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Abstract
AI algorithms increasingly make decisions that im-
pact entire groups of humans. Since humans tend
to hold varying and even conflicting preferences,
AI algorithms responsible for making decisions
on behalf of such groups encounter the problem
of preference aggregation: combining inconsis-
tent and sometimes contradictory individual pref-
erences into a representative aggregate. In this pa-
per, we address this problem in a real-world public
health context: kidney exchange. The algorithms
that allocate kidneys from living donors to patients
needing transplants in kidney exchange matching
markets should prioritize patients in a way that
aligns with the values of the community they serve,
but allocation preferences vary widely across in-
dividuals. In this paper, we propose, implement
and evaluate a methodology for prioritizing pa-
tients based on such heterogeneous moral prefer-
ences. Instead of selecting a single static set of
patient weights, we learn a distribution over pref-
erence functions based on human subject responses
to allocation dilemmas, then sample from this dis-
tribution to dynamically determine patient weights
during matching. We find that this methodology in-
creases the average rank of matched patients in the
sampled preference ordering, indicating better sat-
isfaction of group preferences. We hope that this
work will suggest a roadmap for future automated
moral decision making on behalf of heterogeneous
groups.

1 Introduction
As AI algorithms become increasingly powerful and more
widely deployed, it is vital that they act in a way that aligns
with human values. Unfortunately, in most real-world do-
mains, people do not unanimously agree on a single set of
“human values” that AI algorithms can model and instanti-
ate. Instead, groups of humans tend to hold varying and even
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conflicting moral preferences, and AI algorithms responsible
for making decisions on behalf of these heterogeneous groups
must aggregate and arbitrate between these preferences.

Many existing approaches to preference aggregation for AI
rely on determining a single representative objective or deci-
sion for the AI to implement [Lee et al., 2018; Zhang and
Conitzer, 2019; Conitzer et al., 2015]. However, humans
are known for their variable and contradictory preferences,
meaning that many individuals will hold preferences that dif-
fer greatly from the mean. Better techniques are required
to model such heterogeneous human preferences, implement
them in AI algorithms, and measure their satisfaction in prac-
tice.

One domain in which this is particularly apparent is that
of kidney exchange. In a kidney exchange, patients who
need kidney transplants and have found willing but medi-
cally incompatible donors are matched and exchange kidneys
with other such incompatible patient-donor pairs [Roth et al.,
2004]. Many countries, including the United States [Dicker-
son and Sandholm, 2015], the United Kingdom [Manlove and
O’Malley, 2015] and much of Europe [Biró et al., 2017] use
algorithms developed in the AI community to automate this
matching. Since the prognosis for patients who do not receive
kidney transplants is quite poor, these automated decisions
have life-or-death consequences and great moral import. It
is therefore vital that these allocation decisions are made in
a way that aligns with societal values. Previous work has
sought to learn a single static utility function that kidney allo-
cation algorithms can use to prioritize certain types of match-
ing [Freedman et al., 2020]. However, that work disregards
the empirical heterogeneity in human ethical judgements in
this domain. We seek to instead model this heterogeneity by
developing a methodology that represents the full distribution
of human judgements.

In this work, we draw on preference aggregation and social
welfare theory to design, implement and evaluate a methodol-
ogy for autonomously allocating kidneys to patients in match-
ing markets based on the heterogeneous moral preferences
expressed by surveyed human participants. We propose an
alternate model for aggregating preferences drawn from the
economics literature and an alternate domain-specific mea-
sure of group welfare based on individual preference rank-
ings. We show that our proposed model, which aggregates in-
dividual preferences into a distribution over utility functions



Figure 1: Example compatibility graph. Donor and patient blood
types are in parentheses and arrows indicate possible valid dona-
tions. This graph has two valid donation cycles: cA = {v1, v2}
and cB = {v2, v3}. However, both contain v2, so only one set of
donations can take place.

instead of a single function, improves the average rank of
the matched kidney donations in individuals’ preference or-
derings, without reducing the number of patients that can be
matched overall. Incorporating the model into this real-world
AI system leads to more beneficial outcomes according to our
proposed measure of social welfare.

