initi-
ated a research project on predicting compound-protein interaction (CPI), which

8 I-Ting Chen and Hsuan-Tien Lin
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is a vital topic on drug discovery [10]. Briefly speaking, given a pair of compound
and protein data, the CPI prediction task identifies whether the pair comes with
chemical interaction or not. That is, the task is a classic binary classification
problem. Our collaborators at ITRI provides us with the CheMBL dataset that
contains 645461 pairs of (compound, protein), with a binary label for each pair.
Note that each example was generated according to the earlier work [22] to ob-
tain a 300-dimensional feature. Each feature is formed by concatenating a 200-
dimension compound feature and a 100-dimension protein feature. Additionally,
they also indicated 3916 data pairs that are relative to Chinese medicine, named
Herb. They hope to get a model having good accuracy on Chinese medicine
data. The main difficulty they confront is that labeled Herb data is relatively
less compared with CheMBL data. However, doing the experiments to label the
data is time-consuming and burning up a lot of money. How to take advantage
of a bunch of labeled CheMBL- (CheMBL - Herb) data becomes important in
this situation.

We plot the scatter diagram through t-SNE [14] to analyze the dataset. From
Figure 1, we can find the distribution of CheMBL- is different from the one of
Herb. This figure demonstrates a typical dataset shift scenario. Therefore, we
formulate the whole problem as UDA to meet the situation where gathering
labeled target data is difficult. As stated above, we have to assume that the
source domain and target domain share some properties. Thus, we consider two
main assumptions below.

Fig. 1. Visualization for CheMBL-(red) and Herb (purple) by t-SNE

3.1 Covariate Shift Assumption

In this setting, it assumes the input distributions change between source and tar-
get domain (PS(X) 6= PT (X)) while the conditional label distributions remain
invariant (PS(Y |X) = PT (Y |X)). Figure 1 shows that our dataset meets these
assumptions so we do the experiments under this setting first. Early works try to
estimate the difference between PS(X) and PT (X). We call this kind of method
re-weighting. Recently, domain adaptation researchers use adversarial training,

Improving UDA with Representative Selection Techniques 9
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Table 1. PT (Y )/PS(Y ) importance weights estimation between the CheMBL- and
Herb.

class 0 class 1

ground truth 2.3685 0.3130

RLLS 0.0000014 1.0348

utilizing the concept of GAN, to learn a shared transform function E which maps
source and target domain data into the same embedding space reducing the dis-
tribution difference. We simply do the experiment utilizing Domain Adversarial
Neural Network (DANN) [3], a classical adversarial training method, There ex-
ists three main components inside the architecture: (i) encoder, (ii) classifier,
(iii) discriminator. The encoder E is responsible for mapping the original data
to the embedding space Z, where E : X → Z and try to fool the discriminator so
that it can not distinguish between the source and target embedding. The goal
of the classifier is to predict well on the source embedding data C : Z → {0, 1}K .
What Discriminator do is to verify correctly on the source and target embedding
generating from Encoder E : Z → {0, 1}. The overall optimization is

min
E,C

max
D

Lcls(C,E,DS) + Ladv(D,E,DS ,DT )

=
1

n

n∑

i=1

[yTi log C(E(xi))] +
1

n

n∑

i=1

log[D(E(xi))] +
1

m

m∑

j=1

log[1−D(E(x̃j))]

where Lcls represents a cross-entropy loss for the source data and Ladv is the
objective function for encoder and discriminator.

We also train a model on the source domain and directly test it on the target
domain, which is called source-only. target-only means that we train the model
on training target data then evaluate it on testing target data. Note that, we
choose weighted accuracy as the evaluation criterion on Herb dataset because it
is an imbalanced dataset.

In Figure 2, we notice that of DANN is worse than source-only. Confounding
by the result, we dig deeper to analyze the property of this dataset. One possi-
ble reason is if we let PS(E(X)) = PT (E(X)), we can derive PS(Y ) = PT (Y )
based on covariate shift assumption. However, we find that the positive to neg-
ative ratio of the number of data is 2:1 in the source domain. In the target
domain, the corresponding ratio is 1:4. This finding shows that the label distri-
bution of the source domain is different from the one of the target domain, i.e.,
PS(Y ) 6= PT (Y ). In this circumstance, if we insist on aligning source and target
distribution, we may have bad accuracy. Based on this result, we argue that
current adversarial methods designed under covariate shift assumption cannot
handle the situation where PS(Y ) is also not equal to PT (Y ).

10 I-Ting Chen and Hsuan-Tien Lin
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Fig. 2. Weighted accuracy on Herb

(a) CheMBL- (b) Herb

Fig. 3. Visualization of label distribution for CheMBL- and Herb

3.2 Label Shift Assumption

It makes the following assumptions. First, the label distribution changes from
source to target (i.e. PS(Y ) 6= PT (Y )). Then it further assumes that the condi-
tional feature distributions stay the same (PS(X|Y ) = PT (X|Y )). Recent works
deal with this problem through re-weighting and do importance-weighted em-
pirical risk minimization after getting the weights.

Ex,y∼PT (X,Y ) `(y, h(x)) = Ex,y∼PS(X,Y )
PT (X,Y )

PS(X,Y )
`(y, h(x))

= Ex,y∼PS(X,Y )
PT (Y )

PS(Y )
`(y, h(x))

= Ex,y∼PS(X,Y ) w(y)`(y, h(x)).

(1)

whereh stands for a classifier: x → {0, 1}K , ` represents the loss function: y ×
y → [0, 1] and w(y) denotes the importance weight vector which stands for
PT (Y )/PS(Y ).

We take Regularized Learning under label Shifts (RLLS) [1] as our baseline.
The results are reported in Table 1. The table shows RLLS couldn’t estimate well
on the importance weight. To analyze what takes place in the experiment and
cause this bad estimation, we plot figures displaying the source and target distri-

Improving UDA with Representative Selection Techniques 11
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bution separately to observe. According to Figure 1, we are able to confirm that
the conditional input distributions are quite different, i.e., PS(X|Y ) 6= PT (X|Y ).
This observation breaks the label shift assumption.

3.3 C2H Dataset

From the previous discussion, we found that current domain adaptation methods
could not cover all various dataset shift cases, e.g., our real-world dataset. We
first formally construct the C2H dataset for this particular domain adaptation
task. It comprises CheEMBL- and Herb represented as source and target domain
respectively. The source domain includes 641,545 data, and the target domain
contains 3,916 data. Specifically, both input and label distributions vary between
source and target.

4 Proposed Method

Based on the observations in section 3.1, if we stop at nothing to use adversarial
training to align the source and target data distributions, we may finally get
an unexpected bad performance on the target domain due to neglecting that
there could also exist label shift at the same time. We illustrate the toy example
in Figure 4 to demonstrate this finding. In Figure 4(a), if we use adversarial
training to align two distributions and do not take PS(Y ) 6= PT (Y ) into con-
sideration, we would probably have bad accuracy on target data. Figure 4(b)
shows that when the embedding space has strong physical meaning, selecting
the source data which is close to target data directly could get some benefit
on classification. That is, we can regard the distance between two data as an
similarity measurement and then accomplish domain adaptation through selec-
tion technique. We use a toy example to demonstrate our idea in the following
section.

4.1 Representatives Selection

In this section, we demonstrate that a simple selection technique could accom-
plish UDA in Figure 4. Figure 5(a) depicts the source-only classifier. We can
see that directly applying the source-only classifier to the target domain could
have a bad performance. In Figure 5(b), choosing the source data which is close
to target data and utilizing it could get a good classifier on the target domain,
i.e., achieve domain adaptation. Therefore, when the distance can represents
similarity, simple selection technique can improve the performance in UDA task.

Furthermore, we actually implicitly make the continuity assumption, i.e., the
points which are close to each other are more likely to share the same label. If
the assumption holds, we can achieve domain adaptation through selecting the
target-like source data which is close to target data. We define the target-like
source data as representatives in this paper. Based on the continuity assumption,
we further propose two selection techniques to achieve domain adaptation.

12 I-Ting Chen and Hsuan-Tien Lin
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(a) adversarial training (b) data selection

Fig. 4. The intuition and illustration of our proposed method

(a) source-only (b) data selection

Fig. 5. Toy example to demonstrate domain adaptation can be done through selection
technique

4.2 Hard Distance-Based Selection (HS)

The first method is based on K-Nearest Neighbor (KNN), a classic lazy algo-
rithm. KNN takes euclidean distance as a similarity measurement and collabo-
rates with the assumption that for any data point and its neighborhood must
belong to the same class, i.e., continuity assumption. We feed the source data
into KNN as training data first and then input all the target data to get the
corresponding representatives. We let K = 1 for simplicity. The procedure can
be formulated from a different perspective as

for each x̃j , let sj = arg min
xi∈DS

||x̃j − xi||22,

Drep
S = {sj}mj=1,

where Drep
S denote the representatives we choose. After gathering the represen-

tatives, we can use them as a new source dataset to train a model and apply it
to the target domain.

4.3 Soft Distance-Based Selection (SS-β)

However, HS could aggravate bad performance when there exist two problems.
First, the continuity assumption could be wrong. For example, in high dimen-
sional space like image space, directly take distance as a similarity measurement

Improving UDA with Representative Selection Techniques 13
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to select the representatives may be a catastrophe. In this kind of space, the
data sparsity problem exists naturally. We may face that the distance does not
represent a sort of similarity. Second, if the source data is noisy, choose the rep-
resentatives by distance may bring a lot of biases into the model and thus hurt
the performance. Thus, to overcome these two problems, we propose the second
method called SS-β. The soft means we do not drop the rest of the source data
after selecting the representatives. Instead, we add the following constraint into
the minimization objective. Supposed we train a neural net N as a classifier with
L layers, we add the following constraint on the k-th hidden layer

min
f

1

m

m∑

j=1

||Nk(sj)−Nk(Drep
Sj

)||22.

Via this term, we enforce that the close data pair in original space must be close
in embedding space. The overall objective can be

min
N

1

n

n∑

i=1

`(N(xi), yi) + β
1

m

m∑

j=1

||Nk(x̃j)−Nk(sj)||22,

where β is a hyperparameter to control the importance of this constraint and `
represents a cross entropy loss.

5 Experiments

In this section, we evaluate our proposed methods on three parts: (i) C2H, (ii)
Noisy C2H and (iii) Digits. For part (i), we want to show simple selection based
methods can improve the performance in our C2H dataset. In part (ii), we test
our methods in the noisy source domain and discuss what is the best circum-
stances for our methods to be used. To evaluate the scalability of our methods
to high-dimension space, we do the experiments on digits dataset and show the
results in part (iii)

We name our methods as follows: (1) HS: use the representatives selected by
Hard Distance-Based Selection to train the model and then direct apply it to the
target domain. (2) SS-β: train the model on the source domain and add the Soft
Distance-Based Selection constraint which is controlled by the hyperparameter
β to restrict the influence of this term. For each result, we repeat 5 times trials
with different random seeds and show the average on the table. We also indicate
the standard deviation to demonstrate the stability for each method.

5.1 C2H Dataset Evaluation

We run the following methods as our competitors (i) KMM-γ [8], the classic
re-weighting method and the γ represents the parameter in the Gaussian kernel,
(ii) DANN [3], (iii) fDANN-β and sDANN-β proposed by [24] which implicitly
deals with the same problem as we do. β is a restrictive factor that forces the
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model not to perfectly align source and target data. source-only and target-only
are also placed as the baselines. Note that, we subsample 20000 data points from
ChEMBL- for efficient evaluation. We all use Adam as the optimizer with 512
and 64 batch size for the source and target data respectively, set the learning
rate=0.0001. For DANN-like models, it is noteworthy that encoder, discrimina-
tor, and classifier have their optimizer with different weight decay (0.01, 0.001,
0, respectively). Figure 6 and Figure 7 shows the architecture of our methods
and DANN-like methods respectively.

Fig. 6. Model architecture of HS and SS-β in C2H task

Fig. 7. Model architecture of DANN-like methods in C2H task

Table 2 shows that HS has an improvement compared with source-only and
other methods in this task. We can see that there is a big performance gap
between DANN-like methods and ours. The original dataset already has inter-
pretable and discriminative features. Therefore, aligning the distributions ag-
gressively would lead to declining performance, not to mention label shift would
deteriorate the performance too. fDANN and sDANN are expected to somewhat
ease the impact of label shift by restricting the model not to align the distribu-
tion perfectly, but still have bad performance due to destroying the good feature
embedding. In Table 2, we can see that re-weighting methods are competitive
to HS. HS can basically be regarded as a re-weighting method that only assign
the weight to the representatives and others assign 0 weight. However, HS is
computational efficiency because we don’t need to calculate the kernel matrix
that KMM should do. We just run the KNN algorithm. We can also see that our
SS-β perform poorly because it suffers from difficult hyperparameter tuning.

Improving UDA with Representative Selection Techniques 15
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Furthermore, we do the experiment to see whether accuracy under the differ-
ent number of neighbors k would change. The results plot in Figure 8. We can
find that under different k the accuracy has slightly different. Therefore, we do
not have to worry about the parameter k when using our methods.

Fig. 8. different number of neighbors k

accuracy

source-only 65.0 ± 2.1

KMM-1 66.7 ± 1.5

KMM-10 66.2 ± 1.0

KMM-100 67.0 ± 1.1

DANN 57.4 ± 1.6

fDANN-1 56.3 ± 1.6

sDANN-4 57.8 ± 1.7

HS 67.0 ± 0.1

SS-10 62.3 ± 1.5

target-only 82.2 ± 1.1

Table 2. Weighted accuracy on C2H task.

5.2 Noisy C2H Dataset Evaluation

We want to verify that SS-β could handle the situation where the representatives
could be disruptive due to the noisy source data. Therefore, we create a noisy
C2H dataset and try to choose the better method in this scenario. First, we
add Gaussian noise with 0 mean and 0.01 variance into each feature dimension
independently for every ChEMBL- data point, while Herb dataset remains the
same.

The experiment results are listed in Table 3. From the table, we can see that
HS perform poorly than SS-β. As expected, in the noisy source scenario, if we
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over-rely on the close source dataset selected by HS, we would suffer from the
impact of noisy data. In this circumstance, choose SS-β can mitigate the noisy
data effect by careful hyperparameter tuning.

Briefly, if we know in advance that the data has strong physical meaning in
your task, use the hard version would gain much more benefit without the effort
for tuning the parameter. On the contrary, in the task where source data could
have some noises, choose soft version selection and coupe with careful parameter
search can avoid over-confidence on the fake representative.

[0-9] No-Shift

source-only 56.9 ± 1.2

HS 55.6 ± 1.1
SS-1 57.7 ± 1.3

target-only 82.2 ± 1.1
Table 3. Weighted accuracy on noisy C2H task.

5.3 Digit Dataset Evaluation

To extend to a more severe shift scenario, we follow the procedure of previous
work [24] to artificially generate the shift datasets. In brief, the source domain
keeps class-balanced and the shift part comes from the target domain. To yield
the target label distribution shift, we subsample target data from half of the
classes in a uniform sampling manner. Therefore, following the procedure, we
obtain a covariate shift dataset with severe label shift. We consider USPS and
MNIST datasets, so there would be two tasks: (i) USPS → MNIST and (ii)
MNIST→ USPS. For each task, we do the following experiments. (a) [0-4] shift:
target data only sample from class 0-4. (b) [5-9] shift: target data only sample
from class 5-9. (c) [0-9] no shift: sample data from all classes. Note that, we sub-
sample 2000 data from MNIST and subsample 1800 data from USPS according
to given distribution (shift or no shift), resize all the image to 28x28, convert
each value into [0, 1] and do channel-wise normalization with 0.5 mean and 0.5
standard deviation. Figure 9 and Figure 10 depict the model architectures.

Fig. 9. Model architecture of HS and SS-β in Digit task

Improving UDA with Representative Selection Techniques 17
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Fig. 10. Model architecture of DANN-like methods in Digit task

For task (i), the results are listed in Table 4. From the table, we can discover
that fDANN outperforms other methods on the severe shift setting (i.e. [0-4] Shift
and [5-9] Shift). As we expected, our distance-based methods perform ordinary
or even worsen because the features do not have great physical meanings. But
we can also find out that fDANN and sDANN are unstable with high standard
deviations. Therefore, it is not certain whether applying fDANN and sDANN
for a real-world application is suitable.

For task (ii), Table 5 shows that fDANN still does well in severe shift settings.
However, to our surprise, SS-1 has a great improvement on [0-4] Shift. We further
investigate this phenomenon by plotting the source and target distributions in
Figure 11. We can find that class 0-4 from both MNIST and USPS have great
discriminability because they separate obviously. Additionally, the source data
with the labels among class 0-4 is relatively close to the corresponding target
data. Therefore, our method can have great performance in [0-4] Shift.

Even though our methods perform well only on [0-4] Shift, the performance
of our methods on other tasks is still worse than other methods. Therefore, ob-
taining a feature embedding with physical meaning is crucial before applying
our methods. We try three different ways to get an embedding: (1) PCA: con-
catenate both the source and target data and then run the method to obtain the
features, (2) extractor: build a model from the source domain first, then use it
as feature extractor on the source and target data, (3) ImageNet: use ImageNet
pre-trained model as a feature extractor. After getting all feature embedding,
we then apply our methods on these embedding.

