
Efficient and Scalable Aggregate Computation on
Temporal Graphs

Vincent Le Claire
supervised by Prof. Dr. Peter Fischer

University of Augsburg
Augsburg, Germany

vincent.leclaire@informatik.uni-augsburg.de

ABSTRACT
Many applications such as social networks generate big vol-
umes of graph data that has additional temporal information
or changes rapidly, which has lead to a significant amount of
research on temporal graphs. Existing and ongoing work on
temporal graphs has focused on path problems and graph
databases in general. Aggregations, which are very common
for relational data, are just as insightful for temporal graph
data, but need to be computed efficiently and scalable. To
aggreagte efficiently, useful operations on graphs need to
be selected, the composition of aggregation functions needs
to be investigated, and the distribution of the calculation
must be studied. After tackling the research question with
the simplifying assumption of static communities (which are
highly coupled nodes), then the parallelization of the prob-
lem is investigated, and finally, the simplifying assumption
is removed for the general case of dynamic communities. As
aggregations play an important role in (temporal) relational
data, this direction of research might establish them in tem-
poral graphs just as well.

1. INTRODUCTION
Much data in the real world can naturally be expressed

as a graph. For example, in a social network, graph nodes
can represent people, and graph edges then represent that
two people are friends in this social network. As another
example, consider a traffic network that consists of streets
that are interconnected by crossways. Many of these graphs
are not static but change constantly. Social networks, as
they are intended for interaction, are obviously dynamic.
Likewise, traffic networks are not static as temporary road
works or other means of blocked roads are sources of change.
For temporal graphs (aka dynamic graphs), the wide range
of use cases results in a plethora of different definitions and
algorithms, as no common view or formalization has – so
far – been achieved. One important aspect of (not only
temporal) graph data is the aggregation of many values to

Proceedings of the VLDB 2020 PhD Workshop, August 31st, 2020. Tokyo,
Japan. Copyright (C) 2020 for this paper by its authors. Copying permitted
for private and academic purposes.

a smaller set of meaningful metrics, as often seen in, e.g.,
business intelligence.

In the context of aggregates in temporal graphs, consider
the following example: In a social network, users can be
grouped into several communities that have stronger bounds
inside than to the outside. A query for this use case might
be: “For the most connected member of each community,
how much did the number of friends change over the progress
of every calendar week of last year?” That query has sev-
eral complementary aspects: (a) It accesses the graph in
substructures of varying amount (nodes, neighbours, com-
munities), which resembles (but exceeds) the grouping of re-
lational aggregations. (b) It has a temporal aspect of varying
granularity (first, the number of friends is calculated for each
week; second, only the data of the last year is examined). (c)
It uses different aggregation functions (here: sum, argmax).
(d) It re-uses an aggregation (the sum of the friends has to
be calculated for every node because it is needed to find the
most connected member in a first step).

1.1 Motivation
The core of this research proposal is to investigate ag-

gregates on temporal graphs rather than arbitrary temporal
graph algorithms. There are several reasons for this focus:

• There are many use cases of aggregations, among them,
for example, weekly analytics of air traffic connections,
or averaging the number of contacts between people
during a global outbreak of a disease. Furthermore,
many use cases of relational temporal aggregates are
applicable for graphs, too. The importance of aggre-
gates on temporal graph data is also recognized by
their use in benchmarks: The LDBC Social Network
Benchmark uses a temporal graph for its data, and its
business intelligence workload sports several temporal
graph data aggregations.

• For several temporal graph problems, there exist ef-
ficient, often parallel and/or incremental algorithms.
Yet, these algorithms tend to make specific assump-
tions on the data model and the workload; when the
uses cases are more general or differ slightly in their
assumptions, the scalability suffers. Considering the
more limited scope, temporal aggregates over graphs
are likely to provide more room for optimization and
less sensitivity to workload and data model changes –
we will outline this reasoning later in this paper.



• Despite all the points outlined above, aggregates over
temporal graphs have not been a major research direc-
tion so far. This is in stark contrast to classical graph
problems such as shortest path or adapting existing
workloads on temporal data using snapshots.