We hope that this work will both highlight the preference
aggregation challenges present in many allocative AI sys-
tems, and serve as a roadmap for developing systems that
directly address these challenges in other real-world contexts.

2 Kidney Exchanges
2.1 Graph Formulation
In a kidney exchange, patients who need a kidney transplant
and donors who are willing to donate to them but are med-
ically incompatible can be matched with other such patient-
donor pairs [Roth et al., 2004]. For example, if the donor of
pair i is compatible with the patient of pair j, and the donor
of pair j is likewise compatible with the patient of pair i, they
can form a matching, in which donor di donates to patient pj
and donor dj donates to patient pi.

In the standard formulation, a kidney exchange is described
by a compatibility graph G = 〈V,E〉 [Roth et al., 2004;
Roth et al., 2005]. We construct one vertex v for each patient-
donor pair, then add a directed edge ei,j from vi to vj if di
is compatible with pj . A cycle c is a possible sequence of
valid transplants, in which each donor in the cycle donates
a kidney and each patient receives one. A matching M is
a set of disjoint cycles. An example compatibility graph is
shown in Figure 1. Each oval in the figure represents a vertex,
and each arrow represents a directed edge signifying donor-
patient compatibility. There are two cycles in this particu-
lar compatibility graph: cA = {v1, v2} and cB = {v2, v3}.
However, these two cycles are not disjoint, because they share
vertex v2. The v2 donor cannot donate both of their kidneys,
so these exchanges cannot both take place. This compatibil-
ity graph therefore has two valid matchings, MA = {cA} and
MB = {cB}, each with cardinality 2.

2.2 Clearing Algorithm
The clearing house problem in kidney exchange is to find
the optimal valid matching, according to some utility func-
tion [Abraham et al., 2007]. Finding valid matchings with a
finite limit on cycle lengths is NP-hard [Abraham et al., 2007]

Profile Age Drinking Cancer

1 30 rare healthy

2 30 frequently healthy

3 30 rare cancer

4 30 frequently cancer

5 70 rare healthy

6 70 frequently healthy

7 70 rare cancer

8 70 frequently cancer

Table 1: Patient profile descriptions enumerated and (arbitrarily)
numbered by Freedman et al.

and difficult to approximate [Biro and Cechlarova, 2007], so
this problem is typically solved by formulating it as a lin-
ear program (LP) and solving it with an LP-solver such as
CPLEX.

We typically assign a weight we to each edge e to rep-
resent the utility of that particular donation taking place.
In the national US exchange, these weights are set ad-hoc
by a committee [UNOS, 2015], but in this work we will
adapt an alternative method that learns these weights based
on human responses to allocation dilemmas [Freedman et
al., 2020]. The clearing house problem is to find the op-
timal matching M∗ which maximizes some utility function
u : M → R. This is typically formalized as the graph-
theoretic problem of finding the maximum weighted cycle
cover u(M) =

∑
c∈M

∑
e∈c we. To solve this via linear pro-

gramming, let C(L) be the set of all cycles of length no more
than L, let wc =

∑
c∈C(L) we, create an activation variable

xc ∈ 0, 1 for each cycle c ∈ C(L), then solve the following
linear program:

max
∑

c∈C(L)

wc xc s.t .
∑
c:v∈c

xc ≤ 1 ∀v ∈ V. (1)

using an LP-solver such as CPLEX. The final matching M
is the set of cycles c with an activation xc = 1. If all edge
weights we are equal, then solving this LP gives a maximum-
cardinality matching. In cases where there are multiple valid
matchings of equivalent cardinality, such as MA and MB in
Figure 1, this LP-solver must choose between them randomly.
However, if the edge weights are set according to some util-
ity function, then the solution can prioritize certain types of
matches. This allows us to incorporate societal preferences.