Table 6 and Table 7 show the results. We can see that our method well
generalizes to the target domain, under the feature embedding generating by
the extractor method. Using the features generated by PCA to run our methods
has bad performance on each task. This result shows PCA lets the target data
lose a lot of important information. The ImageNet method performs poorly,
either. Because it was trained on a non-digits dataset, the model can not extract
the features which are important for digits classification.
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Fig. 11. t-sne of MNIST (src) and USPS (tgt)

[0-4] Shift [5-9] Shift [0-9] No-Shift

source-only 73.1 ± 4.5 29.2 ± 3.3 50.1 ± 3.0

DANN 62.1 ± 1.9 38.8 ± 4.0 88.6 ± 1.5

fDANN-1 74.2 ± 2.2 69.5 ± 7.8 82.1 ± 1.8

sDANN-1 71.7 ± 2.3 42.0 ± 3.5 84.8 ± 1.3

HS 72.3 ± 5.4 26.4 ± 5.4 43.2 ± 4.7

SS-100 71.3 ± 3.2 25.8 ± 3.0 42.9 ± 4.1

SS-10 69.9 ± 2.8 25.9 ± 4.3 41.8 ± 3.8

SS-1 69.7 ± 3.9 26.0 ± 5.2 45.7 ± 4.1

SS-0.1 70.5 ± 2.5 26.9 ± 5.0 48.5 ± 5.2

SS-0.01 73.0 ± 3.1 28.6 ± 3.4 50.2 ± 3.2

Table 4. Accuracy on USPS →
MNIST with different label shift set-
tings

[0-4] Shift [5-9] Shift [0-9] No-Shift

source-only 83.5 ± 1.5 58.3 ± 4.4 71.2 ± 2.2

DANN 48.9 ± 4.3 39.2 ± 1.8 87.0 ± 1.4

fDANN-1 81.7 ± 2.3 72.1 ± 7.7 84.2 ± 3.7

sDANN-4 61.5 ± 8.4 42.4 ± 6.4 82.7 ± 2.5

HS 85.2 ± 0.1 47.5±9.7 70.1±1.4
SS-100 87.3 ± 1.1 58.1 ± 2.3 75.5 ± 0.9

SS-10 88.4 ± 1.3 60.7 ± 2.1 76.3 ± 1.0

SS-1 88.8 ± 1.2 62.6 ±1.7 76.7 ± 0.8

SS-0.1 87.7 ± 1.4 62.9 ± 2.2 77.3 ± 0.8

SS-0.01 84.8 ± 1.5 59.7 ± 3.0 74.6 ± 0.9

Table 5. Accuracy on MNIST →
USPS with different label shift set-
tings

[0-4] Shift [5-9] Shift [0-9] No-Shift

pca 29.2 ± 2.9 14.7±6.6 23.6±3.7
extractor 83.6 ± 5.3 55.8 ±6.9 69.3 ± 1.7

ImageNet 43.9 ± 3.3 26.9 ±3.2 34.0 ± 3.1

Table 6. Accuracy on MNIST→ USPS
with different label shift settings under
three embedding methods

[0-4] Shift [5-9] Shift [0-9] No-Shift

pca 24.9 ± 2.7 4.7±1.4 13.9±2.5
extractor 77.1 ± 5.3 51.4 ±9.1 67.4 ± 4.2

ImageNet 43.9 ± 3.7 18.8 ±1.7 30.6 ± 2.4

Table 7. Accuracy on USPS →
MNIST with different label shift set-
tings under three embedding methods

6 conclusion

Motivated by the real-world bio-chemistry application, we indicate the problem
that covariate shift and label shift could exist at the same time. We propose
HS and SS-β which can handle this situation while other recent UDA methods
would suffer from. We also extend our methods to image space which is high-
dimensional. Our methods are mainly based on the similarity, that is, how to
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get a feature space with strong physical meaning would be a big problem. A
possible extension of this work is regarding our methods as a complement for
current domain adaptation methods.
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Abstract. Recommender system is an essential component in many
practical applications and services. Recently, significant progress has
been made to improve performance of recommender system utilizing deep
learning. However, current recommender systems suffers from the long-
standing data sparsity problem, especially in domains with little data.
With the ability to transfer knowledge across domains, transfer learn-
ing is a potential approach to deal with the data sparsity problem in
recommender system. In this paper, we carry out an investigation on
the transferability of deep neural networks for recommender system. We
show that network-based transfer learning can improve recommendation
performance on target domains by up to 20%. In addition, our investiga-
tion reveals that transferring the layers close to the output leads to better
transfer performance. The transfer performance is also found to be de-
pendent on the similarities between data distributions of the source and
target domains. Meanwhile, target domain characteristics such as size
and sparsity have little impacts on the transfer performance.

Keywords: Transfer Learning, Recommender System, Neural networks

1 Introduction

With the explosive growth of information available on the Internet, it is challeng-
ing for users to find their desired products/services. Thus, recommender systems
(RSs) play a central role in enhancing user experience, especially in online news
services, E-commerce websites, and online advertising [24]. The main task of RSs
is to provide suggestions for items (e.g., news, books, movies, event tickets, etc.)
to individual users. RSs enable the so-called personalized experience, which is the
key to the successes of many Internet companies like Amazon [28], Netflix [8].

Starting with the Netflix Prize [3], significant progress has been made in
recommender system research [33]. The past few years have also witnessed the
great success of deep learning in many application domains, especially in com-
puter vision and natural language processing [15]. In this trend, in the past few
years, deep learning has been studied extensively for recommender system such
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as in [1, 4, 10, 13, 25, 26, 34]. Although these deep learning-based methods are
effective in improving the performance of recommender system, they are mostly
based on information (e.g., ratings, reviews) in a single domain. As a result,
these methods inevitably suffer from the data sparsity problem because each
item is usually rated or reviewed by a few users [24]. Moreover, current applica-
tions should be able to react quickly to new situations such as new products or
new users. Therefore, techniques to reuse knowledge across times, domains, and
tasks are highly desirable.

Transfer learning is a machine learning technique capable of transferring
knowledge learned in a domain (source domain) to another related domain (tar-
get domain) [22]. Thus, it can be used to deal with the data sparsity problem in
recommender system as well as to increase system’s ability to adapt to new situ-
ations. Existing works on transfer learning for recommender system apply either
instance-based [5, 7, 16, 23] or feature-based [19, 35] approaches, in which data
samples/features from one or more source domains are transferred to a target
domain. One of the main problems of instance-based and feature-based transfers
is that they require access to data of other source domains. In other words, data
sharing between domains is necessary. Nevertheless, inter-domain data sharing
has become more and more difficult nowadays due to data regulations such as
GDPR [29], especially if the shared data contains user-relevant information.

To improve the performance of recommender systems, it is still desirable to
be able to transfer knowledge across domains even if shared data is not avail-
able. In such circumstances, network-based transfer learning, which transfers
features of model (e.g., parameters, structure, etc.) learned on a source domain,
is a potential approach. Although network-based transfer has been studied ex-
tensively in the literature, previous works mainly focus either on computer vi-
sion [9,14,21,27,30,32] or natural language processing [6,11,12,18,31]. In context
of recommender systems, despite the fact that deep neural network-based models
have shown their superiority, there is still no existing work on the transferability
of those deep neural networks.

In this paper, we focus on answering the following three questions in order
to understand the transferability of neural network for recommender system.

– Q1: Does network-based transfer learning lead to better recommendation
performance on the target domain?

– Q2: How to transfer a neural network for the best transfer performance?

– Q3: What are the factors affecting the transfer performance?

Although network-based transfer learning has been found to be effective in many
computer vision and natural language processing(NLP) tasks, there is still a lack
of understanding on the transferability of neural networks for recommender tasks
(i.e., Q1). In computer vision and NLP tasks, those layers close to the input
are found to be highly transferable, whereas those close to the output are task-
specific [21]. Yet, it is still unknown which layers can be effectively transferred in
recommendation tasks (i.e., Q2). It is also important to understand how different
factors affect the transfer performance (i.e., Q3).
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In this paper, we investigate the transferability of deep neural networks for
recommender system, focusing on top-N item recommendation task. For that
purpose, a recommender system built on Multi-layer Perceptron (MLP) neural
network is used as the base network. The base network consists of an embedding
layer and an interaction function consisting of multiple fully connected layers.
Then, we examine various options to transfer the knowledge of the base net-
work to a target domain. Extensive evaluation with eighteen real-world datasets
demonstrate that transferring the interaction function layers can improve rec-
ommendation performance on the target domain by up to 20%. Especially, our
evaluation reveals that, unlike deep neural networks for computer visions and
NLP tasks, those layers close to the output are more transferable than those
close to the input in deep neural networks for recommender system. To the best
of our knowledge, this is the first work on transferablity of deep neural networks
for recommender system.

The remaining of the paper is organized as follows. Section 2 surveys related
works. The base network and transfer options are described in Section 3. The
evaluation is given in Section 4. Finally, the paper is concluded in Section 5.

2 Related Work

In recent years, deep learning-based methods have been studied extensively for
recommender systems. These methods mainly focus on replacing one or more
components in conventional methods by deep neural networks. For instance,
in [10], instead of using the dot product as in traditional matrix factorization [2],
the interaction function is learned by a MLP network. In [25, 36], Autoencoder
is utilized to learn the user/item embeddings. In [1], Gate Recurrent Unit is
used to exploit the order of words in sentences, which is shown to outperform a
simple average of word embeddings for text recommendation. Other deep neural
network architectures such as Generative Adversarial Network (GAN) [4] and
Attention Model [26] have also been used in recommender system. A comprehen-
sive survey of deep learning-based methods can be found in [33]. In this paper,
we adopt the MLP as the base network due to its simplicity. Other deep neural
networks will be studied in our future work.

In the literature, transfer learning has been used to tackle the data sparsity
problem in recommender system. Most transfer learning methods in previous
studies are either instance-based or feature-based. In [5], training samples of a
source domain are directly used to train the recommendation model at the target
domain. In [16], users/items in a source domain are clustered to construct a
codebook, which is then transferred to a target domain. In [19,35], the user/item
feature vectors learned on a source domain are transferred to the target domain
by means of a mapping function. Some other studies leverage multi-task learning
to enable dual knowledge transfer across domains such as [13, 34]. However,
instance-/feature-based transfers and multi-task learning require sharing data
between domains. In contrast, our work focuses on network-based transfer, and
thus does not require data sharing across domains. Such a property is especially
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Fig. 1: Base network architecture for top-N item recommendation task.

important considering fact that more data regulations are being imposed on user
data [29].

Network-based transfer learning has been studied in contexts of computer
vision and natural language processing research. In [32], it is found that the first
layers of Convolutional Neural Network (CNN) are highly transferable. The fol-
lowing works lead to the developments of various transfer techniques for image
classification task. In [21], the output layer of a pre-trained CNN is replaced
by an adaptation layer, while the remaining layers are transferred to the tar-
get domain. In [9], only the convolutional layers are transferred, while all the
fully-connected layers of CNN networks are fine-tuned with learning rate deter-
mined by Bayesian Optimization. A recent evaluation [14] found that there is
a strong correlation between ImageNet accuracy and transfer accuracy among
popular image classification networks. To improve the performance of factoid
question answering (QA) tasks on small datasets, the model parameters trained
on a large dataset are used to initialize the target model’s weights, with a mod-
ified loss function to avoid catastrophic forgetting [31]. In [12], an universal
language modeling fine tuning (ULMFiT) is presented, featuring discriminative
fine-tuning, slanted trianglar learning rates, and gradual unfreezing. In [11], an
adapter-based parameter efficient transfer learning for NLP is proposed.

3 Network-based Transfer Learning

In this section, the top-N item recommendation task is defined and a neural
network-based approach is introduced. Then, we describe how to transfer the a
pre-trained network from a source domain to a target domain.

3.1 Top-N item recommendation task

Along with rating prediction [3], top-N item recommendation is one of most
important tasks in recommender systems. Suppose that we need to recommend
N items to individual users of a particular domain (e.g., online book stores,
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e-commercial websites). Let U and I respectively denotes the sets of users and
items. We define the variables {Rui} to represent user-item interactions as fol-
lows.

Rui =

{
1 if user u has interacted with item i

0 otherwise

Here, an interaction can be a purchase or rating of the item, a click on the item’s
advertisement, or a visit to the item’s website. In this paper, we assume that
only implicit feedback is available. Thus, user-item interactions are represented
by binary values. The set of items that a user u has interacted with in the past is
denoted by Iu, i.e., Iu = {i|Rui = 1}. The top-N item recommendation problem
can be formulated as follows.

For a user u ∈ U , determine N items {i1, i2, .., iN} ∈ I \ Iu that have the
highest likelihoods that the user u will interact with.

Existing methods for top-N item recommendation task can be classified into
two main groups, namely content-based, and collaborative filtering. Content-
based methods simply calculate the similarity between candidate items and the
items the user has interacted with, then select top-N items with highest simi-
larity scores. On the other hand, collaborative filtering predicts the interaction
score by using preference from many users. In this paper, we focus on model-
based CF to predict the value Rui for every item i ∈ I \ Iu. The model is built
on top of a neural network and will be described in the next section.

3.2 Neural Network Model

In this paper, we follow the NeuMF framework proposed in [10] to build the
base network as follows. Each user/item is characterized by a latent vector or
embedding. The user-item interactions are modeled by an interaction function.
Similar to [10], the interaction function is a Multi-layer Perceptron network,
which is learned during training.

Figure 1 shows the architecture of the base network used in this paper.
As aforementioned, each user u ∈ U is characterized by an embedding vector
pu ∈ Rdu , where du is the user embedding size. Similarly, each item i ∈ I is
mapped to an item embedding vector qi ∈ Rdi where di is the length of the item
embedding vectors. In this paper, we assume that the user and item embeddings
have the same size, i.e., du = di. Given an interaction between user u and item i,
the corresponding user and item embeddings are aggregated by the aggregator,
forming Xui, which is the input of the interaction function. In this paper, the
aggregator simply concatenates the user and item embedding vectors as follows.

Xui = [pu, qi] (1)

The interaction function consists of K fully connected layers FC-k (1 ≤ k ≤ K).
Let sk denote the size of layer FC-k. The output yk ∈ Rsk of layer FC-k (1 ≤
k ≤ K) is given by,

yk =

{
fk(Xui ∗Wk + bk) if k = 1

fk(yk−1 ∗Wk + bk) if k > 1
(2)
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where fk, Wk ∈ Rsk−1×sk , and bk ∈ Rsk respectively denotes the activation
function, weight, and bias of layer FC-k. The outermost FC layer (i.e., FC-K) is
also referred to as output layer. The base network parameter set θ includes the
user and item embeddings and the layers’ weights and biases.

θ = {{pu}u∈U , {qi}i∈I , {Wk, bk}1≤k≤K} (3)

The parameter set θ is learned so as to minimize a loss L, which is a function of
the predicted interaction and the actual ones.

min
θ

1

|U| × |I|
∑

(u,i)

L(Rui, R
e
ui) (4)

Where Reui is the predicted interaction interaction of user u and item i. In this
paper, since the interaction values are binary, we adopt the binary cross-entropy
loss function.

3.3 Network-based Transfer Learning Mechanism

In this paper, we are interested in the transferability of deep neural networks
learned on a source domain to improve performance on a target domain. As
aforementioned, since we assume that data sharing is not available, instance-
based transfer is not applicable since it requires transferring of data instances
from the source domain to the target domain. Feature-based transfer (e.g., [19])
requires prior knowledge of shared users/items, which is unknown in this case,
and so cannot be applied. Thus, a network-based transfer approach [23] is used.
Given a target domain DT and a learning task T , the goal here is to improve
performance on DT by transferring knowledge of the pre-trained network learned
on a source domain DS .

The key assumption of network-based transfer approach is that the neural
networks of the source and target domains should share some parameters. Let θS
and θT respectively denotes the parameter set of the source and target networks.
Then, the parameter sets can be decomposed into two sub-sets, one contains
shared parameters (i.e., θ0) and another contains domain-specific parameters
(i.e., vS and vT ) as follows.

θS = θ0 ∪ vS (5)

θT = θ0 ∪ vT (6)

The common parameters θ0 are learned on the source domain and then trans-
ferred to the target domain. During training at the target domain, the common
(transferred) parameters are frozen, whereas domain-specific parameters (vT )
are learned.

Since user/item linkages are not allowed in our problem setting, the user
and item embedding vectors are non-transferable, and so they are in domain-
specific parameter set vT . Transferable parameters consists of the weights and
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Table 1: Transfer settings of fully-connected layers of the base network.
Setting Layers to transfer

Config-1 FC-1, FC-2, FC-3, FC-4

Config-2 FC-1, FC-2, FC-3

Config-3 FC-1, FC-2

Config-4 FC-1

Config-5 FC-2, FC-3, FC-4

Config-6 FC-3, FC-4

Config-7 FC-4

biases of individual fully-connected (FC) layers of the interaction function. In
this paper, we perform transfer in layer basis, in which all parameters of a given
layer are transferred as a whole. More fine-grain transfer options are reserved for
our future work. We consider different transfer configurations as will described
in the next section.

4 Evaluation

4.1 Experiment Setup

Base Neural Network Parameters The user and item embedding sizes are
both set to 32. The interaction function consists of K = 4 fully connected layers
with the sizes of 64, 32, 16, and 8. It should be noted that the size of the first
hidden layer of the interaction function network is equal to the sum of the user
and item embedding sizes. We compare performance in terms of Hit Ratio (HR)
with a baseline in which the base network are trained from scratch using only
data in the target domain. For both the transfer options and baseline, Adam
optimizer is used. The learning rate is set to 0.001. The batch size is 256. The
number of epoch is 100. For each method/option, we run the experiment ten
times and report the average values.

Transfer Configurations To investigate the transfer learning performance,
we consider seven transfer configurations of the base neural network as shown
in Table 1. The configurations differs based on which fully-connected layers are
being transferred. It should be noted that the user/item embeddings are not
transferable.

Evaluation Protocol To evaluate the proposed method, we follow the leave-
one-out evaluation protocol [10]. Specifically, for a user, a test item is randomly
chosen among the items that the user have interacted with. In addition, 99 neg-
ative items, which have not been interacted by the user, are randomly selected.
The predicted scores for the test and negative items are calculated. Then, the
test item is ranked against the negative ones based on the predicted scores. The

28 Duc Nguyen, Hao Niu, Kei Yonekawa, Mori Kurokawa, et al.



8 Duc Nguyen et al.

performance metric of hit ratio (HR) is computed as follows. Let hu denote the
hit position (rank) of the test item of user u against the negative items. HR@N
is defined as:

HR@N =
1

|U|
∑

u∈U
max(0, 1− b(hu/(N + 1)c) (7)

Here, b.c is the floor function. The HR has the range in [0, 1] where a higher value
indicates better performance. In this paper, we use HR@10 as the performance
metric.

Datasets In our evaluation, eighteen real-world datasets from Amazon Review
database [20] are used. The original datasets are preprocessed by removing users
and items with less than 20 interactions. Statistics of all datasets are shown in
Table 2. We train the base network from the scratch by randomly initializing
weights and evaluate the performance on each dataset (i.e., baseline). As can
be seen in Table 2, the three datasets of Book, Movie, and Kindle have the
highest recommendation performance. Thus, those datasets are chosen as the
source domains. The remaining fifteen datasets are taken as target domains.

Table 2: Statistics and baseline (non-transfer) performance of eighteen datasets
used in our experiment. The three datasets of Book, Movie, Kindle are taken as
source domains.

ID Dataset #users #items #ratings sparsity (%) baseline (HR@10)

1 Book 46276 148785 2453521 99.96 0.66
2 Movie 8396 25839 449685 99.79 0.64
3 Kindle 13742 21883 566622 99.81 0.61
4 Sport 2826 14016 109229 99.72 0.25
5 Clothing 11975 69009 743040 99.91 0.18
6 CD 5019 12847 193170 99.70 0.49
7 Pet 2153 7591 95753 99.41 0.26
8 DigitalMusic 230 2116 7146 98.53 0.20
9 Home 2002 9962 73672 99.63 0.13
10 Toy 2181 9577 66321 99.68 0.34
11 Videogame 514 1996 16496 98.39 0.31
12 Art 531 3492 17804 99.04 0.27
13 Automotive 2196 13435 87418 99.70 0.15
14 Cellphone 146 1726 3813 98.49 0.21
15 Food 1451 6134 59899 99.33 0.21
16 Instrument 173 1271 7185 96.73 0.17
17 Office 543 2768 19309 98.72 0.29
18 Garden 213 1877 5957 98.51 0.20
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Table 3: Performance gain (%) of different transfer configurations compared to
the baseline (non-transfer) of individual target domains when Book is the source
domain. A positive (negative) value means positive (negative) transfer. The last
column shows the best configuration and the corresponding HR@10.