2. PREVIOUS WORK

2.1 Use Cases of Temporal Graphs
One of the first examples of using temporal graphs is

an article by Cervoni et al. [4]. The authors use temporal
graphs for the calculation of temporal constraints.

Use cases of temporal graph metrics have been mentioned
by Tang et al. [24]. Nicosia et al. [21] describe some metrics
and differences to their static graph counterparts.

Holme and Saramäki [11] review many use cases for tem-
poral networks and describe the different modeling of them.

There are examples of the usage of temporal graphs in
medicine: Wainer and Sandri [26] use them for medicial di-
agnostics. Liu et al. [18] model medical events of a single
patient and their relationship using temporal graphs.

For visualizing scientific publications and their interrela-
tions, Erten et al. [8] use temporal graphs.

The wide range of uses of temporal graphs (along with our
motivating example) reassures us that the addition of tem-
poral information to graphs is sensible and not an academic
niche.

2.2 Temporal Databases and Aggregates
The research on temporal aggregation dates back to the

1990s, co-occuring to the seminal work on temporal data-
bases. One of the first publications regarding temporal ag-
gregation (on relational databases) is by Snodgrass et al. [23],
which is a direct result of their introduction of TSQL2.
TSQL2 added temporal semantics on top of the SQL stan-
dard, which has become mostly obsolete by the inclusion
of temporal semantics into SQL:2011. Following, Kline and
Snodgrass further evaluate the calcuation of temporal ag-
gregates in [16]. Zhang et al. [27] appended ranges to the
temporal aggregates.

Böhlen et al. [2] focus on multi-dimensional temporal ag-
gregates. They distinguish between two (or more) time di-
mensions: one or more application times, which describe at
which time a tuple is valid, and a system time, which defines
the time where the database system is aware of the tuple.
Cheng [5] describes the aggregation of null-time intervals.

In 2013, Kaufmann et al. [15] introduce the Timeline In-
dex, which is a main-memory structure that efficiently sup-
ports temporal aggregations on system time and other tem-
poral operations in a relational database. Ideas of the Time-
line Index will play an important role in our first step of re-
search, as we will show in Section 4. Other work mentioned
in this section lays the foundation to understand what tem-
poral aggregations are and what expressive power they have.

2.3 Processing Systems and Databases
For our purposes, managing large-scale evolving graphs

relates to both graph databases and processing systems:
Fernandes and Bernardino [9] compare several graph data-

base systems. The most popular among them is Neo4j [1].
TGraph [12] is an ACID-compliant extension of Neo4j for
temporal range queries. TGraph assumes that the graph
structure changes rarely, while attributes of nodes and edges

change over time. A custom data structure called DPS (Dy-
namic Property Storage) handles the dynamic attributes of
nodes and edges, while the graph itself and the static at-
tributes of the nodes and edges are kept in the existing Neo4j
format.

Google’s Pregel [20] is an early example of a graph pro-
cessing system, introduced in 2010. It is a distributed sys-
tem for big graphs providing a very fine-grained concur-
rency model; like MapReduce [7], it relies on synchronization
rounds (BSP). GraphLab [19] positions itself in the machine
learning domain, it thus investigates relaxed coordination
models. Kineograph [6] is a distributed graph system for dy-
namic (that means, frequently changing) graphs. It stores
its graph as snapshots for different points in time. Simi-
larly, GraphTau [13] is distributed and stores snapshots; it
builds upon Apache Spark. GraphChi [17] focuses on disk-
based evolving graphs. A recent general-purposes system to
analyze huge temporal graphs is Gradoop [14].

Generally speaking, graph databases tend to be limited
in scalability for analytical temporal workloads, while the
broad support for temporal graph operations in processing
system makes it hard to devise optimization specific to ag-
gregations.

2.4 Incremental Aggregate Maintenance
Efficient computation of graph aggregates may draw heav-

ily from existing work on incremental aggregate computa-
tion, notably from (a) incremental view maintenance and
(b) incremental computation of streaming aggregates.