2.3 Incorporating Preferences
Previous work has attempted to improve the matching priori-
tization in kidney exchanges based on sampled human ethical
preferences [Freedman et al., 2020]. All else equal, it is ob-
viously morally preferable to save lives by matching as many
patient-donor pairs as possible. However, in cases such as the



one in Figure 1, there can be multiple maximum-cardinality
matchings. In this case, the algorithm requires a utility func-
tion that distinguishes between them, ideally in a way that
aligns with human values. The US national kidney exchange
attempts to do this, but they prioritize matches in an opaque
and ad-hoc fashion via committee [UNOS, 2015]. This ex-
cludes most of the societal members who will actually par-
ticipate in the exchange from the discussion, and leaves the
committee with the still-unsolved problem of designing a util-
ity function that captures the ethical preferences of an entire
society. Freedman et al. propose an alternative methodology
for learning domain-relevant ethical preferences from actual
human decisions in kidney allocation dilemmas, revising the
LP in Eq 1 to take these into account, and then evaluating the
impact on a simulated exchange. Our work proposes an im-
provement on Freedman et al.’s methodology for aggregating
preferences and evaluating results, so we will briefly outline
their full methodology here.

Freedman et al. conducted two surveys on participants
from Amazon’s Mechanical Turk platform (“MTurk”). The
first survey asked participants (N = 100) to read a brief
description of the kidney transplant waiting list process, and
then asked them to propose which patient characteristics they
thought “morally ought” to be used to prioritize patients.
The three most popular categories of responses were “age”,
“health – behavioral” (including aspects of health believed
to be under personal control, such as diet and drinking), and
“health – general” (including aspects of health unrelated to
kidney disease). The second survey asked a new set of par-
ticipants (N = 289) to decide how to allocate kidneys be-
tween pairs of fictional patient “profiles” that vary according
to these attributes. In order to make the profiles more con-
crete, drinking behavior (“1 alcoholic drink per month” or “5
alcoholic drinks per day”) was used as a proxy for behav-
ioral health, and cancer (“skin cancer in remission” or “no
other major health problems”) was used as a proxy for general
health. For example, a sample question asked participants to
choose between “Patient W.A. [who] is 30 years old, had 1 al-
coholic drink per month (prior to diagnosis), and has no other
major health problems” and “Patient R.F. [who] is 70 years
old, had 5 alcoholic drinks per day (prior to diagnosis), and
has skin cancer in remission”. They defined 8 such patient
profiles, with characteristics described in Table 1, and asked
each participant to compare each pair of profiles. We will use
these profile descriptions and this preference data in our own
work.

Freedman et al. used the Bradley-Terry Model (“BT
Model”) to estimate a “BT-score” for each patient profile.
The BT model assumes that each profile x has an underly-
ing score px that represents the value that survey participants
collectively place on donating to a patient with that profile.
Under this model, the probability that profile i will be pre-
ferred to profile j is:

P (i > j) =
pi

pi + pj
(2)

Patient profiles that are almost always selected by our survey
participants (such as profile 1 in Table 1) will therefore have
the highest scores, and profiles that are rarely selected (such

as profile 8), will therefore have the lowest scores. Freedman
et al. use this model to estimate a single set of scores based
on the pooled pairwise comparisons from every survey re-
spondent. This allows them to aggregate all preferences into
a single set of scores.

They then revised the LP from Eq 1, setting the weight
of each edge ei,j to be the BT-score of the recipient pj and
adding a cardinality constraint to require that the LP still
only produce maximum-cardinality matchings. Let wBT (v)

be the BT-score of the patient in vertex v, and let Q be the
maximum matching cardinality possible for the compatibility
graph. Then the revised LP is:

max
∑
c∈C(L)

[∑
(u,v)∈c wBT (v)

]
xc

s.t.
∑
c:v∈c xc ≤ 1 ∀v ∈ V∑
c∈C(L) |c|xc ≥ Q

(3)