Target domain config-1 config-2 config-3 config-4 config-5 config-6 config-7 best config (HR@10)

Sport -11.40 -32.20 -30.68 -13.15 2.64 3.17 1.44 config-6 (0.255)
Clothing 19.90 -14.81 -19.21 -9.99 4.59 4.26 0.61 config-1 (0.213)

CD -1.78 -26.51 -28.66 -11.96 -2.15 0.14 -1.03 config-6 (0.489)
Pet -4.41 -26.28 -24.14 -9.26 0.02 -0.65 -0.30 config-5 (0.255)

DigitalMusic -10.74 -11.92 -11.49 -6.17 -0.43 -6.06 -9.53 config-5 (0.200)
Home 1.80 -11.67 -12.68 -4.10 10.89 8.59 3.81 config-5 (0.143)
Toy -8.31 -25.06 -23.68 -9.18 -0.88 -1.47 0.38 config-7 (0.342)

Videogame -0.43 -28.77 -27.38 -11.52 0.97 1.07 1.58 config-7 (0.312)
Art 2.80 -20.51 -26.08 -4.78 6.47 9.05 8.48 config-6 (0.291)

Automotive -4.59 -17.01 -19.35 -5.25 1.85 2.74 0.24 config-6 (0.158)
Cellphone -19.85 -10.03 -21.30 -17.75 -12.58 -7.75 -9.36 config-6 (0.196)

Food 0.35 -26.52 -22.33 -9.76 4.51 0.30 -1.15 config-5 (0.218)
Instrument -13.61 -7.38 -10.14 0.66 -3.24 -4.63 -7.38 config-4 (0.168)

Office -0.52 -13.22 -16.68 -5.52 -2.98 -0.80 -2.47 config-1 (0.268)
Garden -8.29 -14.23 -16.00 -6.65 -4.51 -7.52 -0.80 config-7 (0.201)

Table 4: Performance gain (%) of different transfer configurations compared to
the baseline (non-transfer) of individual target domains when Movie is the source
domain.

Target domain config-1 config-2 config-3 config-4 config-5 config-6 config-7 best config (HR@10)

Sport 0.58 -17.34 -14.62 -12.76 3.10 2.35 0.71 config-5 (0.254)
Clothing 15.42 -15.49 -9.38 -12.76 7.90 3.29 -1.35 config-1 (0.205)

CD -0.32 -16.68 -12.33 -10.37 -1.25 1.65 -0.15 config-6 (0.497)
Pet 1.90 -12.69 -10.25 -10.65 -0.02 -0.72 -1.80 config-1 (0.260)

DigitalMusic -0.86 -3.46 -3.81 -4.73 -2.92 -8.66 -8.66 config-1 (0.199)
Home 17.58 -3.11 -2.68 -1.79 14.24 4.90 -0.04 config-1 (0.151)
Toy 0.89 -14.11 -8.66 -9.88 -1.41 -2.18 -0.74 config-1 (0.344)

Videogame 8.18 -9.63 -9.19 -10.58 1.07 3.61 2.28 config-1 (0.332)
Art 5.95 -9.08 -8.66 -8.30 4.39 5.24 6.22 config-7 (0.284)

Automotive 8.24 -14.03 -8.84 -7.96 4.82 2.98 0.57 config-1 (0.166)
Cellphone 6.72 -3.55 4.52 -0.06 -9.38 -5.48 -5.49 config-1 (0.227)

Food 10.70 -10.62 -12.57 -4.30 7.91 3.10 -0.96 config-1 (0.231)
Instrument 7.41 -1.24 1.15 -1.45 2.53 -7.38 -8.77 config-1 (0.180)

Office 5.15 -4.77 -6.75 -1.83 -0.17 -1.25 -1.76 config-1 (0.303)
Garden 4.74 -1.81 -4.28 -7.05 -3.43 4.75 0.81 config-6 (0.213)
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Table 5: Performance gain (%) of different transfer configurations compared
to the baseline (non-transfer) of individual target domains when Kindle is the
source domain.

Target domain config-1 config-2 config-3 config-4 config-5 config-6 config-7 best config (HR@10)

Sport -6.04 -16.91 -22.22 -10.57 3.89 2.25 1.35 config-5 (0.256)
Clothing 6.22 -18.22 -16.46 -10.86 2.22 2.09 0.50 config-1 (0.189)

CD -5.47 -15.68 -19.36 -9.99 1.56 0.96 0.15 config-5 (0.496)
Pet -3.88 -14.75 -15.53 -10.37 2.73 0.05 -0.96 config-5 (0.262)

DigitalMusic -11.27 -7.58 -7.80 -7.58 -1.07 -8.88 -5.62 config-5 (0.198)
Home 2.30 -3.97 -4.59 -2.72 15.29 3.70 1.05 config-5 (0.148)
Toy -9.69 -13.63 -16.36 -8.00 -1.40 -0.55 -0.73 config-6 (0.339)

Videogame 0.56 -7.08 -17.78 -9.38 6.15 5.20 1.07 config-5 (0.326)
Art 5.54 -6.89 -15.36 -2.22 11.49 7.14 6.08 config-5 (0.298)

Automotive -0.64 -8.28 -10.85 -4.91 7.49 0.42 0.79 config-5 (0.165)
Cellphone -6.11 -2.01 -8.87 -12.09 -6.45 1.29 -4.84 config-6 (0.215)

Food 2.43 -16.48 -13.35 -6.42 8.67 3.53 0.40 config-5 (0.227)
Instrument 1.07 -4.11 -6.26 -3.66 1.53 -2.20 -3.58 config-5 (0.170)

Office 3.76 -4.48 -9.84 -5.21 1.11 -1.57 -0.43 config-1 (0.299)
Garden -10.70 -12.43 -7.52 -8.38 -6.94 -0.35 0.35 config-7 (0.204)

4.2 Evaluation Results

In the first part of our experiment, we aim to answer the first and second ques-
tions regarding the transferability of the base network, namely Q1: Does transfer
learning lead to better recommendation on the target domain? and Q2: How to
transfer a neural network for the best transfer performance?. Table 3, Table 4,
Table 5 show the gains of seven transfer configurations compared to the baseline
(non-transfer method) of individual target domains when the source domain is
Book, Movie, and Kindle, respectively. A positive (negative) value indicates pos-
itive (negative) transfer. The last column of each table shows the configuration
with the highest gain and the corresponding HR@10.

It can be seen that, for all three source domains, transferring the neural net-
work can improve the performance of most target domains. Among the fifthteen
target domains, fourteen domains are benefited from transferring from at lest
one source domain. In particular, the number of target domains with positive
transfer are 11, 14, and 13 when the source domain is Book, Movie, and Kindle,
respectively. Transferring can improve the Hit Ratio on the target domain by
up to 20% from the Book domain, up to 17% from the Movie domain, and up
to 15% from the Kindle domain. There are 10 target domains in which positive
transfer occurs with all three source domains, namely Automotive, Home, Food,
Art, Clothing, CD, Pet, Sport, Video, and Instrument. For the domains when the
negative transfer occurs, the Hit Ratio is reduced by 1-8%(Book), 1-4%(Movie),
and 1-5%(Kindle) compared to the baseline method. For the DigitalMusic do-
main, transfer learning always causes performance degradation compared to the
baseline for both three source domains.
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Fig. 2: Importance of individual layers of the source domain model (Book).

It can also be noted that the best transfer configuration varies across target
domains and source domains. When Book is the source domain, the best trans-
fer configuration under the Clothing and Instrument domains are Config-1 and
Config-4, respectively. For the four domains of Sport, CD, Art, and Automotive,
Config-6 yields the highest gains. Especially, Config-2 and Config-3 are in no case
the best. Config-4 leads to negative transfer with all target domains except for
Instrument. Generally, the performance of those three configurations are 10-30%
lower than that of the baseline.

When transferring from the Movie domain (i.e., Table 4), Config-1 is the
best configuration for ten target domains. The Config-5, Config-6, and Config-7
configurations are the best configuration for only one target domain domain.
Again, it can be seen that the Config-2, Config-3 and Config-4 configurations
results in negative transfer for all target domains. As can be seen in Table 5,
Config-5 are the best configuration for most target domains when Kindle is the
source domain. For the two domains of Clothing and Office, Config-1 achieve the
highest gains. Again, it can be seen that the Config-2, Config-3, and Config-4
configurations cause negative transfer in all target domains.

To understand the importance of individual layers, we follow the method
proposed in [17] to calculate the importance of individual fully connected (FC)
layers. Specifically, to evaluate the importance of a neuron, the log-likelihoods of
the correct label with and without the presence of the neuron are compared, and
the importance is calculated. Fig. 2 shows the importance values of individual
neurons of different FC layers. It can be seen that the layers close to the outputs
are generally more importance than those close to the inputs. This result may be
a hint to explain why the three configurations of Config-2, Config-3, and Config-
4, where the FC-4 is not transferred, are worsen than the other configurations.
This issue will be studied further in our future work.

From the above results, we can have the following remarks regarding the
transferability of neural networks for recommendation systems.
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(a) Source: Book

(b) Source: Movie

(c) Source: Kindle

Fig. 3: Relationship between KLD values and the gains of the Config-1, Config-
5, Config-6, and Config-7 configurations for different source domain a) Book, b)
Movie, and c) Kindle.

– Transferring the pre-trained network from three source domains of Book,
Movie, and Kindle can improve the recommendation performance on most
of the target domains.

– For a given source domain, different target domains require different transfer
configurations. Especially, Config-1 is preferable when Movie is the source
domain, whereas Config-5 achieves highest gains for the highest number of
target domains when Kindle is the source domain.

– Config-2, Config-3, and Config-4 always lead to negative transfer. This in-
dicates that transferring of the source model contain the layers close to the
output such as in case of Config-1, Config-5, Config-6, and Config-7.

In the second part of our experiment, we investigate how different factors
affect the transfer performance, i.e, Question Q3. It is well-known that transfer
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learning is more effective if the source and target domain are related [32]. Thus,
we first examine the impact of the relatedness between a source domain and a
target domain on the transfer performance. In this paper, we use the similarity
between data distributions of the source and target domains to measure the
relatedness. For that purpose, we first calculate the histogram of the number of
purchases per user Hu of individual domains. Then, we use the KL-Divergence
(KLD) to measure the relatedness R(DS , DT ) between a source domain DS and
a target domain DT as follows.

R(DS , DT ) = KLD(Hu(DS), Hu(DT )) (8)

Figure 3 shows the relationship between KLD values and the gains of the Config-
1, Config-5, Config-6, and Config-7 configurations for three source domains. The
line in each figure show the linear regression fit of the data with an 95% confi-
dent interval. The Pearson correlation coefficients (PCC) and p-values are also
shown. Because the Config-2, Config-3, Config-4 result in negative transfer for
most of the cases, they are excluded in this part. As can be seen in Fig. 3a, when
the Book is the source domain, the transfer gain correlates to the KLD values,
in which higher KLD value tends to lead to lower transfer learning performance.
Especially, this trend is clearly shown in cases of Config-5 and Config-6 where
|PCC| > 0.7. In case of Movie as the source domain (i.e., Fig. 3b), only the gain
of Config-5 shows correlations with the KLD values, whereas the correlations
between the three configurations of Config-1, Config-6, and Config-7 are not sta-
tistically significant, i.e., P-value > 0.05. As for the Kindle domain(i.e., Fig. 3c),
the correlation between transfer gain and KLD can be observed for Config-5 and
Config-7, but not for Config-1 and Config-6.

Table 6: Pearson correlation coefficients(P-values) between the transfer perfor-
mance of transfer configurations and a) the target domain sizes and b) target
domain sparsity.

(a) Target domain dataset size

Config Book Movie Kindle

Config-1 0.74 (0.002) 0.39 (0.151) 0.35 (0.198)
Config-5 0.28 (0.318) 0.35 (0.205) 0.03 (0.917)
Config-6 0.32 (0.249) 0.26 (0.357) 0.13 (0.640)
Config-7 0.17 (0.533) 0.07 (0.805) 0.14 (0.606)

(b) Target domain sparsity

Config Book Movie Kindle

Config-1 0.48 (0.069) 0.07 (0.801) 0.03 (0.913)
Config-5 0.47 (0.074) 0.35 (0.198) 0.32 (0.252)
Config-6 0.55 (0.032) 0.56 (0.030) 0.31 (0.260)
Config-7 0.54 (0.037) 0.53 (0.040) 0.45 (0.089)

Next, we investigate how characteristics of the target domain affect the trans-
fer performance. Specifically, we consider two key characteristics of the target
domain, namely dataset size and sparsity. Table 6 show the correlation coef-
ficients (P-value) between transfer performance and a) target domain dataset
size and b) target domain sparsity. It can be seen in Table 6a that the corre-
lation between the transfer performance with the target domain’s dataset size
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is low (|PCC| < 0.4) and statistically insignificant (P-value > 0.05), except for
Config-1 configuration with Book as the source domain. As shown in Table 6b,
the target domain’s sparsity has higher correlation to the transfer performance
than the dataset size for Config-5, Config-6, and Config-7. However, the PCC
values are generally low (|PCC| < 0.6). Especially, there is almost no correlation
between the transfer performance of Config-1 and the sparsity when Movie and
Kindle are source domains.

5 Conclusions

In this paper, we investigate the transferability of deep neural networks for top-
N item recommendation task in recommender systems. Specifically, we adopt
MLP as the base network, and investigate seven transfer configurations using
eighteen real-world datasets. Experimental results shows that transferring layers
of the interaction network enhance performance on most of the target domains
by up to 20% in terms of Hit Ratio. Especially, in contrast to neural networks
for computer vision and NLP tasks, the layers close to the output are more
transferable than those close to the input. We also found that the best transfer
configuration highly depends on the source and target domains. Hence, different
from other tasks such as image classification, the transfer configuration should
be carefully chosen to achieve good performance in embedding-based recommen-
dation. Further investigation reveals that the relatedness between the source and
target domain measured in terms of KL-Divergence affects the transfer perfor-
mance, whereas the sizes and sparsity of target domains have little impacts on
the transfer performance. In future work, we will focus on developing transfer
techniques to dynamically decide the optimal transfer configuration.
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Abstract. Active learning aims to reduce annotation cost by predict-
ing which samples are useful for a human expert to label. Although this
field is quite old, several important challenges to using active learning
in real-world settings still remain unsolved. In particular, most selec-
tion strategies are hand-designed, and it has become clear that there is
no best active learning strategy that consistently outperforms all oth-
ers in all applications. This has motivated research into meta-learning
algorithms for “learning how to actively learn”. In this paper, we com-
pare this kind of approach with the association of a Random Forest with
the margin sampling strategy, reported in recent comparative studies as
a very competitive heuristic. To this end, we present the results of a
benchmark performed on 20 datasets that compares a strategy learned
using a recent meta-learning algorithm with margin sampling. We also
present some lessons learned and open future perspectives.

1 Introduction

Modern supervised learning methods3 are known to require large amounts of
training examples to reach their full potential. Since these examples are mainly
obtained through human experts who manually label samples, the labelling pro-
cess may have a high cost. Active learning (AL) is a field that includes all the
selection strategies that allow to iteratively build the training set of a model in
interaction with a human expert, also called oracle. The aim is to select the most
informative examples to minimize the labelling cost.

In this article, we consider the selective sampling framework, in which the
strategies manipulate a set of examples D = L ∪ U of constant size, where
L = {(xi, yi)}li=1 is the set of labelled examples and U = {xi}ni=l+1 is the set of
unlabelled examples. In this framework, active learning is an iterative process
that continues until a labelling budget is exhausted or a pre-defined perfor-
mance threshold is reached. Each iteration begins with the selection of the most
informative example x? ∈ U . This selection is generally based on information
collected during previous iterations (predictions of a classifier, density measures,
etc.). The example x? is then submitted to the oracle that returns the corre-
sponding class y?, and the pair (x?, y?) is added to L. The new learning set is

3 In this article, we limit ourselves to binary classification problems.
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then used to improve the model and the new predictions are used in the next
iteration.

The utility measures defined by the active learning strategies in the litera-
ture [36] differ in their positioning according to a dilemma between the exploita-
tion of the current classifier and the exploration of the training data. Selecting
an unlabelled example in an unknown region of the observation space Rd helps
to explore the data, so as to limit the risk of learning a hypothesis too specific
to the current set L. Conversely, selecting an example in a sampled region of Rd
locally refines the predictive model.

1.1 Traditional heuristic-based AL

The active learning field comes from a parallel between active educational meth-
ods and machine learning theory. The learner is from now a statistical model
and not a student. The interactions between the student and the teacher corre-
spond to the interactions between the model and the oracle. The examples are
situations used by the model to generate knowledge on the problem.

The first AL algorithms were designed with the objective of transposing these
“educational” methods to the machine learning domain. The easiest way was
to keep the usual supervised learning methods and to add “strategies” relying
on various heuristics to guide the selection of the most informative examples.
From the first initiative and up to now, a lot of strategies motivated by human
intuitions have been suggested in the literature. The purpose of this paper is not
to give an overview of the existing strategies but the reader may find in [36, 1]
of lot of them.

A careful reading of the experimental results published in the literature shows
that there is no best AL strategy that consistently outperforms all others in all
applications, and some strategies cater to specific classifiers or to specific appli-
cations. Based on this observation, several comprehensive benchmarks carried
out on numerous datasets have highlighted the strategies which, on average, are
the most suitable for several classification models [28, 41, 29]. They are given
in Table 1. For example, the most appropriate strategy for logistic regression
and random forest is an uncertainty-based sampling4 strategy, named margin
sampling, which consists in selecting at each iteration the instance for which
the difference between the probabilities of the two most likely classes is the
smallest [34]. To produce this table, we purposefully omitted studies that have
a restricted scope, such as focusing on too few datasets [4], specific tasks [37],
an insufficient number of strategies [35, 31], or variants of a single strategy [21].

4 The reader interested in the measures used to quantify the degree of uncertainty in
the context of active learning may find in [25, 18] an interesting view which advocates
a distinction between two different types of uncertainty, referred to as epistemic and
aleatoric.
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Strategy RF1 SVM2 5NN3 GNB4 C4.55 LR6 VFDT7

Margina [29]

Entropyb [41]
QBDc [28] [28]

Densityd [29, 28] [28]
OERe [29] [29] [29]

Table 1. Best model/strategy associations highlighted in the literature as a guide to
use the appropriate strategy versus the classifier. Strategies: (a) Margin sampling, (b)
Entropy sampling, (c) Query by Disagreement, (d) Density sampling, (e) Optimistic
Error Reduction. Classifiers: (1) Random Forest, (2) Support Vector Machine, (3) 5-
Nearest Neighbors, (4) Gaussian Naive Bayes, (5) C4.5 Decision Tree, (6) Logistic
Regression, (7) Very Fast Decision Tree.

1.2 Meta-learning approaches to active learning

While the traditional AL strategies can achieve remarkable performance, it is
often challenging to predict in advance which strategy is the most suitable in a
particular situation. In recent years, meta-learning algorithms have been gaining
in popularity [23]. Some of them have been proposed to tackle the problem of
learning AL strategies instead of relying on manually designed strategies.

Motivated by the success of methods that combine predictors, the first AL
algorithms within this paradigm were designed to combine traditional AL strate-
gies with bandit algorithms [3, 12, 17, 8, 10, 26]. These algorithms learn how to
select the best AL criterion for any given dataset and adapt it over time as the
learner improves. However, all the learning must be achieved within a few exam-
ples to be helpful, and these algorithms suffer from a cold start issue. Moreover,
these approaches are restricted to combining existing AL heuristic strategies.