Materialized views are well established in relational data-
bases; Halevy [10] gives an extensive overview of how they
are used to answer queries. Materialized views contain the
result of a query, which can be, for example, an aggregation.
When the underlying data changes, the materialized view
is updated. Many approaches exist to perform this in an
incremental manner. There is an additional interesting line
of work that is helpful for our problem setting: Answering
queries with views and thus view containment could provide
valuable insights on stacking distinct aggregates – which is
clearly harder than, for example, a cube operator with the
same aggregation function.

Tangwongsan et al. [25] provide a comprehensive solution
on sliding-window aggregations. For in-order arrival/expiry
of the data they achieve O(1), while for out-of-order expiry
they still achieve O(1) in the best case (which is in-order)
and up to O(logn) in total out-of-order execution. The lat-
ter model matches well with arbitrary lifetime intervals of
temporal data.

3. PROBLEM DEFINITION
The problem we are thus trying to tackle in our work is to

efficiently compute (combinations of) aggregate values over
(possibly changing) substructures of highly dynamic, huge
graphs.

The implications of this problem statement can further be
broken down along the following dimensions:

1. Graph properties to aggregate: Compared to re-
lational or streaming/ordered models, graphs allow for
an additional range of (possibly very costly and hard-
to-optimize) operations such as reachability or shortest
paths. These may serve as an input to the aggregate
metrics (such as betweenness centrality), yet the effort



to compute them may outstrip the cost of the aggre-
gations.

It is therefore an important tradeoff to consider how
rich the support for such operations needs to be. Our
current take is to allow limited neighborhood access
but not arbitrary reach/iteration.

2. Hierarchical composition of distinct aggregate
functions: While a significant body of works exists on
refining/combining values over the same aggregation
function (like drill-down or roll-up data cubes), using
several distinct aggregation functions “on top” of each
other (e.g. maximum on top of sum in the example)
is not as well studied for effective evaluation.

3. Several dimensions of varying granularity

(a) Time: As already observed, temporal aggregates
may cover varying degrees of time (points, dis-
joint/overlapping intervals). In aggregation hier-
archies, the granularities may necessarily have a
containment relationship (e.g. weeks and months).

(b) Graph structure: While relational data is typ-
ically “grouped” over an attribute or combina-
tions of attributes (which often have an obvious
containment relationship), graphs provide a wider
range of options, covering individual nodes, neigh-
borhoods, communities, connected components or
the entire graph. Determining these “groups”
may itself be a complex and expensive operation.
Furthermore, on temporal data the membership
of sets of lower-level groups may change over time,
such as nodes changing their community, making
partial computation harder to maintain.

4. Distributed computation: The expected problem
size makes single-thread, main-memory approaches as
well as full recomputation on change not very appeal-
ing. While these aspects are fairly well-understood
for relational streaming and ongoing work exist for
static graphs, research for partitioning and distributed
state management of dynamic graphs is still in its early
stages.

To narrow the problem definition, we assume a changing
graph whose nodes and edges may have additional proper-
ties assinged that may also change over time, similar to the
approach Huang et al. have for TGraph [12]. To give more
expressive power, we assume an interval time model instead
of only allowing points in time for queries. At this time, we
do not assume a graph with directed nor undirected edges.

4. RESEARCH PLAN
An interesting foundation for this type of research is the

Timeline Index approach of Kaufmann et al. [15]. It ex-
presses the (relational) temporal data as a changelog of acti-
vated/deactived data points. Validity information snapshots
reduce the space to be processed and allow for archival or
distribution. Due to these design choices and also due to
the optimization for main memory, it provides an efficient
underpinning for incremental aggregations.