They evaluated this revised algorithm on a simulated kid-
ney exchange and found that it matched significantly more
of the higher-scoring profiles and significantly fewer of the
lower-scoring ones. However, this methodology relies on the
assumption that societal preferences are sufficiently homoge-
neous to be captured by a single static utility function. An
algorithm using this methodology will always choose to save
a patient of profile 1 over a patient of profile 2. However,
the preferences expressed in the survey data actually varied
greatly, and participants did sometimes prefer patients of pro-
file 2 to profile 1. Presumably the preferences of a representa-
tive sample of the actual US population would be even more
heterogeneous. In this sense, both the static profile scoring
and the assessment of the algorithm by the proportion of each
profile matched are flawed. In this work, we improve upon
both of these elements by removing the requirement for a sin-
gle utility function and developing an alternate methodology
for modifying and evaluating the algorithm.

3 Incorporating Heterogeneous Preferences
In our work we improve upon the methodology presented in
Section 2.3 by removing the unrealistic assumption that soci-
etal preferences can be captured by a single utility function.
We propose 1) an alternative preference aggregation method
that better captures the variation in expressed preferences, 2)
modifications to the kidney allocation algorithm to take this
new preference aggregation into account, and 3) an alterna-
tive evaluation metric for the resulting matchings that lends
more consideration to individual welfare.

3.1 Preference Aggregation Model: BLP
Instead of learning a single score for each profile as in
previous work [Freedman et al., 2020], we use the Berry-
Levinsohn-Pakes Model (“BLP Model”) to estimate a distri-
bution over possible utility functions. We propose that learn-
ing and sampling from this distribution better satisfies in-
dividual preferences than learning a single utility function.
The BLP model is an extension of the logit discrete choice
model that is widely used in estimating consumer discrete-
choice demand for differentiated products [Berry et al., 1995;
Nevo, 2001]. When we apply this model to kidney exchange,



the “consumers” are members of the population that the ex-
change serves, and the “products” are the patients who may
potentially be matched with donors. Using this model allows
us to predict how the general population wants the exchange
to prioritize patients.

For a graph G = 〈V,E〉, we wish to define a utility func-
tion U : V → R that determines the utility of the pa-
tient in each vertex receiving a utility function. The BLP
model defines the utility function U(v) = X>p(v)β + ε where
Xp(v) = {1(vage = 30),1(vdrinking = rare),1(vcancer =
healthy)} are the binary features of the patient profile of ver-
tex v, β ∼ N (µ,Σ) gives the weight of each feature, and ε is
an error term following a type-II extreme value distribution.

We use maximum likelihood estimation to fit the distribu-
tion parameters (µ,Σ) to the pairwise comparison survey data
gathered by Freedman et al. Let P be the set of all patient
profiles described in Table 1, and for each pair of profiles
i, j ∈ P , let ck(i, j) be survey respondent k’s preferred pro-
file. This allows us to define the likelihood function

Lk(µ,Σ | ck) = Eβ∼N (µ,Σ)

∏
i,j

exp(X>ck(i,j)β)

exp(X>i β) + exp(X>j β)


(4)

and to estimate the maximum likelihood distribution parame-
ters

µ̂, Σ̂ = argmax
µ,Σ

1

N

N∑
k=1

log(Lk(µ,Σ | ck)) (5)

3.2 Algorithm
Each time a new patient-donor pair enters the exchange, we
add a corresponding vertex u to the graph, randomly sample
a βu ∼ N (µ̂, Σ̂) from the learned distribution, and weight
outgoing edges u → v using the resulting “BLP function”:
BLP (u, v) = X>p(v)βu + εuv . In this way, we represent the
full distribution of preferences. Note that the BLP function
indicates a random sample from the surveyed population’s
preference distribution – it does not represent the preferences
of donor u specifically. Letting wBLP (u,v) be the score that
vertex u’s sampled BLP function places on donating to the
patient in vertex v, we modify the LP in Eq 3 to be:

max
∑
c∈C(L)

[∑
(u,v)∈c wBLP (u,v)

]
xc

s.t.
∑
c:v∈c xc ≤ 1 ∀v ∈ V∑
c∈C(L) |c|xc ≥ Q

(6)