Within the meta-learning framework, some other algorithms have been devel-
oped to learn from scratch an AL strategy on multiple source datasets and trans-
fer it to new target datasets [19, 20, 27]. Most of them are based on modern rein-
forcement learning methods. The key challenge consists in learning an AL strat-
egy that is general enough to automatically control the exploitation/exploration
trade-off when used on new unlabelled datasets, which is not possible when using
heuristic strategies.

1.3 Objective of this paper

From the state of the art, it appears that meta-learned AL strategies can outper-
form the most widely used traditional AL strategies, like uncertainty sampling.
However, most of the papers that introduce new meta-learning algorithms do
not include comprehensive benchmarks that could ascertain the transferability
of the learned strategies and demonstrate that these strategies can safely be used
in real-world settings.
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The objective of this article is thus to compare two possible options in the
realization of an AL solution that could be used in an industrial context: using a
traditional heuristic-based strategy (see Section 1.1) that, on average, is the best
one for a given model and could be used as a strong baseline easy to implement
and not so easy to beat, or using a more sophisticated strategy learned in a
data-driven fashion that comes from the very recent literature on meta-learning
(see Section 1.2).

To this end, we present the results of a benchmark performed on 20 datasets
that compares a strategy learned using the meta-learning algorithm proposed
in [20] with margin sampling [34], the models used being in both cases logistic re-
gression and random forest. We evaluated the work of [20] since the authors claim
to be able to learn a “general-purpose” AL strategy that can generalise across
diverse problems and outperform the best heuristic and bandit approaches.

The rest of the paper is organized as follows. In Section 2, we explain all
the aspects of the Learning Active Learning (LAL) method proposed in [20],
namely the Deep Q-Learning algorithm and the modeling of active learning as a
Markov decision process (MDP). In Section 3, we present the protocol used to do
extensive comparative experiments on public datasets from various application
areas. In Section 4, we give the results of our experimental study and make
some observations. Finally, we present some lessons learned and we open future
perspectives in Section 5.

2 Learning active learning strategies

2.1 Q-Learning

A Markov decision process is a formalism for modeling the interaction between
an agent and its environment. This formalism uses the concepts of state, which
describes the situation in which the environment finds itself, action, which de-
scribes the decision made by the agent, and reward, received by the agent when
it performs an action. The procedure followed by the agent to select the action
to be performed at time t is the policy. Given a policy π, the state-action table
is the function Qπ(s, a) which gives the expectation of the weighted sum of the
rewards received from the state s if the agent first executes the action a and
then follows the policy π.

Q-Learning is a reinforcement learning algorithm that estimates the optimal
state-action table Q? = maxπ Q

π from interactions between the agent and the
environment. The state-action table Q is updated at any time from the current
state s, the action a = π(s) where π is the policy derived from Q, the reward
received r and the next state of the environment s′:

Qt+1(s, a) = (1− αt(s, a))Qt(s, a) + αt(s, a)

(
r + γ max

a′∈A
Qt(s

′, a′)

)
, (1)

where γ ∈ [0, 1[ is the weighting factor of the rewards and the αt(s, a) ∈ ]0, 1[ are
the learning steps that determine the weight of the new experience in relation
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to the knowledge acquired at previous steps. Assuming that all the state-action
pairs are visited an infinite number of times and under some conditions on the
learning steps, the resulting sequence of state-action tables converges to Q? [40].

The goal of a reinforcement learning agent is to maximize the rewards re-
ceived over the long term. To do this, in addition to actions that seem to lead to
high rewards (exploitation), the agent must select potentially suboptimal actions
that allow him to acquire new knowledge about the environment (exploration).
For Q-Learning, the ε-greedy method is the most commonly used to manage this
dilemma. It consists in randomly exploring with a probability of ε and acting
according to a greedy strategy that chooses the best action with a probability
of (1 − ε). It is also possible to decrease the probability ε at each transition to
model the fact that exploration becomes less and less useful with time.

2.2 Deep Q-Learning

In the Q-Learning algorithm, if the state-action table is implemented as a two-
input table, then it is impossible to deal with high-dimensional problems. It is
necessary to use a parametric model that will be noted as Q(s, a;θ). If it is a
deep neural network, it is called Deep Q-Learning.

The training of a neural network requires the prior definition of an error
criterion to quantify the loss between the value returned by the network and the
actual value. In the context of Q-Learning, the latter value does not exist: one
can only use the reward obtained after the completion of an action to calculate
a new value, and then estimate the error achieved by calculating the difference
between the old value and the new one. A possible cost function would thus be
the following:

L(s, a, r, s′,θ) =

(
r + γ max

a′∈A
Q(s′, a′;θ)−Q(s, a;θ)

)2

. (2)

However, this poses an obvious problem: updating the parameters leads to up-
dating the target. In practice, this means that the training procedure does not
converge.

In 2013, a successful implementation of Deep Q-Learning introducing several
new features was published [24]. The first novelty is the introduction of a target
network, which is a copy of the first network that is regularly updated. This has
the effect of stabilizing learning. The cost function becomes:

L(s, a, r, s′,θ,θ−) =

(
r + γ max

a′∈A
Q(s′, a′;θ−)−Q(s, a;θ)

)2

, (3)

where θ− is the vector of the target network parameters. The second nov-
elty is experience replay. It consists in saving each experience of the agent
(si, ai, ri, si+1) in a memory of size m and using random samples drawn from
it to update the parameters by stochastic gradient descent. This random draw
allows to not necessarily select consecutive, potentially correlated experiences.
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2.3 Improvements to Deep Q-Learning

Many improvements to Deep Q-Learning have been published since the article
that introduced it. We present here the improvements that interest us for the
study of the LAL method.

Double Deep Q-Learning. A first improvement is the correction of the overesti-
mation bias. It has indeed been empirically shown that Deep Q-Learning as pre-
sented in Section 2.2 can produce a positive bias that increases the convergence
time and has a significant negative impact on the quality of the asymptotically
obtained policy. The importance of this bias and its consequences have been
verified in particular in the configurations the least favourable to its emergence,
i.e. when the environment and rewards are deterministic. In addition, its value
increases with the size of the set of actions. To correct this bias, the solution
which has been proposed in [15] consists in not using the parameters θ− to both
select and evaluate an action. The cost function then becomes:

L(s, a, r, s′,θ,θ−) =

(
r + γQ

(
s′, arg max

a′∈A
Q(s′, a′;θ);θ−

)
−Q(s, a;θ)

)2

.

(4)

Prioritized Experience Replay. Another improvement is the introduction of the
notion of priority in experience replay. In its initial version, Deep Q-Learning
considers that all the experiences can identically advance learning. However,
reusing some experiences at the expense of others can reduce the learning time.
This requires the ability to measure the acceleration potential of learning asso-
ciated with an experience. The priority measure proposed in [33] is the absolute
value of the temporal difference error:

δi =

∣∣∣∣ri + γ max
a′∈A

Q(si+1, a
′;θ−)−Q(si, ai;θ)

∣∣∣∣ . (5)

A maximum priority is assigned to each new experience, so that all the experi-
ences are used at least once to update the parameters.

However, the experiences that produce a small temporal difference error at
first use may never be reused. To address this issue, a method was introduced
in [33] to manage the trade-off between uniform sampling and sampling focusing
on experiences producing a large error. It consists in defining the probability of
selecting an experience i as follows:

pi =
ρβi∑m
k=1 ρ

β
k

, with ρi = δi + e, (6)

where β ∈ R+ is a parameter that determines the shape of the distribution and
e is a small positive constant that guarantees pi > 0. The case where β = 0 is
equivalent to uniform sampling.
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2.4 Formulating active learning as a Markov decision process

The formulation of active learning as a MDP is quite natural. In each MDP
state, the agent performs an action, which is the selection of an instance to be
labelled, and the latter receives a reward that depends on the quality of the
model learned with the new instance. The active learning strategy becomes the
MDP policy that associates an action with a state.

In this framework, the iteration t of the policy learning process from a dataset
divided into a learning set D = Lt∪Ut and a test set5 D′ consists in the following
steps:

1. A model h(t) is learned from Lt. Associated with Lt and Ut, it allows to
characterize a state st.

2. The agent performs the action at = π(st) ∈ At which defines the instance
x(t)∈ Ut to label.

3. The label y(t) associated with x(t) is retrieved and the training set is updated,
i.e. Lt+1 = Lt ∪ {(x(t), y(t))} and Ut+1 = Ut \ {x(t)}.

4. The agent receives the reward rt associated with the performance `t on the
test set D′. This reward is used to update the policy (see Section 2.5).

The set of actions At depends on time because it is not possible to select the
same instance several times. These steps are repeated until a terminal state sT is
reached. Here, we consider that we are in a terminal state when all the instances
have been labelled or when `t ≥ q, where q is a performance threshold that has
been chosen as 98% of the performance obtained when the model is learned on
all the training data.

The precise definition of the set of states, the set of actions and the reward
function is not evident. To define a state, it has been proposed to use a vector
whose components are the scores ŷt(x) = P(Y = 0 |x) associated with the
unlabelled instances of a subset V set aside. This is the simplest representation
that can be used to characterize the uncertainty of a classifier on a dataset at a
given time t.

The set of actions has been defined at iteration t as the set of vectors ai =
[ŷt(xi), g(xi,Lt), g(xi,Ut)], where xi ∈ Ut and :

g(xi,Lt) =
1

|Lt|
∑

xj∈Lt

dist(xi,xj), g(xi,Ut) =
1

|Ut|
∑

xj∈Ut
dist(xi,xj), (7)

where dist is the cosine distance. An action is therefore characterized by the
uncertainty on the associated instance, as well as by two statistics related to the
density of the neighbourhood of the instance.

The reward function has been chosen constant and negative until arrival in a
terminal state (rt = −1). Thus, to maximize its reward, the agent must perform
as few interactions as possible.

5 Given that active learning is usually applied in cases, this test set assumed to be
small or very small the performance evaluated on this test set could be a possibly
bad approximation. This issue and techniques for avoiding it are not examined in
this paper.
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2.5 Learning the optimal policy through Deep Q-Learning

The Deep Q-Learning algorithm with the improvements presented in Section 2.3
is used to learn the optimal policy. To be able to process a state space that evolves
with each iteration, the neural network architecture has been modified. The new
architecture considers actions as inputs to the Q function in the same way as
states. It then returns only one value, while the classical architecture takes only
one state as input and returns the values associated with all the actions.

The learning procedure involves a collection of Z labelled datasets {Zi}1≤i≤Z .
It consists in repeating the following steps (see Figure 1):

1. A dataset Z ∈ {Zi} is randomly selected and divided into a training set D
and a test set D′.

2. The policy π derived from the Deep Q-Network is used to simulate several
active learning episodes on Z according to the procedure described in Sec-
tion 2.4. Experiences (st,at, rt, st+1) are collected in a finite size memory.

3. The Deep Q-Network parameters are updated several times from a mini-
batch of experiences extracted from the memory (according to the method
described in Section 2.3).

To initialize the Deep Q-Network, some warm start episodes are simulated
using a random sampling policy, followed by several parameter updates. Once
the strategy is learned, its deployment is very simple. At each iteration of the
sampling process, the classifier is re-trained, then the vector characterizing the
process state and all the vectors associated with the actions are calculated. The
vector a? corresponding to the example to label x? is then the one that satisfies
a? = arg maxa∈AQ(s,a;θ), the parameters θ being set at the end of the policy
learning procedure.

.

.
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.

.

.

.

Initial 
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Selection of 32 experiences
using the probabilities aa

+ stochastic gradient descent

Simulation of 10 active 
learning episodes
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Fig. 1. Illustration of the different steps involved in an iteration of the policy learning
phase using Deep Q-Learning (the arrows give intuitions about main steps and data
flows)

.
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3 Experimental protocol

In this section, we introduce our protocol of the comparative experimental study
we conducted.

3.1 Policy learning

To learn the strategy, we used the same code6, the same hyperparameters and
the same datasets as those used in [20]. The complete list of hyperparameters
is given in Table 2 with the variable names from the code that represent them.
The datasets from which the strategy is learned are given in Table 3.

The specification of the neural network architecture is very simple (all the
layers are fully connected): (i) the first layer (linear + sigmoid) receives the
vector s (i.e. |V| = 30 input neurons) and has 10 output neurons; (ii) the second
layer (linear + sigmoid) concatenates the 10 output neurons of the first layer
with the vector a (i.e. 13 neurons in total) and has 5 output neurons; (iii) finally,
the last layer (linear) has only one output to estimate Q(s,a).

Hyperparameter Description

N STATE ESTIMATION = 30 Size of V
REPLAY BUFFER SIZE = 10000 Experience replay memory size
PRIORITIZED REPLAY EXPONENT = 3 Exponent β involved in Equation (6)
BATCH SIZE = 32 Minibatch size for stochastic gradient descent
LEARNING RATE = 0.0001 Learning rate
TARGET COPY FACTOR = 0.01 Value that sets the target network update1

EPSILON START = 1 Exploration probability at start
EPSILON END = 0.1 Minimum exploration probability
EPSILON STEPS = 1000 Number of updates of ε during the training
WARM START EPISODES = 100 Number of warm start episodes
NN UPDATES PER WARM START = 100 Number of parameter updates after the warm start
TRAINING ITERATIONS = 1000 Number of training iterations
TRAINING EPISODES PER ITERATION = 10 Number of episodes per training iteration
NN UPDATES PER ITERATION = 60 Number of updates per training iteration

1 In this implementation, the target network parameters θ− are updated each time the param-
eters θ are changed as follows: θ− ← (1−TARGET COPY FACTOR)·θ−+TARGET COPY FACTOR·θ.

Table 2. Hyperparameters involved in Deep Q-Learning.

3.2 Traditional heuristic-based AL used as baseline: margin
sampling

Our objective is to compare the performance of a strategy learned using LAL
with the performance of a heuristic strategy that, on average, is the best one for

6 https://github.com/ksenia-konyushkova/LAL-RL
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Dataset |D| |Y| #num #cat maj (%) min (%)

australian 690 2 6 8 55.51 44.49
breast-cancer 272 2 0 9 70.22 29.78

diabetes 768 2 8 0 65.10 34.90

german 1000 2 7 13 70.00 30.00
heart 293 2 13 0 63.82 36.18

ionosphere 350 2 33 0 64.29 35.71

mushroom 8124 2 0 21 51.80 48.20
wdbc 569 2 30 0 62.74 37.26

Table 3. Datasets used to learn the new strategy. Columns: number of examples, num-
ber of classes, numbers of numerical and categorical variables, proportions of examples
in the majority and minority classes.

a given model. Several benchmarks conducted on numerous datasets have high-
lighted the fact that margin sampling is the best heuristic strategy for logistic
regression (LR) and random forest (RF) [41, 29].

Margin sampling consists in choosing the instance for which the difference (or
margin) between the probabilities of the two most likely classes is the smallest:

x? = arg min
x∈U

P(y1 |x)− P(y2 |x), (8)

where y1 and y2 are respectively the first and second most probable classes for
x. The main advantage of this strategy is that it is easy to implement: at each
iteration, a single training of the model and |U| predictions are sufficient to
select an example to label. A major disadvantage, however, is its total lack of
exploration, as it only exploits locally the hypothesis learned by the model.

We chose to evaluate the Margin/LR association because it is with logistic
regression that the hyperparameters of Table 2 were optimized in [20]. In addi-
tion, in order to determine whether it is necessary to modify them when another
model is used, we also evaluated the Margin/RF association. This last associa-
tion is particularly interesting because it is the best association highlighted in a
recent and large benchmark carried out on 73 datasets, including 5 classification
models and 8 active learning strategies [29]. In addition, we evaluated random
sampling (Rnd) for both models.

3.3 Datasets

The datasets were selected so as to have a high diversity according to the fol-
lowing criteria: (i) number of examples; (ii) number of numerical variables; (iii)
number of categorical variables; (iv) class imbalance.

We have also taken care to exclude datasets that are too small and not
representative of those used in an industrial context. The 20 selected datasets
are described in Table 4. They all come from the UCI database [11], apart
from the dataset “orange-fraud” which is dataset on fraud detection. Four of
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the datasets have been used in a challenge on active learning that took place
in 2010 [14] and the dataset “nomao” comes from another challenge on active
learning [6].

Dataset |D| |Y| #num #cat maj (%) min (%)

adult 48790 2 6 8 76.06 23.94

banana 5292 2 2 0 55.16 44.84
bank-marketing-full 45211 2 7 9 88.30 11.70

climate-simulation-craches 540 2 20 0 91.48 8.52
eeg-eye-state 14980 2 14 0 55.12 44.88

hiva 40764 2 1617 0 96.50 3.50

ibn-sina 13951 2 92 0 76.18 23.82
magic 18905 2 10 0 65.23 34.77
musk 6581 2 166 1 84.55 15.45

nomao 32062 2 89 29 69.40 30.60
orange-fraud 1680 2 16 0 63.75 36.25

ozone-onehr 2528 2 72 0 97.11 2.89

qsar-biodegradation 1052 2 41 0 66.35 33.65
seismic-bumps 2578 2 14 4 93.41 6.59

skin-segmentation 51444 2 3 0 71.51 28.49

statlog-german-credit 1000 2 7 13 70.00 30.00
thoracic-surgery 470 2 3 13 85.11 14.89

thyroid-hypothyroid 3086 2 7 18 95.43 4.57
wilt 4819 2 5 0 94.67 5.33

zebra 61488 2 154 0 95.42 4.58

Table 4. Datasets used for the evaluation of the strategy learned by LAL. Columns:
number of examples, number of classes, numbers of numerical and categorical variables,
proportions of examples in the majority and minority classes.

3.4 Evaluation criteria

In our evaluation protocol, the active sampling process begins with the random
selection of one instance in each class and ends when 250 instances are labelled.
This value ensures that our results are comparable to other studies in the liter-
ature. For performance comparison, we used the area under the learning curve
(ALC) based on the classification accuracy. We do not claim that the ALC is
a “perfect metric”7 but it is the defacto standard evaluation criterion in active
learning, and it has been chosen as part of a challenge [14].

Our evaluation was carried out by cross-validation with 5 partitions, in which
class imbalance within the complete dataset was preserved. For each partition,
the sampling process was repeated 5 times with different initializations to get a

7 There is literature on more expressive summary statistics of the active-learning curve
[39, 30]. This could be a limitation of this current article, other metrics could be tester
in future versions of experiments.
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mean and a variance on the result. However, we have made sure that the initial
instances are identical for all the strategy/model associations on each partition
so as to not introduce bias into the results. In addition, for Rnd, the random
sequence of numbers was identical for all the models.

4 Results

The results of our experimental study are given in Table 5. The mean ALC ob-
tained for each dataset/classifier/strategy association are reported (the optimal
score is 100). The left part of the table gives the results for logistic regression
and the right part gives the results for random forest. The penultimate line cor-
responds to the averages calculated on all the datasets and the last line gives
the number of times the strategy has won, tied or lost. The non-significant dif-
ferences were established on the basis of a paired t-test at 99% significance level
(where H0: same mean between populations and where the mean is the estimate
out of 5 repetitions x cross-validation with 5 partitions of each method).