Temporal graphs can clearly also be expressed as a (set)
of changelog(s) of nodes, edges and properties. Dealing with

the underlying structure of a graphs is one of the most in-
teresting challenges when adapting Timeline, as it affects
the scope of aggregations (e.g. over nodes or communities)
as well as the means of partitioning the graph for parallel
execution. To make this challenge more tractable, we first
keep the aggregation scopes static and drop this require-
ment in our last step. Additionally, we consider also ma-
terializing (partial) aggregate values to speed up aggregate
computation over time, graph structure and aggregate func-
tion composition. In turn, this also introduces an additional
partitioning problem.

4.1 Interfacing with Graph Computations
As a first step, we are investigating how to best express

the usage of graph properties required for the metric com-
putation. The goal is to define a suitable subset of graph
operations that can be computed in an incremental manner
over temporal data and can therefore “drive” an efficient
temporal aggregation process. While some operations are
obviously both useful for metrics and easy to derive (such
property values on a single node or edge) and others are use-
ful, but extremely hard to compute incrementally (general
temporal paths), the space in between is not well-charted.
We plan to investigate a broad range of metrics from use
cases in order to further understand the requirements. The
results will allow use to also adapt the design of the graph
data storage and programming interface.

4.2 Composition of Aggregates
A second, but orthogonal problem is the combination of

multiple aggregations into a hierarchy. While a wide range
of single-level aggregations may be supported for incremen-
tal computation by applying ideas of, e.g., Tangwongsan et
al. [25] (maybe with extensions for update sets), re-using
partial results over a DAG of distinct aggregation functions
clearly raises its own set of challenges. We plan to inves-
tigate expression or view containment approaches to con-
sider both dependencies among aggregation functions and
the varying granularities of time and graph structure, pos-
sibly deriving “core” aggregation parts in lower levels that
can be shared for multiple aggregates or combined among
these dimensions. Furthermore, deciding on when and what
to materialize will be further area of investigation.

4.3 Parallelization
In order to achieve a significant amount of scalability, the

computations need to be parallelized.
We see two main directions: (a) Partitioning (social) graph

data in order to both maximize parallel computation and
minimize communication is an ongoing challenge in the re-
search community, e.g., due to skewed distribution of the
data. We expect that some parts of the changelog, the snap-
shots, and the partial aggregates may just cover a small sub-
set of highly active and highly connected nodes, while other
parts may cover larger sets of lower activity. We also may
have to investigate possible “cuts” within graph structures
such as communities or even nodes, so partial aggregates
can be computed with more parallelism.

(b) In contrast to general graph computations, many ag-
gregate functions do not require strict consistency rules in
order to produce correct results, similar to what CRDTs [22]
can achieve in eventual consistency environements. The



temporal validity information provided with the data ele-
ments facilitates the reconciliation of different “episodes”
and may further be used to derive the synchronization bound-
aries as only changes in the data require actual coordination.

4.4 Dynamic Communities
In our last step, we drop the assumption of static graph

structures, so that the graph structures we aggregate over
also change over time; hence, nodes and edges may migrate
between substructures. This has two major consequences:
(a) Determining communities is by itself an expensive oper-
ation, even on non-temporal graphs, typically scaling much
faster than the number of edges. We already begun investi-
gating some light-weight methods on the basis of Brandes et
al. [3] that promise to allow for incremental community de-
tection and evolution. (b) Sharing partial changelogs, snap-
shots or aggregates becomes more challenging when their
membership or association to bigger structures changes. We
plan to investigate methods for more fine-grained partition-
ing or association-strength partitioning strategies to mini-
mize the number of large-scale recomputation.

5. CONCLUSIONS
Aggregations have important applications for relational

data, and they are used frequently. Likewise, there are many
use cases for aggregations of temporal graph data. There is
a broad foundation of graph databases and research of other
important temporal graph problems. Also, there are simi-
larities in the challenges of computation of streaming data
and the maintenance of materialized views, for example.

The research problem is four-fold: Graphs have differ-
ent (sometimes very costly) operations; it is necessary to
find a set of operations that is both efficient and expressive.
Secondly, because some aggregations can be composed into
others, it is wise to study how this can be done efficiently.
Thirdly, the time dimension and the graph structure give
granularity. Lastly, the problem should be solved distribu-
tive.