3.3 Evaluation Metric
We further define the rank of a donation u→ v to be the po-
sition of v’s patient profile in the preference ordering induced
by u’s BLP function. For example, if the BLP function asso-
ciated with vertex uweights the profile of the patient in vertex
v above all other profiles, rank(u, v) = 1. Conversely, if the
BLP function weights the profile below the other seven pos-
sible patient profiles, rank(u, v) = 8. In this context, rank

functions as a proxy for individual welfare because it repre-
sents the extent to which an individual’s domain-relevant val-
ues were fulfilled. We claim that the average rank of matched
donations is a better measure of the extent to which an algo-
rithm values individual welfare than the proportion of each
profile matched because the ranks of all matches depend on
the full BLP distribution. In contrast, the proportion matched
measure relies on the false assumption that everyone’s pref-
erences are better satisfied if patients with higher BT-scores
are matched more often.

We run both algorithms on a simulated kidney exchange,
along with a third algorithm that weights all donations equally
as a baseline. We evaluate the resulting matchings both on the
proportion of each profile matched, and on our proposed aver-
age rank measure. We find that our proposed algorithm con-
sistently outperforms both others on the rank measure, sug-
gesting that it better represents the full distribution of societal
preferences.

4 Experiments
4.1 Conditions
We tested three versions of the matching algorithm: the base-
line one that weights all donations equally, the one with a
single utility function described in Section 2.3, and one with
a distribution over utility functions proposed in Section 3.1.
Condition 1: EQUAL The EQUAL algorithm matches kid-
ney exchange participants using the LP in Eq 1. That is,
it weights all participants equally and chooses randomly
amongst the highest-cardinality matchings. We use this con-
dition as a baseline because it describes the case in which
ethical preferences are not incorporated into the algorithm at
all.
Condition 2: HOMOGENEOUS The HOMOGENEOUS algo-
rithm matches participants using the LP in Eq 3. It assigns
edge weights based on the BT-score of the recipient, relying
on the assumption that individual preferences are sufficiently
homogeneous to be captured by a single static utility function.
This is the algorithm proposed by Freedman et al.. See Ta-
ble 2 for the weights used in the EQUAL and HOMOGENEOUS
conditions.
Condition 3: HETEROGENEOUS The HETEROGENEOUS
algorithm matches participants using the LP in Eq 6. It sam-
ples a BLP function when each vertex is added to the graph,
normalizes the scores produced by that function to the range
[0, 1], and uses that function and the profile of the recipient
to weight each new outgoing edge. This allows for the pos-
sibility that heterogeneous individual preferences are better
captured by a distribution than by a single utility function.
This is the novel algorithm that we propose in this work.

4.2 Measures
We evaluate each algorithm according to both the measure we
propose in Section 3 and the measure used by Freedman et al.
Average Rank The average rank of a matching is the aver-
age rank of each donation in the matching, where rank(u, v)
of a donation u → v is as defined in Section 3.3. Recall
that lower ranks indicate higher preference satisfaction and,



Profile ID EQUAL HOMOGENEOUS

1 1.000 1.000

2 1.000 0.103

3 1.000 0.236

4 1.000 0.036

5 1.000 0.070

6 1.000 0.012

7 1.000 0.024

8 1.000 0.003

Table 2: Patient profile weights for the EQUAL and HOMOGENEOUS
experimental conditions. The EQUAL algorithm values all profiles
equally, so all have weight 1.0. However, the HOMOGENEOUS
algorithm weights profiles according to their BT-scores. The
HETEROGENEOUS algorithm samples BLP functions throughout
matching and so does not have a static weight for each profile.

since there are 8 profiles, all possible ranks fall in the range
[1.0, 8.0]. For each run of each algorithm, we recorded the av-
erage rank of every matching in the simulation, then averaged
these to get the average rank value for that algorithm.