Dataset Rnd/LR Margin/LR LAL/LR Rnd/RF Margin/RF LAL/RF maj

adult 77.93 78.91 78.97 80.17 81.27 81.21 76.06

banana 53.03 57.39 53.12 80.24 73.81 73.58 55.16

bank-marketing-full 86.85 87.62 87.72 88.19 88.34 88.49 88.30

climate-simulation 87.22 89.13 88.62 91.15 91.14 91.13 91.48

eeg-eye-state 56.08 55.32 56.11 65.53 67.58 64.42 55.12

hiva 64.43 70.84 71.80 96.32 96.47 96.44 96.50

ibn-sina 84.77 88.58 88.90 90.53 93.41 92.75 76.18

magic 76.49 77.93 77.64 78.05 80.79 79.68 65.23

musk 83.73 82.34 81.95 89.55 96.18 95.35 84.55

nomao 89.45 91.43 91.37 89.41 92.32 92.07 69.40

orange-fraud 76.70 81.74 74.26 89.15 90.66 90.48 63.75

ozone-onehr 92.90 94.26 95.06 96.61 96.83 96.89 97.11

qsar-biodegradation 80.98 82.62 83.53 80.34 82.76 82.40 66.35

seismic-bumps 90.87 92.59 92.14 92.48 92.92 93.02 93.41

skin-segmentation 77.05 82.69 83.21 91.51 95.70 95.77 71.51

statlog-german-credit 70.76 72.12 72.34 72.25 72.93 72.78 70.00

thoracic-surgery 83.76 83.93 82.72 83.51 84.41 84.18 85.11

thyroid-hypothyroid 97.21 97.99 97.97 97.75 98.77 98.71 95.43

wilt 93.53 95.18 92.87 94.86 97.23 97.02 94.67

zebra 86.40 90.31 91.36 94.71 95.54 95.25 95.42

Mean 80.51 82.65 82.08 87.12 88.45 88.08 79.53

win/tie/loss 0/5/15 3/15/2 2/15/3 1/4/15 3/16/1 0/16/4

Table 5. Results of the experimental study.

Several observations can be made. First of all, it should be noted that the
choice of model is decisive: the results of random forest are all better than those
of logistic regression. The random forest model learns indeed very well from few
data, as highlighted in [32]. We can notice that even with random sampling, RF is
almost always better than LR, regardless of the strategy used. In addition, using
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margin sampling with this model allows a significant performance improvement.
This model is very competitive in itself because by its nature, it includes terms
of exploration and exploitation (see Section 5 Conclusion about this point).

In addition, the results of the learned strategy clearly show that a good
active learning strategy has been learned, since it performs better than random
sampling over a large number of datasets. However, the learned strategy is no
better than margin sampling. These results are nevertheless very interesting
since only 8 datasets were used in the learning procedure.

Finally, the results show a well-known fact about active learning: on very
unbalanced datasets, it is difficult to achieve a better performance than random
sampling, as shown in the last column of Table 5 in which the results obtained
by always predicting the majority class are given. The “cold start” problem that
occurs in active learning, i.e. the inability of making reliable predictions in early
iterations (when training data is not sufficient), is indeed further aggravated
when a dataset has highly imbalanced classes, since the selected samples are
likely to belong to the majority class [38]. However, if the imbalance is known, it
may be interesting to associate strategies with a model or criterion appropriate
to this case, as illustrated in [13].

To investigate the “learning speed”, we show results for different sizes of L
in Table 6. They lead to similar conclusions and our results for |L| = 32 confirm
the results of [32]. The reader may find all our experimental results on Github8.

|L| = 32 |L| = 64 |L| = 128 |L| = 250

Dataset Rnd Margin LAL Rnd Margin LAL Rnd Margin LAL Rnd Margin LAL

adult 77.95 77.88 78.16 79.72 80.51 81.05 81.13 82.79 82.48 82.12 83.55 83.40

banana 71.13 65.48 65.16 77.93 71.42 70.96 83.64 75.58 75.70 86.55 79.71 81.35

bank... 88.05 87.90 88.10 88.29 88.38 88.54 88.43 88.82 88.90 88.75 89.21 89.35

climate... 91.26 91.26 91.18 91.40 91.29 91.40 91.26 91.33 91.33 91.44 91.22 91.29

eeg... 58.28 58.94 57.34 62.07 63.17 60.79 66.77 69.38 65.35 72.55 75.08 72.46

hiva 96.36 96.52 96.49 96.36 96.55 96.54 96.46 96.57 96.56 96.49 96.65 96.65

ibn-sina 86.88 91.17 89.78 90.48 93.99 92.96 92.73 94.76 94.25 93.86 95.85 95.48

magic 71.99 75.63 72.95 76.85 80.20 77.26 80.15 82.71 82.01 82.42 84.53 84.43

musk 85.29 89.50 90.09 87.43 94.44 94.18 90.58 98.78 97.63 93.64 99.98 99.31

nomao 85.92 89.35 89.37 88.92 92.46 92.09 90.85 93.69 93.33 92.36 94.52 94.37

orange... 88.06 90.36 90.09 89.16 90.98 90.67 90.08 91.72 91.33 90.41 91.85 91.74

ozone... 96.36 96.97 97.01 96.74 97.04 97.10 96.93 97.08 97.11 97.02 97.03 97.05

qsar... 75.75 78.08 76.61 79.75 82.09 81.42 81.94 84.65 84.88 84.03 86.12 86.08

seismic... 92.39 93.21 93.19 92.42 93.28 93.19 92.52 93.26 93.20 93.14 93.08 93.28

skin... 86.42 89.19 89.46 90.80 96.19 96.06 93.70 98.86 98.65 95.85 99.56 99.49

statlog... 70.36 70.70 69.70 70.94 72.47 71.75 72.40 73.46 74.10 74.29 75.22 75.06

thoracic... 83.14 84.42 84.12 83.31 85.02 84.76 83.70 84.89 84.68 84.21 84.51 84.68

thyroid... 97.26 98.71 98.43 97.86 99.15 98.71 98.08 99.10 98.89 98.26 98.84 98.98

wilt 94.60 96.23 95.98 95.01 97.47 96.90 95.30 98.21 97.64 96.07 98.51 98.37

zebra 94.66 95.32 95.28 94.87 95.44 95.31 94.96 95.72 95.46 95.01 96.04 95.33

Mean 84.60 85.84 85.42 86.51 88.07 87.58 88.08 89.56 89.17 89.42 90.55 90.40

Table 6. Mean test accuracy (%) for different sizes of |L| with the random forest
model.

8 https://github.com/ldesreumaux/lal_evaluation
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5 Discussion and open questions

In this article, we evaluated a method representative of a recent orientation of
active learning research towards meta-learning methods for “learning how to
actively learn”, which is on top of the state of the art [20], versus a traditional
heuristic-based Active Learning (the association of Random Forest and Margin)
which is one of the best method reported in recent comparative studies [41, 29].
The comparison is limited to just one representative of each of the two classes
(meta-learning and traditional heuristic-based) but since each is on top of the
state of the art several lessons can be drawn from our study.

Relevance of LAL. First of all, the experiments carried out confirm the relevance
of the LAL method, since it has enabled us to learn a strategy that achieves the
performance of a very good heuristic, namely margin sampling, but contrary
to the results in [20], the strategy is not always better than random sampling.
This method still raises many problems, including that of the transferability
of the learned strategies. An active learning solution that can be used in an
industrial context must perform well on real data of an unknown nature and
must not involve parameters to be adjusted. With regard to the LAL method, a
first major problem is therefore the constitution of a “dataset of datasets” large
and varied enough to learn a strategy that is effective in very different contexts.

Moreover, the learning procedure is sensitive to the performance criteria used,
which in our view seems to be a problem. Ideally, the strategy learned should
be usable on new datasets with arbitrary performance criteria (AUC, F-score,
etc.). From our point of view, the work of optimizing the many hyperparameters
of the method (see Table 2) can not be carried out by a user with no expertise
in deep reinforcement learning.

About the Margin/RF association. In addition to the evaluation of the LAL
method, we confirmed a result of [29], namely that margin sampling, associated
with a random forest, is a very competitive strategy. From an industrial point
of view, regarding the computational complexity, the performances obtained
and the absence of “domain knowledge required to be used” the Margin/RF
association remains a very strong baseline difficult to beat. However, it shares a
major drawback with many active learning strategies, that is its lack of reliability.
Indeed, there is no strategy that is better or equivalent to random sampling on
all datasets and with all models. The literature on active learning is incomplete
with regard to this problem, which is nevertheless a major obstacle to using
active learning in real-world settings.

Another important problem in real-world applications, little studied in the
literature, is the estimation of the generalization error without a test set. It
would be interesting to check if the Out-Of-Bag samples of the random forests
[5] can be used in an active learning context to estimate this error.

Concerning the exploitation/exploration dilemma, margin sampling clearly
performs only exploitation. The good results of the Margin/RF association may
suggest that the RF algorithm intrinsically contains a part of exploration due to
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the bagging paradigm. It could be interesting to add experiments in the future
to test this point.

Still with regard to the random forests, an open question is to study if a better
strategy than margin sampling could be designed. Since the random forests are
ensemble classifiers, a possible way of research to design this strategy is to check
if they could be used in the credal uncertainty framework [2] which seeks to
differentiate between the reducible and irreducible part of the uncertainty in a
prediction.

About error generalization. In Real world application AL should be used most of
the time in absence of a test dataset. A open question could be to a use another
known result about RF: the possibility to have an estimate of the generalization
error using the Out-Of-Bag (OOB) samples [16, 5]. We did not present experi-
ments on this topic in this paper but an idea could be to analyze the convergence
versus the number of labelled examples between the OOB performance and the
test performance to check at which “moment” (|L|) one could trust9 the OOB
performance (OOB performance ≈ test performance). The use of a “random
uniform forest” [9] for which the OOB performance seems to be more reliable
could also be investigated.

About the benchmarking methodology. Recent benchmarks have highlighted the
need for extensive experimentation to compare active learning strategies. The
research community might benefit from a “reference” benchmark, as in the field
of time series classification [7], so that new results can be rigorously compared
to the state of the art on a same and large set of datasets. By this way, one will
have comprehensive benchmarks that could ascertain the transferability of the
learned strategies and demonstrate that these strategies can safely be used in
real-world settings.

If this reference benchmark is created, the second step would be to decide
how to compare the AL strategies. This comparison could be made using not
a single criterion but a “pool” of criteria. This pool may be chosen to reflect
different “aspects” of the results [22].

References

1. Aggarwal, C.C., Kong, X., Gu, Q., Han, J., Yu, P.S.: Active Learning: A Survey. In:
Aggarwal, C.C. (ed.) Data Classification: Algorithms and Applications, chap. 22,
pp. 571–605. CRC Press (2014)

2. Antonucci, A., Corani, G., Bernaschina, S.: Active Learning by the Naive Credal
Classifier. In: Proceedings of the Sixth European Workshop on Probabilistic Graph-
ical Models (PGM). pp. 3–10 (2012)

3. Baram, Y., El-Yaniv, R., Luz, K.: Online Choice of Active Learning Algorithms.
Journal of Machine Learning Research 5, 255–291 (2004)

9 Since when |L| is very low the RF do overtraining thus it’s train performance is not
a good indicator for the error generalization

52 Louis Desreumaux and Vincent Lemaire



16 L. Desreumaux and V. Lemaire

4. Beyer, C., Krempl, G., Lemaire, V.: How to Select Information That Matters: A
Comparative Study on Active Learning Strategies for Classification. In: Proceed-
ings of the 15th International Conference on Knowledge Technologies and Data-
driven Business. ACM (2015)

5. Breiman, L.: Out-of-bag estimation (1996), https://www.stat.berkeley.edu/

~breiman/OOBestimation.pdf, last visited 08/03/2020
6. Candillier, L., Lemaire, V.: Design and analysis of the nomao challenge active

learning in the real-world. In: Proceedings of the ALRA: Active Learning in Real-
world Applications, Workshop ECML-PKDD. (2012)

7. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The
UCR Time Series Classification Archive (2015), www.cs.ucr.edu/~eamonn/time_
series_data/

8. Chu, H.M., Lin, H.T.: Can Active Learning Experience Be Transferred? 2016 IEEE
16th International Conference on Data Mining pp. 841–846 (2016)

9. Ciss, S.: Generalization Error and Out-of-bag Bounds in Random (Uni-
form) Forests, working paper or preprint, https://hal.archives-ouvertes.fr/
hal-01110524/document, last visited 06/03/2020

10. Collet, T.: Optimistic Methods in Active Learning for Classification. Ph.D. thesis,
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Abstract. In interactive machine learning it is important to select the
most informative data instances to label in order to minimize the ef-
fort of the human user. There are basically two categories of interactive
machine learning. In the first category, active learning, it is the computa-
tional learner that selects which data to be labelled by the human user,
whereas in the second one, machine teaching, the selection is done by
the human teacher. It is often assumed that the human user is a perfect
oracle, i.e., a label will always be provided in accordance with the in-
teractive learning strategy and that this label will always be correct. In
real-world scenarios however, these assumptions typically do not hold.
In this work, we investigate how the reliability of the user providing
labels affects the performance of online machine learning. Specifically,
we study reluctance, i.e., to what extent the user does not provide la-
bels in accordance with the strategy, and fallibility, i.e., to what extent
the provided labels are incorrect. We show results of experiments on a
benchmark dataset as well as a synthetically created dataset. By varying
the degree of reluctance and fallibility of the user, the robustness of the
different interactive learning strategies and machine learning algorithms
is explored. The experiments show that there is a varying robustness of
the strategies and algorithms. Moreover, certain machine learning algo-
rithms are more robust towards reluctance compared to fallibility, while
the opposite is true for others.

1 Introduction

Active learning [13] and machine teaching [17,18] are two different categories of
interactive machine learning strategies that can be used to decrease the amount
of labelled data needed to train a machine learning algorithm, while still pre-
serving a high performance. Labelling data is often costly and demands a lot
of work from a human user that is meant to provide the labels. In interactive
machine learning, a smaller selection of the instances are instead chosen for la-
belling, where the size of the selection is decided by a labelling budget. The aim
of the interactive learning strategy is to pick the instances that will provide most
information to the machine learning algorithm.

Interactive online learning is a special case of interactive learning, where the
data arrives in a single-pass streaming fashion and each data instance can only
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be processed by the interactive learning strategy when it arrives. Thus, a decision
has to be made at each point in time whether a label should be provided or not
for the current data instance.

Generally in interactive learning, the assumptions of the user are that they
will always provide a label when queried by an active learning strategy or in
accordance with an machine teaching strategy. Furthermore, it is typically as-
sumed that the label provided by the user always is correct. In some settings
this can be reasonable assumptions, for instance a medical doctor labelling pa-
tient data within their expertise, but in many scenarios they do not hold. While
the intent of the assumptions might be to create simplifications in experiments
based on complex real-world settings, they may result in conclusions that are
not valid. For instance, in an idealised setting, where the user always responds
with a correct label, one approach might give the best performance compared to
an alternative approach. This does not necessarily mean that the approach will
still be the highest performing one if not all labels are correct. If the idealised
setting is a simplification of the real setting and the user sometimes does provide
an incorrect label, the alternative approach might be the better choice.

In this work we explore how the reliability of a user providing labels affects the
performance of online machine learning. We look at the aspects of reluctance,
how probable is it that a user will not provide a label in accordance with a
given interactive learning strategy, and fallibility, how probable is it that the
label provided by a user is incorrect. By varying the degree of reluctance and
fallibility of the user we study how this influence the performance of different
interactive online machine learning strategies.

2 Related work

In most work on interactive machine learning, the assumptions are that the user
will always provide a correct label when queried by an active learning strat-
egy or in accordance with a machine teaching strategy. Furthermore, when the
assumptions are made, it is rarely discussed whether they are realistic for the
given scenario. In previous work that explore settings where the assumptions are
relaxed, this type of user is often referred to as an imperfect oracle. The term is
in contrast to the standard definition of oracle in active learning, which is always
assumed to respond to a query with a correct label.

Yan et al. explores an active learning setting where the user might return
incorrect labels, but might also abstain from labelling [15]. The results show that
learning with a user that might abstain is easier than a user that might provide
incorrect labels, as an abstention response never mislead the learning algorithm,
unlike incorrect labels. However, in this setting the learner can request the label
of any data point in the instance space. In our setting the instances are presented
in a single-pass streaming manner.

Bouguelia et al. introduces an active learning strategy that handles incor-
rectly labelled instances, without relying on crowdsourcing [3]. Experiments
compare the strategy to multiple benchmark strategies and showcase that the
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proposed strategy achieves better performance than several of them. The exper-
imental setup is not single-pass and does not address the cold start problem.

The effect of feature noise in an active learning setting is studied by Ramdas
et al. [12]. They conclude that active learning results in better performance
compared to passive learning even with the presence of feature noise.

Miu et al. present an online active learning framework [10]. Annotations pro-
vided by a user is collected in real-time and used for Human Activity Recognition
tasks. Apart from testing the proposed framework on benchmark datasets, it was
also tested in user studies, by implementing it in a mobile app through which
participants could provide labels. In the user study, the replies from the user
were simulated to be incorrect 10 % of the time. Apart from baselines, only one
interactive learning strategy and one machine learning algorithm was used in
the experiments.

Shickel et al. also introduces a framework for active learning in an online
setting with multiple imperfect oracles [14]. The framework can query multiple
different oracles, based on when they are available, which is useful for instance
when generating data from crowdsourcing. While different active learning strate-
gies might work for the framework, the only strategy used in the work is active
learning triggered by uncertainty.

The effects of an imperfect oracle are explored by Donmez et al., both with
regard to not always being correct and to not always being avaliable [4]. To
obtain labels, an active learning strategy based on uncertainty is used in the
experiments. Unlike to the typical active learning setting, the oracle can be both
fallible (i.e. provide incorrect labels) and reluctant (i.e. might not always respond
when queried). The scenario discussed in the work is for batch learning however,
and not streaming data.

Zeni et al. perform experiments where students are asked to provide infor-
mation regarding their behaviour via a mobile application [16]. The information
provided from the students is compared to information gathered from the phone,
e.g. location, to test the correctness. The experiments show that the students
do sometimes provide incorrect labels and that there was a variation among the
individuals in the amount of incorrect labels provided.

Machine teaching where the user providing labels can have varying degree
of reliability is an area that needs further investigation, as well as for single-
pass streaming data in cold-start settings. In our work we take a step towards
exploring how the reliability of a user affects performance of interactive online
machine learning, including both machine teaching and active learning strategies.

3 Experimental setup

The aim of the experiments is to explore how varying reliability of a user provid-
ing labels affects performance of different online machine learning methods and
different interactive learning strategies. The online learning setting means that
the data arrives in a streaming fashion, where each instance is presented and
processed once by the learning algorithm. This can be compared to pool-based
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settings where all unlabelled data instances typically are available at any given
time.

In the experiments we have a cold start scenario, which means that there is
no labelled data for the machine learning to train on at the start of the data
stream. Labelled data has to be collected gradually over time to incrementally
train the machine learning model.