6. REFERENCES
[1] Neo4j. https://neo4j.com.

[2] M. Böhlen et al. Multi-dimensional aggregation for
temporal data. In EDBT, pages 257–275, 2006.

[3] U. Brandes et al. On modularity clustering. TKDE
2007, 20(2):172–188, 2007.

[4] R. Cervoni, A. Cesta, and A. Oddi. Managing
dynamic temporal constraint networks. In AIPS,
pages 13–18, 1994.

[5] K. Cheng. On computing temporal aggregates over
null time intervals. In D. Benslimane et al., editors,
DEXA, pages 67–79, Cham, 2017. Springer.

[6] R. Cheng et al. Kineograph: taking the pulse of a
fast-changing and connected world. In EuroSys 2012,
pages 85–98, 2012.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. CACM,
51(1):107–113, 2008.

[8] C. Erten et al. Exploring the computing literature
using temporal graph visualization. In Visualization
and Data Analysis 2004, volume 5295, pages 45–56.
International Society for Optics and Photonics, 2004.

[9] D. Fernandes and J. Bernardino. Graph databases
comparison: Allegrograph, arangodb, infinitegraph,
neo4j, and orientdb. In DATA, pages 373–380, 2018.

[10] A. Y. Halevy. Answering queries using views: A
survey. The VLDB Journal, 10(4):270–294, 2001.

[11] P. Holme and J. Saramäki. Temporal networks.
Physics reports, 519(3):97–125, 2012.

[12] H. Huang et al. Tgraph: A temporal graph data
management system. In CIKM, pages 2469–2472.
ACM, 2016.

[13] A. P. Iyer et al. Time-evolving graph processing at
scale. In GRADES 2016, pages 1–6, 2016.

[14] M. Junghanns et al. Gradoop: Scalable graph data
management and analytics with hadoop. arXiv
preprint arXiv:1506.00548, 2015.

[15] M. Kaufmann et al. Timeline index: a unified data
structure for processing queries on temporal data in
sap hana. In SIGMOD, pages 1173–1184. ACM, 2013.

[16] N. Kline and R. T. Snodgrass. Computing temporal
aggregates. In ICDE, pages 222–231. IEEE, 1995.

[17] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a PC. In OSDI
2012, pages 31–46, 2012.

[18] C. Liu, F. Wang, J. Hu, and H. Xiong. Temporal
phenotyping from longitudinal electronic health
records: A graph based framework. In ACM SIGKDD
2015, pages 705–714. ACM, 2015.

[19] Y. Low et al. Distributed graphlab: A framework for
machine learning in the cloud. PVLDB, 5(8):716–727,
2012.

[20] G. Malewicz et al. Pregel: a system for large-scale
graph processing. In SIGMOD, pages 135–146, 2010.

[21] V. Nicosia et al. Graph metrics for temporal networks.
In Temporal networks, pages 15–40. Springer, 2013.

[22] M. Shapiro et al. Conflict-free replicated data types.
In Stabilization, Safety, and Security of Distributed
Systems, pages 386–400. Springer, 2011.

[23] R. T. Snodgrass, S. Gomez, and L. E. McKenzie.
Aggregates in the temporal query language tquel.
IEEE Transactions on Knowledge and Data
Engineering, 5(5):826–842, 1993.

[24] J. Tang et al. Applications of temporal graph metrics
to real-world networks. In Temporal Networks, pages
135–159. Springer, 2013.

[25] K. Tangwongsan, M. Hirzel, and S. Schneider.
Optimal and general out-of-order sliding-window
aggregation. Proceedings of the VLDB Endowment,
12(10):1167–1180, 2019.

[26] J. Wainer and S. Sandri. Fuzzy temporal/categorical
information in diagnosis. Journal of Intelligent
Information Systems, 13(1-2):9–26, 1999.

[27] D. Zhang et al. Efficient computation of temporal
aggregates with range predicates. In PODS 2001,
pages 237–245, 2001.