Streaming data means that the total amount of data is not necessarily known
and might even be infinite. This creates issues that has to be taken into account
for the interactive learning strategies and the machine learning algorithms. For
instance, the labelled data that is gradually collected cannot be stored indefi-
nitely, as the amount of labelled data theoretically could approach infinity. To
counteract this, there is a limit of how many labelled data instances are stored for
each class. If the maximum limit is reached for a given class and a new instance
with the same label arrives, the oldest one from the collection is discarded.

The evaluation was done in a test-then-train fashion [5], i.e. where the model
first attempts to estimate the incoming data instance and then, if a label is
provided, uses the new labelled instance to incrementally train the model. The
result thus becomes an accumulative accuracy that showcases performance of
the model over time. The results displayed in the next section are all average
values of several runs of each experiments. How a run of the experiments was
constructed is described in more detail in section 3.4.

3.1 Machine Learning algorithms

Three machine learning algorithms were implemented in the experiments, Näıve
Bayes classifier, Support Vector Machine (SVM) and k-Nearest Neighbor (k-
NN). The aim was to study if there is a discernible difference in the effect of a
fallible or reluctant user. The algorithms were chosen to be well-known off-the-
shelf machine learning algorithms but also suitable for the setting at hand, i.e.
online learning with a cold start scenario. Even though the experiments presented
here are from simulations done on previously recorded or created datasets, the
intention is that the experiment should be able to run in real-time, which means
that the complexity of the machine learning algorithm also has to be considered.

Gaussian Näıve Bayes classifier was included in the experiments because it
works well for online learning and has low computational complexity [7]. It also
needs a relatively small amount of training data before it can start to produce
estimations, which makes it suitable for a cold start scenario.

SVMs are effective in dealing with high-dimensional data, which is of im-
portance in many settings with streaming data, and have efficient memory us-
age [9]. SMVs aim to find hyperplanes that divides the classes with a margin
that is maximized. As the number of fallible instances increases this will become
increasingly difficult and the method will spend more time trying to optimize
the classifier. To counteract that training time becomes a concern, a maximum
number of iterations to optimize the hyperplanes is set to 1000. A polynomial
kernel is used in the experiments, based on initial testing. These results are not
included in this work due to space restrictions.
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k-NN is a fitting classifier for our scenario because of its simplicity, it is
suitable for online learning and the computational work needed can be limited
through the amount of data temporarily stored [6]. The method looks at the
labels of the k nearest, previously collected, data instances to classify a new
data instance. This means that only k instances needs to be collected before the
method can be used, which is good for a cold start scenario. The value of k was
set to 3, based on initial experiments that are not included in this work due to
space restrictions.

3.2 Interactive Learning strategies

Two different interactive learning strategies were used in the experiments, one
active learning strategy, where the learning model is deciding when to query
the user for a label, and one machine teaching strategy, where the user decides
which instances to provide labels for. All type of interactive learning has to
accommodate for a labelling budget. The labelling budget is set beforehand
and decides how big portion of the total amount of data can be labelled by
the user. In a pool-based setting, the use of the labelling budget is straight-
forward. In contrast, in a setting with streaming data, only one data instance
is processed at a time and the choice of whether or not to ask for a label has
to be done as soon as it appears in the data stream. Since the total number
of data instances is unknown at the start of processing the streaming data, the
labelling budget can not be calculated the same way as it is done in a pool-based
setting. Instead, a sliding window containing information on which of the latest
processed instances the user has provided a label for is used to calculate the
current labelling expenses. The labelling expenses are compared to the labelling
budget, to determine if it is currently possible to query for more labels. The
window size is set to 200 instances in the experiments.

Active learning triggered by uncertainty Along with each estimation pro-
duced by the machine learning algorithm is also a measurement of how certain
the model is of its own estimation. The active learning strategy compares the
produced uncertainty measurement to a set threshold. If the measurement is be-
low the threshold, the estimation is considered uncertain and the user is queried,
given that there is enough labelling budget. This is the most common type of
active learning used and is sometimes referred to as Uncertainty sampling [13] or
Uncertainty-based sampling methods [8]. To implement this strategy, the mea-
surement of uncertainty needs to be defined and this is dependent on the machine
learning algorithm used. As three different machine learning algorithms are em-
ployed in our experiments, each one needs their own uncertainty measurement.

The Näıve Bayes classifier produces a probability for each class and then
picks the class with the highest probability for its estimation. The probability
of the chosen class is then compared to a threshold. An initial value is set for
the threshold, but the value can be lowered or increased over time, depending
on whether a query is made or not. If many queries are made the threshold is
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gradually lowered, as it might indicate that the threshold is too high, or the
opposite if few queries are made. The implementation is based on the Variable
Uncertainty Strategy presented by Žliobaitė et al. [19].

The measurement of uncertainty used for SVM is the distance from the new
data instance to the hyperplanes. If the distance is short it means that the new
instance is in close proximity to another class and thus might have a higher
probability belonging to the other class compared to an instance further away.
The distance is compared to a threshold that, like in the case of Näıve Bayes
can be altered depending on how many queries are made.

For the k-NN the measurement is based on how many of the k instances
nearest to the new instance, i.e. the instances deciding which class to estimate,
have the same label. If more than two-thirds of the instances have the same label
the estimation is considered certain otherwise not. The strategies used for SVM
and k-NN are further described by Pohl et al. [11].

Machine teaching triggered by error In machine teaching it is the user that
employs a strategy of when to provide labels to the learning algorithm. In the
strategy included in the experiments, the user is aware of the current estimation
produced by the model and whenever this estimation is incorrect the user is
triggered to provide a label, given that there is enough labelling budget to do so.
In this way the user can aid the model by correcting it when it makes a mistake.

3.3 Simulation of reliability in the user

In the experiments the aim was to explore how a varying degree of reliability
in the user providing labels affects performance. The two aspects of reliability
studied in the experiments were reluctance and fallibility, both are further ex-
plained below. By simulating reluctance and fallibility in the user, the level of
reliability could be controlled in each experiment.

Reluctance A reluctant user is a user that does not always provide a label in
accordance with the given learning strategy. In the case of the active learning
strategy, the user will not always reply to a query and in the case of the machine
teaching strategy, the user will sometimes not provide a label, even though the
estimation is incorrect and there is enough labelling budget. In a real-world
scenario the reluctant behavior can be explained by a user that i.e. is distracted
by something else, unwilling to provide labels or uncertain of which label to
provide. The level of reluctance is varied between 0% and 50% in the experiments,
during which fallibility is kept at 0%. The level of reluctance informs how big
portion of the queries posed that the user will not respond to. For each new
query posed, a random number between 0 and 1 is generated and if the generated
number is lower than the level of reluctance, the user will not reply.

Since the window used to calculate the current labelling expenses only in-
cludes the cases when a label has been received, the expenses are not increased
when a query does not get a reply or when a user does not provide a label.
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Theoretically this could mean that for the very next instance the active learning
strategy could pose a new query or the user could provide a label in the case
of machine teaching. This would not be very realistic however, as a user that
for instance is distracted at one point in time will likely still be distracted the
moment afterwards. Instead, if a label that should have been provided was not
due to reluctance, the algorithm had to wait the length of the labelling window
before another data instance could be considered for labelling.

Fallibility A fallible user does always provide a label when queried or trig-
gered, but the label is not always correct. This could for example correspond to
a user that does not know or is uncertain about the correct label or that makes
a mistake. The experiments are constructed in a similar way to the experiments
explained above for a reluctant user. The level of fallibility decides the proba-
bility of a label being incorrect. In the experiments the level is varied between
0% and 50%, while the level of reluctance was kept at 0%. When an incorrect
label is provided, the false label to be attached to the data instance is chosen
randomly from all the incorrect labels. As one of the datasets employed in the
experiments contains real-world recordings (the mHealth dataset, described fur-
ther below) there is a risk concerning the correctness of the labels provided. In
the experiments however, the assumption is made that the labels in the dataset
are correct.

3.4 Datasets

To study the effects on performance of reluctance and fallibility in the user,
experiments were performed on two separate datasets. The first is an activity
recognition dataset and consists of recordings from a real-world scenario. The
second is a synthetically constructed dataset.

mHealth dataset The mHealth dataset consists of recordings of 10 subjects
with wearable sensors performing a specific routine of physical exercises [1, 2].
The set of wearable sensors include gyroscope magnetometer, accelerometer and
electrocardiogram sensor. Each recording contains between 98304 to 161280 data
instances from one subject, resulting in 10 recordings in total. The data contained
unlabelled data which was excluded for the experiments, resulting in recordings
of a length 32205-35532 instances. The specific routine consists of 12 different
physical exercises that the subject is meant to perform in a specific sequence.
The routine is constructed so that one exercise follows the other, but is never
repeated. Because of the test-then-train evaluation, the different classes that
are to be estimated, i.e. the psychical exercises in this dataset, should appear
more than once to result in any proper conclusion with regards to performance
evaluation. To create a sequence where all exercises appear more than once, the
recordings are all put after one another to create one longer data sequence. The
order of which the different recordings are placed is randomly generated for each
run. The result produced is the average of 20 separate runs.
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Synthetic dataset The synthetically generated dataset1 contains 50000 data
instances in total. The dataset has two features and five classes with 10000
instances belonging to each class. For each class, a mean value was created for the
two features. The instances was then generated by sampling from a 2D normal
distribution with the given mean value of the given class and a set standard
deviation. In Fig. 1 a visualisation of the dataset is displayed. For each run of
the experiments, an order of all the data instances had to be established. This
was done by first randomly choosing one of the classes, then a random sample
from a normal distribution was drawn to decide how many samples of this class
should be in the interval. If for instance 20 instances of class A was set for one
interval, 20 random data instances belonging to class A were chosen and put
after one another in the sequence. One interval was put after another until all
the data instances were arranged in the sequence. The ordering of the instances
was redone for each run, but the data instances themselves were the same for all
of them. The result presented is the mean value of 100 separate runs.

Fig. 1: A visualisation of the distributions of the classes of the synthetic dataset.

1 The dataset can be found via the link: https://github.com/ategen/synthetic-dataset
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3.5 Limitations

There are several aspects of the typical assumptions made in interactive learning
that does not always hold in real-world scenarios. In this work we have chosen
to focus on two aspects of reliability of the user, reluctance and fallibility, but
there are other that could be of interest to study, depending on the application.

In the experiments it is assumed that there is one user, or multiple users with
the same levels of reliability, providing labels. In certain settings however, there
might be multiple users with different characteristics, all with the possibility to
provide labels at least at some point in time. An example where this is highly
relevant is in cases when crowdsourcing is used to collect labelled data.

Another assumption made in the experiments that could be challenged is that
the cost of providing a label is uniform for all possible labels. In some settings
this might not be the case. For instance, if a scenario has classes that are similar,
there might be data instances that need a more thorough examination to find
out which class they belong to, while other instances can be classified by the user
at a glance. If the cost of labelling varies, this could also connect to reluctance
and fallibility of the user. A more difficult, or costly, label can lead to a higher
probability that the user does not provide a label. There could also be a case
where there is an option to have more thorough and costly labelling by the user,
resulting in a lower fallibility, or a quicker and cheaper labelling, but with a
higher risk of being fallible. Depending on the application setting, one approach
might be preferable over the other.

One relevant issue when discussing learning from streaming data is concept
drift, which means that the statistical properties of the streaming data changes
over time. It is a phenomenon that is present in many streaming data settings
and there exists works that discusses it in more detail [5]. Concept drift is not
the main focus of this work, but is passively handled by continuously updating
the machine learning model with new incoming data instances and discarding
old ones. With a limited amount of data for training however, there is a risk of
overfitting. When dealing with streaming data, this is an important trade-off to
be aware of.

4 Results and Discussion

In Figs. 2 and 3 the results from experiments on the mHealth dataset when
varying the degree of reluctance and fallibility of the user can be seen. Figs. 4 and
5 show results from the corresponding experiments on the synthetic dataset. The
performance is displayed as accumulated accuracy over the number of samples
that have been estimated so far. This means that when the number of samples
is lower it represents performance early, i.e. when fewer estimations have been
done and fewer labelled data instances have been gathered.

The results confirms that performance gets worse with an increased level
of reluctance or fallibility of the user in all of the experiments. How big the
decrease in performance is depends on the dataset, interactive learning strategy
and machine learning method however.
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(a) Machine teaching, NB (b) Active learning, NB

(c) Machine teaching, SVM (d) Active learning, SVM

(e) Machine teaching, kNN (f) Active learning, kNN

Fig. 2: The results from the experiments on the mHealth dataset when the level
of reluctance is varied. The left column (a, c and e) displays the result for the
machine teaching strategy triggered by uncertainty and the right column (b, d
and f) for the active learning strategy triggered by error for Näıve Bayes (NB),
Support Vector Machine (SVM) and k-Nearest Neighbor (kNN) respectively.
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(a) Machine teaching, NB (b) Active learning, NB

(c) Machine teaching, SVM (d) Active learning, SVM

(e) Machine teaching, kNN (f) Active learning, kNN

Fig. 3: The results from the experiments on the mHealth dataset when the level
of fallibility is varied. The left column (a, c and e) displays the result for the
machine teaching strategy triggered by uncertainty and the right column (b, d
and f) for the active learning strategy triggered by error for Näıve Bayes (NB),
Support Vector Machine (SVM) and k-Nearest Neighbor (kNN) respectively.
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(a) Machine teaching, NB (b) Active learning, NB

(c) Machine teaching, SVM (d) Active learning, SVM

(e) Machine teaching, kNN (f) Active learning, kNN

Fig. 4: The results from the experiments on the synthetic dataset when the level
of reluctance is varied. The left column (a, c and e) displays the result for the
machine teaching strategy triggered by uncertainty and the right column (b, d
and f) for the active learning strategy triggered by error for Näıve Bayes (NB),
Support Vector Machine (SVM) and k-Nearest Neighbor (kNN) respectively.
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(a) Machine teaching, NB (b) Active learning, NB

(c) Machine teaching, SVM (d) Active learning, SVM

(e) Machine teaching, kNN (f) Active learning, kNN

Fig. 5: The results from the experiments on the synthetic dataset when the level
of fallibility is varied. The left column (a, c and e) displays the result for the
machine teaching strategy triggered by uncertainty and the right column (b, d
and f) for the active learning strategy triggered by error for Näıve Bayes (NB),
Support Vector Machine (SVM) and k-Nearest Neighbor (kNN) respectively.
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In the experiments on the mHealth dataset, Näıve Bayes classifier and the
machine teaching strategy triggered by error has the highest performance. If the
level of reluctance is increased (Fig. 2) or if the level of fallibility is increased
(Fig. 3) the combination of Näıve Bayes and the machine teaching strategy is still
giving the best performance. In Fig. 2a, showing the results for this combination
with an increasing reluctance level however, the trend still seems to be down-
wards towards the end of all samples. This can be compared to Näıve Bayes with
active learning triggered by uncertainty, Fig. 2b, where the performance overall
is lower, but stabilizes after a while. In the experiments with a varying degree of
fallibility, SVM and k-NN appear to be more affected compared to Näıve Bayes
classifier. As the level of fallibility increases, the performance of SVM and k-NN
drops faster, especially compared to Näıve Bayes in combination with the active
learning strategy.

Figs. 4 and 5 contain the results from the experiments on the synthetic
dataset. In the experiments where the reluctance of the user is varied, Fig. 4,
the biggest difference in performance can be found early, when the number of
samples is low. The main reason for this is likely that a higher level of reluctance
in the user leads to a longer time before enough labelled data instances have
been gathered to result in a performance on the same level as a user with 0%
reluctance to provide labels. Towards the end of the average run, the performance
of the different levels of reluctance approaches each other. When looking at the
final accumulated accuracy of Fig. 4, Näıve Bayes classifier and k-NN performs
better than SVM. The figure also shows that at the start the machine teaching
strategy performs better than the active learning strategy. This is consistent
over all machine learning algorithms tested, but the difference decreases as the
level of reluctance increases. For SVM at the highest level of reluctance, there
is no significant difference at the start between the active learning strategy and
the machine teaching strategy. Furthermore, after a while the active learning
strategy outperforms the machine teaching strategy.

In the results a drop in performance can be seen in several of the figures. One
reason for this is the cold start scenario and the patterns in the data streamed.
At the very start of the data stream, a labelled data instance from the first class
is provided to the machine learning algorithm. In accordance with the nature of
the data, for a period, the same class will continue and more labelled instances
from this class can be collected. At this point in time the task of classifying is
easier, or even trivial in the case of no fallibility. As more classes are introduced
over time however, the difficulty of classification increases, which in turn can
lead to a lower performance.

The experiments where the effects of fallibility of the user was tested on the
synthetic dataset are displayed in Fig. 5. Here, the effect that the choice of inter-
active learning strategy and machine learning method can have on performance
is clear. The best performing and most robust combination is Näıve Bayes clas-
sifier with the machine teaching strategy triggered by error. When the level of
fallibility is at 0%, there is not a significant difference between the different inter-
active learning strategies and machine learning algorithms. When the fallibility
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level is higher than 0% however, the difference becomes noticeable. The biggest
decrease in performance can be seen in the experiments using SVM, displayed
in Figs. 5c and 5d. Since SVM tries to optimize the positioning of hyperplanes
to as much as possible separate the different classes, the task will get increas-
ingly more difficult as the number of incorrect labelled instances increases in the
dataset used for training. The steepest drop in performance of these two can be
seen in Fig. 5d, where the active learning strategy triggered by uncertainty is
employed. The measurement of uncertainty implemented for SVM is based on
the distance from the new data instance to be tested, to the hyperplanes. If the
SVM classifier has trouble positioning the hyperplanes correctly due to incorrect
training data, the uncertainty measurement which is dependent on this position
will also be inadequate. While less extreme, the effect of an increasingly larger
portion of training data being incorrect is visible for the Näıve Bayes classifier
and k-Nearest Neighbor as well.

An interesting observation from the experiments is that the Näıve Bayes
classifier appears more robust towards fallibility compared to reluctance while
the opposite is true for SVM and k-Nearest Neighbor. The possible explanation
for the poor results of SVM when fallibility is introduced is discussed above. For
k-Nearest Neighbor, the higher the level of fallibility, the bigger the risk that the
k closest instances are incorrect, which in turn leads to a faulty classification.
For SVM and k-Nearest Neighbor the experiments show that it is better with a
user that might not provide as many labels, but when they do they are correct.
Näıve Bayes classifier on the other hand is a generative model which classifies
by used mean values generated from the labelled data obtained. Depending on
the nature of data, the averaging can smooth possible noise in the data and still
create useful mean values. For Näıve Bayes classifier, the experiments indicate
that a user who provides more data, even though some instances have incorrect
labels, is preferable to a user that is more restrictive but always correct.

The experiments with a fallible user are meant to simulate a user that is not
always correct in assessing what label currently is representative of the state
to be classified. In a real-world scenario, a user that is sometimes incorrect in
this assessment might not always recognize when the estimation of the machine
learning algorithm is incorrect either. This is not included in the experiments
where the machine teaching strategy is employed and might therefore not portray
the entire spectrum of possible effects of a fallible user.

Another factor of the experimental setup that might affect the results is the
choice of which data instances that are affected by fallibility or reluctance. As
explained in section 3.3, the data instances that are either not provided, in the
case of a reluctant user, or provided with incorrect labels, in the case of a fallible
user, are chosen at random. In certain scenarios it might be reasonable to assume
that the probability of all the instances to be chosen are evenly distributed. For
instance, if the user is distracted by another task they are performing, they might
sometimes, i.e. in a random pattern, miss to provide a label in accordance with
the given learning strategy. For a user that is attentive but not as knowledgeable
of what the correct label is on the other hand, the probability of which labels
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are not provided or given an incorrect label might be correlated to the data
instance itself. For example, a data instance belonging to one label, but that is
close to the boundary of another, might be more difficult for the user than a
data instance that is a typical example of the same class.

5 Conclusion and Future Work

In this work we explored how the reliability of the user providing labels affects
the performance of online machine learning in a cold start scenario. We also
studied the robustness of different interactive learning strategies and different
machine learning algorithms with regards to a user that can be fallible and
reluctant respectively. The results show that the choice of interactive learning
strategy and machine learning algorithm has an effect on performance in the
experiments, where the combination of Näıve Bayes classifier and the machine
teaching strategy triggered by error overall resulted the highest performance.
This combination is also most robust towards increased levels of fallibility and
reluctance of the user. The overall least robust machine learning algorithm was
SVM, especially for a fallible user.

In future work we plan to further validate our conclusions by testing on other
datasets and more machine learning algorithms. We also aim to further explore
how varying the level of reliability of a user can affect performance.
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1 Introduction

Recently, the amount of generated time series data has been increasing rapidly
in many areas such as healthcare, security, meteorology and others. However, it
is very rare that those time series are annotated. For this reason, unsupervised
machine learning techniques such as anomaly detection are often used with such
data. There exist many unsupervised algorithms for anomaly detection ranging
from simple statistical techniques such as moving average or ARIMA till complex
deep learning algorithms such as LSTM-autoencoder. For a nice overview of the
recent algorithms we refer to read [2,1].

Difficulties with the unsupervised approach are: defining an anomaly score to
correctly represent how anomalous is the time series, and setting a threshold for
that score to distinguish between normal and anomaly data. Supervised anomaly
detection, on the other hand, needs an expensive involvement of a human ex-
pert. An additional problem with supervised anomaly detection is usually the
occurrence of very low ratio of anomalies, yielding highly imbalanced data.

In this extended abstract, we propose an active learning extension for an
anomaly detector based on a LSTM-autoencoder. It performs active learning
using various classification algorithms and addresses data imbalance with over-
sampling and under-sampling techniques. We are currently testing it on the
ECG5000 dataset from the UCR time series classification archive [3].

2 Active learning for LSTM-autonecoder-based anomaly
detection

LSTM-autoencoder [9] is nowadays increasingly used to detect anomalies in time
series data [11,5,4]. The algorithm aims to learn the identity function. It con-
sists of two parts – an encoder and a decoder. The encoder compresses the
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input representation of the data into a low-dimensional latent representation
(usually called code) from which the decoder reconstructs the original input.
The model parameters are found by minimizing the reconstruction error. Sam-
ples are then considered anomalous if their reconstruction error is higher than a
selected threshold.

Although LSTM-autoencoder works well for time-series with complicated
patterns, setting the anomaly score threshold can be very complicated without
labelled data. Furthermore, with a higher ratio of anomalies present in the train-
ing data, a simple setting of the threshold might produce a lot of false positives
and false negatives. Therefore, we incorporated active learning into building the
anomaly detector that uses the code of a previously trained LSTM autoencoder.
The most related research has been done by Pigmentel [8], who proposed to use a
classifier (logistic regression) with the latent layer of autoencoder together with
anomaly score. In contrast, we experiment with the latent layer of a recurrent
autoencoder without anomaly score and propose to use resampling techniques.

First, an LSTM autoencoder is trained on unlabelled data. An initial anomaly
detection threshold on reconstruction error distribution is selected. At the initial
value of the threshold, we decided to use the mean plus three times the standard
deviation of the reconstruction error as an initial threshold. Every sample with
the reconstruction error above the threshold is labelled as an anomaly and the
same number of samples below the threshold are labelled as normal. Further-
more, instead of the original time-series data, we use their representation in the
code layer. This provides us an artificially created, balanced dataset and con-
verts the anomaly detection to a binary classification task. A classifier is trained
on the created dataset and an active learning loop starts. In each iteration, a re-
sampler is used to balance the new updated labelled dataset. The resampler can
be either an undersampling or oversampling algorithm. The classifier is fitted
using the resampled data. Uncertainty sampling (US) active learning framework
[7] is used to select instances which should be labelled by an oracle. We use
margin US, i.e. we select instances leading to the smallest difference between
the likelihood of anomalous and normal data classes. Anomaly detection is then
based on predictions of that classifier instead of on the anomaly threshold. The
pseudo-code for the algorithm is shown in Algorithm 1.

3 Experiment and Results

The proposed algorithm was evaluated on a benchmark time-series dataset with
electrocardiogram readings [3]. Each heart-beat record in the dataset is labelled
with one of 5 classes where the last three classes are very rare and we consider
them as an anomaly. The dataset was split into training, validation and testing in
the ratio 70:15:15. The validation dataset was used to find the hyperparameters
for the LSTM-autoencoder. The autoencoder achieving the lowest f1 score in the
anomaly detection on the validation data set was chosen. The final architecture
of the encoder consisted of two LSTM cells. The cells have one hidden layer with
48 neurons in the first cell and 24 neurons in the second cell. The hidden state
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Algorithm 1: Active learning for LSTM-autoencoder anomaly detection

Input:
U : unlabelled data set of sequences
θ: anomaly score threshold
φ(·): query strategy utility function
begin

train LSTM autoencoder on data set U
// calculate anomaly scores
ai = |xi − decoder(encoder(xi))|, x ∈ U
sort a in the descending order
sort x respectively to a
i = 0,L = ∅
// Add anomalous data samples into the labelled dataset
while ai > θ do
L = L ∪ 〈encoder(xi), 1〉
U = U \ xi
i = i+ 1

end
// Add normal data samples into the labelled dataset
for j = i to 2i do
L = L ∪ 〈encoder(xj), 0〉
U = U \ xj

end
while stopping criterion is not met do
R = resampler(L)
train binary classifier m on R
// Find the most informative seqeuence from U and ask for label
x∗ = argmaxx∈Uφ(x)
y∗ = query(x∗)
L = L ∪ 〈x∗, y∗〉
U = U \ x∗

end

end

of the last cell is copied and used as the input of the first cell of the decoder.
The decoder has architecture mirrored.

We experimented with 5 classifiers: logistic regression, decision tree, Gaus-
sian naive Bayes classifier, k-nearest neighbours classifier and support vector
machines. We experimented with 11 under-sampling and 4 over-sampling tech-
niques taken from the imbalanced-learn python toolbox [6]. In the presented
results, we report 5 under-sampling techniques that were best on average. In
the experiment, we compared a fully unsupervised approach, in which anomalies
are detected by using a chosen threshold, with our extension with respect to F1
score.

Figure 1 shows how actively asking for annotations can improve the unsu-
pervised anomaly detection with an LSTM-autoencoder (red dashed line). The
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best results were achieved with repeated edited nearest neighbours [10] and a k-
nearest neighbour classifier. However, using an SVM as the base classifier yielded
more stable performance.

Moreover, a classifier model fed by labels outperformed the LSTM-autoen-
coder with the initially set anomaly score threshold (red dashed line) and the
best possible anomaly score threshold (green dashed line). The source code is
available in GitHub repository 3.

4 Conclusion

We presented an active Learning for LSTM-autoencoder-based anomaly detec-
tion for time-series data. An experiment on the ECG5000 data set has shown that
the proposed method is able to boost the performance of the model significantly
with only approximately 200 labelled samples. We plan next to experiment with
variational LSTM-autoencoders and to pay attention to the interpretability of
the detected anomalies .
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Fig. 1: F1 score performance metric in active learning loop. The figure contains 5
models (support vector machines (SVM), k-nearest neighbours (KNN), logistic
regression(LogReg), decision tree (DT) and Gaussian naive Bayes(GNB)) and
9 resampling techniques. The greyed area represents standard deviation. Red
dashed line represents the performance of the LSTM-autoencoder anomaly de-
tector without active learning and initial setting of the anomaly score threshold.
Green dashed line represent the performance of the LSTM-autoencoder anomaly
detector without active learning and the best setting of the anomaly score thresh-
old, and blue dashed line represents the best-achieved performance in the last
iteration of active learning loop.
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1 Introduction

A context in which we expect adaptive learning to be promising is the choice
of a suitable optimization strategy in black-box optimization. The reason why
strategy adaptation is needed in such a situation is that knowledge of the black-
box objective function is obtained only gradually during the optimization. That
knowledge covers two aspects:

1. the landscape of the black-box objective, revealed through its evaluation in
previous iterations;

2. success or failure of the optimization strategies applied to that black-box
objective in previous iterations.

To extract landscape knowledge, landscape analysis has been developed dur-
ing the last decade [7,10,11]. To include also the second aspect, we complement
features obtained using the landscape analysis with features describing the op-
timization employed in previous iterations.

Our interest is in expensive black-box optimization, where the number of
evaluations of the expensive objective is usually decreased using a suitable surro-
gate model. Therefore, the research reported in this extended abstract addresses
adaptive learning of surrogate models, more precisely their learning in surrogate-
assisted versions of the state-of-the-art black-box optimization method, Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [3].

Considering the results in [2,14] suggesting that the properties of landscape
features in connection with surrogate model selection problem should be analysed
in more detail, we contribute with this work a first essential step towards a
better understanding, by analysing the robustness of feature computation. Such
analysis of a large set of landscape features has already been presented only
in connection with selection of the most convenient optimization algorithm for
problems in fixed dimension [15].
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This extended abstract focuses on surrogate model selection task in multiple
dimensions and discusses robustness of several classes of features against samples
of points from the same distribution.

2 Landscape Analysis for Surrogate Model Selection

Landscape analysis aims at measuring characteristics of the objective function
using functions that assign to each dataset a set of real numbers [10]. Let’s con-
sider a dataset ofN pairs of observations

{
(xi, yi) ∈ RD × R ∪ {◦} | i = 1, . . . , N

}
,

where ◦ denotes missing yi value (e. g., xi was not evaluated yet). Then the
dataset can be utilized to describe landscape properties using a feature ϕ :⋃

N∈N RN,D × (R ∪ {◦})N,1 7→ R ∪ {±∞, •}, where • denotes impossibility of
feature computation.

Feature classes convenient for continuous black-box optimization field are
mostly described in [7]. From the available feature classes we mention only those
convenient for problems with a high computational complexity (unlike e. g., cell-
mapping approach [8]) and at the same time not requiring additional evaluations
of the expensive function. Feature classes are able to measure the dissimilarity
among points of a subset of the sample (Dispersion) [9], express various informa-
tion content of the landscape (Information Content) [11], measure the relative
position of each value with respect to quantiles (Levelset) [10], extract the infor-
mation from linear or quadratic regression models (Meta-Model) [10] or from the
nearest or the better observation neighbours (Nearest Better Clustering) [6], and
describe the distribution of the objective values (y-Distribution) [10]. Moreover,
in [13] we have proposed the set of features based on the CMA-ES state variables
(CMA features).

The surrogate model selection problem tackle the situation in an iteration
i of a surrogate-assisted algorithm A, where a set of surrogate models M are
trained using a training set T selected out of an archive A (T ⊂ A) of all points
evaluated so far using the objective function f: A = {(xi, f(xi))| i = 1, . . . , N}.
Hereafter, a new set of points P = {xk|k = 1, . . . , α} is evaluated using a
surrogate model M ∈ M, where α ∈ N depends on the strategy defining the
usage of surrogate model in algorithm A. The research question is: How to select
the most convenient M fromM according to A, T , and P?

To tackle the research question connected with the surrogate model selec-
tion problem, we have proposed (see [14]) the following metalearning approach
visualised in Figure 1:

In the first phase, each model M ∈ M is trained on each T (l) from the set
of datasets D = {A(l), T (l),P(l)}L

l=1, L ∈ N and its error ε is measured on P(l).
Simultaneously, a set of features Φ is computed on each dataset from D. Hereby,
a mapping SM : Φ →M from the space of landscape features toM is trained.
In the second phase, the trained mapping SM is utilized in each iteration i of the
algorithm A to select the model M ∈M according to the features Φ calculated
on A(i), T (i), and P(i). The selected M is utilized to fit T (i) and afterwards to
predict objective function values of points from P(i).
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Figure 1: Scheme of the metalearning approach to the surrogate model selection
system [14].

3 Feature Robustness

To investigate robustness of feature computation against different samples of
points (in the sense of low variance), several independent archive realisations
using the same distributions should be available. To gain such realisations, we
have created a new set of artificial distributions by smoothing the distributions
from real runs of the surrogate algorithm on the set of benchmarks.

First, we have generated a set of datasets D using independent runs of the
8 model settings from [13] for the DTS-CMA-ES algorithm [1,12] on the 24
noiseless single-objective benchmark functions from the COCO framework [4,5].
All runs were performed in dimensions 2, 3, 5, 10, and 20 on instances 11–15.
To gain 100 comparable archives using those runs, we have generated points
for new archives using the weighted sum of original archive distributions from
D, where the weight vector w(i) = 1

9 (0, . . . , 0
i−3

, 1
i−2

, 2
i−1

, 3
i
, 2

i+1
, 1

i+2
, 0

i+3
, . . . , 0)>

provides distribution smoothing across the available iterations1. Second, for all
A(i), T (i), and P(i) from D we have computed all features from the following
feature classes: Dispersion, Information Content, Levelset, Meta-Model, Nearest
Better Clustering, y-Distribution, CMA features.

Once the features are computed, the numbers of ±∞ and • values of different
samples from one iteration are summarized and the rest of feature values is
normalized to [0, 1] range using feature minima and maxima over the whole D.
We then compare feature means and variances for individual iterations.

1 Weighted sum of the original archive distributions satisfies∑imax
n=0 w

(i)
n N

(
m(n),C(n)) ∼ N

(∑imax
n=0 w

(i)
n m(n),

∑imax
n=0 (w(i)

n )2C(n)), where
imax is the maximal iteration reached by particular original archive and m(n) and
C(n) are mean and covariance matrix in iteration n.
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Figure 2: The dependecies of 0.05, 0.5, and 0.95 quantile of feature variance,
the median number of ±∞, or • of feature values on the number of observations
N for two features are shown on plots in the first column. The dependencies of
the same statistics on the data density D

√
N are presented in the second column.

Plots in the first row represent statistics for feature ϕmed(A) – median distance of
the ’best’ vs. ’all’ objectives in A (from Dispersion feature class) and the second
row contains statistics for ϕεs(T ∪ P) – settling sensitivity of the information
content in T ∪ P (Information Content).

Figure 2 shows the dependecies of 0.05, 0.5, and 0.95 quantile of feature
variance, the number of ±∞, or • on the number of observations N in the
considered set (A, T , or P) and data density D

√
N for two example features.

The results show that most of the features are robust in the sense of having a
low variance, especially for higher numbers of observations. Robustness for lower
values of N is not frequently high, or even the feature is not possible to calculate
(e. g., some of Dispersion features). CMA features provided the most robust
results probably due to the fact that most of them are sample independent. The
lowest variance values, and also high numbers of cases where the feature was
impossible to calculate were observed at Dispersion features.

4 Conclusion

The extended abstract addressed adaptive learning of a suitable optimization
setting in black-box optimization, more precisely, adaptive learning of a surrogate
model in a surrogate-assisted version of the CMA-ES. Its main message is the
relationship of this kind of adaptive learning to landscape analysis. A formal
framework for the learning of a surrogate model based on landscape analysis is
given, and considered kinds of landscape features are discussed. In the results
obtained so far, attention is paid in particular to feature robustness.

This work in progress is part of a thorough investigation of the possibilities of
landscape analysis in the context of surrogate modelling for black-box optimiza-
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tion. That investigation has already brought first results in the past [2,13,14],
but much still remains for further research.
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Abstract. In anomaly detection problems the available data is often
not or not fully labelled. This leads to results that are usually signifi-
cantly worse than in balanced classification problems. In this short paper
VIAL-AD is proposed, which addresses this problem with a sequence of
unsupervised, semi-supervised and supervised machine learning models
allowing a user to interactively label data points. This allows to move
towards supervised anomaly detection, starting with unlabelled data.
The approach is introduced and identified open research questions are
discussed.

Keywords: visual interactive labelling · VIAL · anomaly detection ·
human-centered machine learning

1 Introduction

This work addresses machine learning-based anomaly detection (AD) [6, 1], where
the aim is to classify data points as either normal or anomaly based on a set of
features f . This can be achieved by training AD models on data that is (a) un-
labelled, (b) contains labelled normal data, or (c) contains labelled normal data
and anomalies. Applications of AD can be found in system health monitoring,
intrusion detection, fraud detection, and the analysis of medical data. One main
application field is data-driven fault detection, e.g. addressed in [20, 21].

This work is motivated by the question of how we can compensate for the
lack of a labelled and representative data set in AD problems by incorporating
human knowledge in order to move to supervised AD. While there are statistical
or unsupervised ML methods to identify outliers, only a human expert can de-
cide whether a data point is a true anomaly for a given application. Therefore, it
suggests itself to incorporate the user in the process. We argue that for anomaly
detection, this is indeed even more crucial than for balanced classification prob-
lems.

In this paper visual interactive labelling for anomaly detection (VIAL-AD)
is proposed which – starting with unlabelled data – allows to iteratively move
from unsupervised to supervised anomaly detection [6]. This is achieved by a
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combination of (1) a sequence of machine learning (ML) models with different
levels of supervision and (2) the incorporation of the user to interactively label
data. The idea is to use unsupervised AD to address the so-called cold-start
problem [22] in order to obtain an initial set of tentative labels. A sequence of
AD models is used to suggest labels and a human expert confirms or overrules
suggestions and labels data or regions in the feature space. We believe that
in AD, where it is unlikely to have a representative and labelled training set,
the user-in-the-loop is key to allow for the use of ML and move towards an
accuracy that allows for productive use. In order to validate the idea, a prototype
was implemented. Preliminary results are promising, however a number of open
research questions were uncovered and are discussed in Section 3.

In the following, related work is briefly reviewed. Holzinger et al. showed
how a user in-the-loop with ML models can improve the overall performance of
a system [11]. A generic process for visual interactive labelling was proposed by
Bernard et al. under the name of VIAL [4]. In [3] it was shown that VIAL can
outperform pure active learning – specifically for two-class problems. In [2] AD
models were used for interactive labelling, however not with the aim to label
an AD data set. Trittenbach et al. discuss open research challenges for one-class
active learning [22], e.g. the cold-start problem.

2 The approach: VIAL-AD

VIAL-AD consists of the steps unsupervised, semi-supervised, and supervised AD
[6] (see Fig. 1(a)), where in each step model and user collaborate as follows: The
model classifies the data and suggests the labels normal and anomaly. The user
inspects the data points and their labels and (a) adjusts model hyperparameters,
or (b) confirms/overrules the labels proposed by the model, or (c) visually labels
data points or regions. Following that, the user decides to move to the follow-up
step or to refine the labelling in the current step.

Fig. 1: (a) VIAL-AD: Interactive labelling with a sequence of ML models and
the user-in-the-loop. (b) UI for visual interactive labelling, where the data shows
RPM (revolutions per minute) and coolant temperature of vehicles during the
occurrence of fault codes, read-out in car repair shops [19].
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1. unsupervised AD: An unsupervised model (LOF [5] in current implementa-
tion) suggests initial labels which are confirmed or overruled by the user.
Confirmed anomalies are moved to the two-class data set for the supervised
step and are excluded for the current step. The model continues to report
anomalies which are again evaluated by the user. In addition, regions in the
feature space can be marked as normal or anomaly resulting in the creation
of artificial data points. The result of the unsupervised step is a tentatively
labelled train set.

2. semi-supervised AD: The reduced data set from the unsupervised step is
used to train a one-class classifier (current prototype uses a OC-SVM [16]).
For each data point the classifier suggests the labels normal or anomaly.
These are processed analogously to the first step. A promising alternative is
to make use of the anomalies from step 1 using methods like SVDDneg [18,
10]. This step’s output is a labelled train set of normal data and anomalies,
where the anomaly class is, however, not likely to be representative.

3. supervised AD: As VIAL-AD is used on real data, more and more anoma-
lies are detected, so one can move to a supervised scenario. In addition to
the normal data, the previously labelled anomalies are used to form a two-
class train set that becomes increasingly representative. Hence, a variety of
common ML models becomes applicable. In case of high class imbalance,
sampling methods should be applied [12]. In the prototype ν-SVM is used.

The central element of interaction is an interactive 2D-scatter plot as in [2]
(see Fig. 1(b)). This does however not limit the approach to two-dimensional
data – higher dimensional data can be projected [15] onto two dimensions. Al-
ternatively, visualisations for multi-dimensional data could be used. However,
they introduce a higher complexity for the user.

3 Open research questions

Potential disruption caused by subsequent models: Different AD mod-
els have differing underlying assumptions [6, 18] about anomalies. Some work
with probabilistic distributions, others with distances, densities (e.g. LOF [5]),
reconstruction errors (autoencoders), or the adaption of the maximum-margin
assumption to the one-class case (one-class SVMs [18, 16]). Hence, the use of
different models in subsequent steps can induce disruptions in the way labels are
suggested. A subsequent model could come up with a different labelling, which
is confusing for the user. This disruption is to be minimised.

Visualisation-vs.-model dilemma: For data with > 2 dimensions the user
is presented projected data, while the model may work on the original or on
projected data. However, a projection with the aim to optimally visualise the
data is not necessarily the optimal projection for the ML model to work on
[14]. The original space or alternative projection methods might be more ap-
propriate. Visualising and classifying different representations of the data can,
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however, induce undesired effects. Wenskovitch et al. give an overview and po-
tential solutions are discussed in [24].

Problem of non-interpretability of projected space: In AD problems,
typically no representative set of anomalies exists. To compensate for that, en-
tire regions could be marked as anomalous based on expert knowledge. In the
original feature space these would be outlier values that can be clearly specified
by experts. As discussed, the potentially high-dimensional data can be projected
onto a lower dimensional space, the user can interact with. However, for many
projection methods the relation between the visualization and the original input
space is not obvious. This makes it difficult or even impossible for the user to
label unoccupied regions in the feature space. Projection methods like t-SNE
[23] aim to preserve the neighbourhood between data points, however do not
preserve the properties in unpopulated regions. This creates a dilemma trying
to mark unpopulated regions as normal or anomaly : in contrast to working on
the original feature space, users do not have an intuition about where anomaly
regions in the projected space are, as the projected feature space can be distorted
and hardly interpretable [15]. This problem can be addressed in several ways:

1. Avoid projections by using visualization methods for high-dimensional data,
which however makes interaction with the data more complex and does not
scale well for a high number of dimensions.

2. Show original data objects for selected data points. Data types, where single
data objects can be intuitively presented due to some order within the data
are predestined for that, e.g. images, time series, or text. High-dimensional
data in the form of independent feature vectors can, however, not easily be
represented in an intuitive way.

3. Investigate projection methods and interaction facilities in order to allow for
a user-friendly interaction [9, 8]

4. Let the user explore different projections, e.g. as proposed in [7].

Problem of highly imbalanced data: In AD, the distribution of the classes
is typically highly imbalanced towards the normal class. As a consequence (a)
this poses particular challenges for the projection methods, and (b) it raises the
question if users will label the data accordingly.

In projections, anomalies should be positioned well separated from normal
instances. Hence, an interesting issue is the sensitivity of projection methods
to outliers. Bernard et al. evaluated different projection methods in [2]. While
PCA’s sensitivity to outliers is considered promising [2], in [3] it is stated that
users prefer t-SNE [23]. The appropriateness of a projection method can be
evaluated with a user study or using metrics specifying the readability of the
projections. In [17, 13] ways to measure this readability are discussed.

The second question raised by the class imbalance is if users will label the
data accordingly: On the one hand, users might run into the risk of overlooking
anomalies due to their rareness. On the other hand, it might be that users
overestimate the anomaly class, labelling too many data points as anomalous.
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Risk of manual overfitting: Furthermore, an identified challenge is the risk of
what we call “manual overfitting”. In supervised ML, overfitting is addressed e.g.
with regularization terms – preventing the model from too naively overfitting the
data. However, with the user in-the-loop and with direct control over class labels,
such a naive overfitting may take place: The user might be tempted to process the
data set in such a way to achieve optimal accuracy as opposed to strictly applying
domain knowledge to distinguish between normal or anomalous data points or
regions in the feature space. This could be addressed with a – potentially high
number – of blind test sets. Even after testing, this data should not be made
available to the expert in order not to overfit towards the test set. Ideally, a test
set should only be used once to evaluate performance. Another option would be
the introduction of some regularization method, putting reasonable constraints
on the user actions.

4 Conclusion

This paper discussed how the incorporation of humans can compensate for the
lack of labelled data in anomaly detection. The proposed approach uses unsuper-
vised AD on an initially unlabelled data set and lets the user confirm or overrule
decisions. After having interactively processed the data set in collaboration with
unsupervised AD models, the user can move to semi-supervised or supervised
models. The key benefit of VIAL-AD is, that it allows to move towards super-
vised ML where it was previously not applicable due to the lack of labelled data.
This is a problem often encountered in industry where data is recorded for a dif-
ferent purpose and the opportunities of applying ML are discovered later. While
preliminary experiments indicate the applicability of VIAL-AD, open research
questions were identified which will be addressed in future work. Following that,
the goal is to evaluate VIAL-AD in a systematic user study and to apply it in a
real-world case study.
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Abstract. In manufacturing, data sets tend to be high-dimensional,
with a low number of labels and, features show spurious correlations
with respect to a target key performance indicator. As a consequence,
costly manual feature engineering by domain experts is required prior
to prediction. To improve this process, we propose an interactive feature
engineering scheme based on dimensionality reduction. Low-dimensional
embeddings of selected features are visualized and guide the domain ex-
perts towards effective feature engineering. We show that by engineering
features we obtain higher predictive capabilities and we improve the in-
terpretability of the model.

1 Introduction and Background

Many applications of predictive Machine Learning (ML) require significant Fea-
ture Engineering (FE) when having small datasets. Particularly in Integrated
Circuit (IC) manufacturing, which is the application of this work, the absence
of large amounts of labeled data, the requirements of interpretability and the al-
ready mature domain knowledge make FE crucial for predictive tasks. Recently,
deep learning has shown potentiality in automatically generating useful features.
However, the data requirements for obtaining good accuracy with deep learning
i.e., about 5000 labeled instances for decent performance and about 10 million
labeled instances for outstanding performance [1, Chap. 1], are not realistic for
IC manufacturing. Also, most of our usecases require interpretability because
ML predictions are expected to contribute to decisions on fab processes with
high financial impact and so, highly complex models are not applicable. Finally
in IC manufacturing, FE typically requires knowledge on the physics of a process
which cannot be easily obtained by statistical techniques. As a result, FE is a
costly process which is performed by domain experts manually.

We propose an interactive FE scheme, with a human expert in-the-loop,
based on state-of-the-art dimensionality reduction. We implemented an initial
approach of it as a web application in ASML, the leading manufacturer of lithog-
raphy machines and major player in the semiconductor industry. Our scheme is
an iterative process. In each iteration an expert observes an embedding of se-
lected features and acquires some information based on the cluster structure



present in it. For example, they understand which features are responsible for
the clusters in the embedding or they understand what context the clusters be-
long to. After having observed the embedding, they then provide a set of rules
(e.g., a clustering). This information is used to engineer a new feature. Expert in-
put is obtained through visualizations. The human-defined clustering encodes (1)
their prior knowledge on the underlying predictive task and, (2) the knowledge
acquired through unexpected or surprising structure observed in the embedding.
The previously observed patterns are factored out from the embedding. A new
iteration begins with the expert observing the new embedding for clustering that
can used for a new feature. The interaction ends when at a given iteration the
embedding shows no more relevant clustering.

Related Work Our work has been motivated by the works in Tiler [3],
and SIDE [7]. These pioneering works construct informative visualizations that
are tailored for each particular user, based on their prior knowledge. However,
these works consider linear dimensionality reduction (DR) which is not suitable
for the complexity of our data sets. When using linear DR, we often see no
cluster structure. [8] and [4] propose non linear DR for informative visualizations:
conditional Variational Autoencoders and conditional t-SNE respectively. These
methods can be used in our interactive scheme in order to construct embeddings
that guide domain experts towards feature engineering.

Use case IC manufacturing is a complex process where various machines
and processing tools are used such as coating, exposure or etching tools. ICs are
being fabricated on a thin silicon plate, called wafer, which is processed in several
layers. Sensors monitor each step of this process. The raw measurements of these
sensors are the features used to predict Key Performance Indicators (KPIs). As
an example of KPI, the work in [2] aims to predict the precision in nanometers
of printing IC designs on a wafer, called overlay, using sensor measurements and
context information. Overlay is measured over several positions on a wafer after
each process layer. The features have a direct physical relationship with the KPI.
The tools associated with the sensors are the context of the measurements. Unlike
features, the context variables such as tool names, machine settings, time stamps,
do not have a direct physical relationship with the KPIs. Nevertheless, context
variables are necessary in order to explain the raw sensor measurements [5].
Predicting KPIs only based on the raw measurements gives low accuracy models.
Typically, sensor measurements are noisy, with redundancies, and have offsets
depending on their context namely, associated tools used in a particular step.
Moreover, the tools are not always matched with respect to a common reference.
For these reasons, enhancing these models with features properly engineered by
domain experts is crucial. To evaluate our interactive scheme, we consider the
prediction of a KPI in [2] which is a typical use case of our domain.Detailed
description of the use case and the features can be found in [2].

2 Feature Engineering with Human in the Loop

In this section, we describe the proposed methodology for feature, how the inter-
active scheme is implemented and the improvements we obtain by engineering
the features during the interaction.
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Fig. 1: Software design and steps to follow in the interactive scheme.

2.1 Methodology and SW tool

We developed a web application tool in DASHPlotly in python 3.7. It has four
main steps as shown in Fig. 1. Below we describe it in detail.

Step 1: [Select relevant features and visualize data] Raw features together
with context information is given as input to the software in a tabular format.
Then an algorithm ranks the most relevant features with respect to the target
KPI. Feature selection is out of the scope of this work because any feature
selection could be used without affecting the FE interactions. For the feature
selection, we use Bayesian Regression [6]. The user can select the number of
ranked relevant features that will be used for the visualization, in Fig. 1 10 are
picked. Based on those 10 features data is visualized in 2D using well-known
dimensionality reduction methods. In Fig. 1, we used t-SNE as we have a small
dataset. In a setting with large datasets, dimensionality reduction techniques
such as UMAP [9] and Variational Autoencoders [8] can be used.

Step 2: [Explore visualization] On the left panel, the user can choose the
context with which the scatter plot is colored. It can be the machine where the
wafer has been exposed(which is selected in Fig. 1), the Reticle that has been
used in the exposure, etc. The expert sees what context explains the clustering
or structure in the data. To facilitate this, the context variables are ranked
according to their Mutual Information with the clustering on the embedding as
defined by Hierarchical Density-Based Spatial Clustering (HDBSCAN). So the
user can start exploring the embedding using the context that correlates the most
to its structure. As an example of the knowledge that the expert can acquire in
this phase, we can see the context effects in Fig. 1 which can be explained by
the machine chamber settings.

Step 3: [User interaction for Feature Engineering] The clustering observed
in the previous step can be added as cluster constraints by the user. In this way,
the user engineers a feature by computing the cluster-offset per machine setting,
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Fig. 2: Each embedding refers to an iteration of the interactive FE scheme.

namely the average of the target KPI per cluster. In fact, the new feature is a
form of target encoding the machine context variable.

Step 4: [Remove known effects] The user continues the exploration in order to
discover less dominant context-effects. To achieve this, we consider the previously
acquired knowledge as prior information and we factor it out from the embedding
using conditional t-SNE [4]. In the panel in Fig.1, the user is able to select the
context-effect to be removed. Multiple selections are possible. The interaction
starts again with a new visualization.

The interaction stops when the user cannot make sense out of the structure
on the data anymore. In that step, we assume that every effect that could be
easily understood from the data is known by the human expert and a feature
has been engineered for it.

2.2 Application to the Overlay Prediction Use Case

We now present the iterations of human interactions with the proposed FE
scheme for the KPI (overlay) prediction use case described in Section 1. First,
we describe what a human expert learned by observing the embedding and what
kind of features were engineered. Then, we evaluate the impact of the engineered
features on overlay prediction.

We have a data set that consists of ∼ 2000 wafers. Overlay is measured
in 60 points on each wafers and so, in total, our data has 120, 000 datapoints.
Overlay is a continuous value and thus, we have a regression problem. After
feature selection process, from an initial data set of ∼ 350 features, we have 30
features. To avoid overfitting, we used ∼ 10% of data for FE and the rest of it
for training models. In Fig. 2 we see each iteration of the FE scheme.
Iteration 1: The data in the first plot of Fig. 2 is colored by wafer Id, which
explains most of the clustering structure. This means that the overlay measure-
ments on a wafer (independently of the layer they have been measured) look
similar. In our data set, the measurements on a wafer are always taken with re-
spect to the same reference layer. This means that if there is a distortion in the
reference layer it will propagate through stack to all the layers above. Overlay
experts can quickly identify this behavior. They now need to make sure that the
initially loaded data contains the overlay measurements of at least one previous
layer per wafer or the reference layer. In this case, two features can be engineered;
the estimated cluster average and the overlay measurements of a previous layer.
Iteration 2: The structure observe in the 2nd embedding in Fig. 2 is obvious for
an expert who can quickly relate it to overlay. It belongs to 8 different machine
settings. Here the engineered feature is simply the estimated averages per setting.
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Table 1: Prediction performance (r2) for three iterations of the FE scheme.
Bayesian Ridge Random Forest

Baseline 0.0107 0.4537

1st iteration 0.3057 0.4636

2nd iteration 0.5863 0.601

3rd iteration 0.589 0.6027

Iteration 3: The last iteration shows a clustering that is colored per position on
wafer. It is known that measurements of errors on the edge of a wafer are larger
than those on the interior rings of the wafer. This structure again is easy for an
expert to relate to overlay errors. The engineered feature is just the expected
error on each position of the measurement.

In order to evaluate the accuracy of the model we implement a linear and
a non-linear ML algorithm; Bayesian Ridge Regressor and Random Forest from
scikit-learn. In Table 1, we evaluate two ML algorithms at the different phases
of the interaction. The reported results derive from a 3-fold cross validation.

The first row, i.e., baseline, refers to the accuracy obtained by using the raw
input data after feature selection. We see that the linear regressor was not able
to capture the contributors to overlay because typically the signals are related to
the overlay in a non-linear fashion. Random forest is able to capture quite some
of the effect with the raw input data. In the next three rows, from 1st iteration
to 3rd iteration, in each step new features have been added. We see that, the
more features we engineer the better r2 values we obtain. Another key message is
that, once we have engineered all features, the results by a linear machine and a
non-linear learning machine become comparable. In this example, the accuracy
that we have obtained is not really high (r2 ∼ 0.6). Overlay prediction is a
challenging task, and a result of 0.6 after a few FE steps is quite good.

Why do we need interpretable features? In this example, experts could
easily identify the structures in each iteration. They were able to iteratively
obtain all three effects contributing to the target KPI; distortions on reference
layer, scanner settings and measurement position. Typically, context effects are
dominant and can be easily identified by experts in data. However, some data sets
might have more complex clustering structures that domain experts cannot relate
with context variables. In IC manufacturing, a field heavily relying on the physics
of the process, it is preferred to have an interpretable and less predictive feature
than a more predictive but not well understood one. Experts usually discard
predictive features that cannot explain as spurious correlations. In the proposed
FE scheme, the interpretability of features by the experts is a requirement. At
least some of the clusters of the embedding have to be explained by the context
variables in order to engineer a feature.

Why do we need a human expert? One could argue that if the clustering
in the visualization is obvious, a clustering algorithm such as DBSCAN could
be run to do FE automatically. However, as we have seen in Iteration 1, the
engineered features where not simple cluster average estimations, we also engi-
neered another feature based on the knowledge an expert has on the domain.
Also, clustering is an ill-posed problem in the sense that different clustering al-
gorithms or different initializations of the same algorithm might give different
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results on the same data. Having an expert in the loop makes sure that not
only the hidden structure in the data will be properly captured by engineered
features, but also the domain knowledge will be used. The model becomes more
interpretable, since a few human defined features are used as input data.

3 Conclusions and Open Questions

Our proposed FE scheme facilitates experts to engineer features in a structured
way using their domain knowledge. The proposed scheme lends itself very natu-
rally for semiconductor applications, but may be just as applicable in situations
with high complexity, small sample sizes and existence of relevant (but maybe
implicit) domain knowledge, e.g. medicine, general industry settings, etc. Never-
theless, we still face several challenges in implementing the proposed FE scheme:

First, we would like to transfer the learned features from one domain to
another. Similar context effects are present in many predictive machine learning
settings over different domains within semiconductor industry. The reason is
that we typically want to predict KPIs from sensor measurements associated
with some context. Our FE scheme requires costly time from domain experts.
Transferring the learned features across domains, instead of requesting similar
input from expert in different domains, will improve its efficiency.

Second, domain experts are often unsure of their feedback and they might
also be biased. Making our scheme robust to biases and conflicting inputs is
necessary for its successful adoption.
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2. F. Hasibi, L. van Dijk, M. Larrañaga, A. Pastol, A. Lam, and R. van Haren. Towards

fab cycle time reduction by machine learning-based overlay metrology. In 34th
European Mask and Lithography Conference, pages 129 – 137. SPIE, 2018.

3. A. Henelius, E. Oikarinen, and K. Puolamäki. Tiler: Software for human-guided data
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