Proportion Matched The proportion matched of a profile
is the proportion of patients of that type that entered the kid-
ney exchange pool and were subsequently matched. A pro-
portion matched of 100% means that all patients of that type
were matched, and a proportion matched of 0% means that
none were. For each run of each algorithm, we recorded the
number of patients with each profile that entered the pool and
the number of patients of each profile that were eventually
matched, and used this to calculate proportion matched.

4.3 Experimental Setup
We built a simulator1 to mimic daily matching using the
EQUAL, HOMOGENEOUS, or HETEROGENEOUS algorithms
based on previously developed tools [Dickerson and Sand-
holm, 2015; Freedman et al., 2020]. Each simulated “day”,
some pairs enter the pool, some pairs exit the pool, and then
the matching algorithm is run on the pairs that remain. The
unmatched pairs remain in the pool to potentially be matched
in the future. For each algorithm, we executed 50 runs of 5
years of simulated daily matching, and recorded the average
matching rank and profile proportions matched for each run.

5 Results
Average Rank Since lower donation ranks indicate that
the recipient is higher in the sampled preference ordering,
we propose that algorithms that induce lower average ranks
better satisfy population preferences. As expected, the pro-
posed HETEROGENEOUS algorithm consistently produces
matchings with the lowest average rank (Figure 2). The

1All code for this paper can be found in the Variation pack-
age of github.com/RachelFreedman/KidneyExchange

Figure 2: Average rank of donations in each simulated run
(N = 50). Lower ranks indicate more-preferred matches. The
HETEROGENEOUS algorithm produces the lowest average ranks
(median = 3.24), followed by the HOMOGENEOUS algorithm (me-
dian = 3.66), then the EQUAL algorithm (median = 4.06).

HOMOGENEOUS algorithm produces the next-lowest aver-
age rank, followed by the EQUAL algorithm, which produces
the highest average rank. This is because the EQUAL algo-
rithm weights all edges equally, matching recipients without
any consideration of the personal characteristics used to de-
fine their weight. The HOMOGENEOUS algorithm improves
upon this by considering the characteristics of donation re-
cipients, but fails to approximate preferences as closely as
HETEROGENEOUS.

Proportion Matched Freedman et al. quantified the im-
pact of their modified algorithm by comparing the propor-
tions of patients of each profile type matched by their al-
gorithm against the proportions matched by the unmodified
algorithm, so for the sake of comparison we do the same.
The proportions of each profile matched by the EQUAL al-
gorithm, the HOMOGENEOUS algorithm (proposed by Freed-
man et al.) and the HETEROGENEOUS algorithm (proposed
in this work) are shown in Figure 3.

Since it doesn’t take patient profiles into account, the
EQUAL algorithm matched approximately the same percent-
age of patients across all profiles. Since it prioritizes pa-
tients solely based on profile, the HOMOGENEOUS algorithm
matched the more popular profiles (1-3) more often and the
less popular profiles (4-8) less. Notably, the HOMOGENEOUS
algorithm almost always matches patients of profile 1, indi-
cating that a patient’s profile can be one of the major factors
in determining whether they receive a kidney. However, the
HETEROGENEOUS algorithm prioritizes patients not directly
based on their profile, but based on the sampled BLP func-
tion’s valuation of their profile. As a result, this algorithm
still tends to match more of the commonly-preferred profiles
and fewer of the commonly-dispreferred ones, but sometimes
samples a BLP function from the tails of the distribution that
prioritizes patient profiles very differently.



Figure 3: Proportion of patients of each profile matched in each sim-
ulated run (N = 50). All algorithms match approximately 62%
of patients overall, but the HOMOGENEOUS algorithm dispropor-
tionately matches profiles with higher BT-scores, the EQUAL algo-
rithm matches all profiles approximately equally, and the propor-
tions matched by the HETEROGENEOUS algorithm lie between the
other two.

If the survey preferences had been completely homoge-
neous, then the HETEROGENEOUS algorithm would have
produced the same results as the HOMOGENEOUS algo-
rithm. However, because preferences expressed in the sur-
vey data sometimes differ from the utility function used for
the HOMOGENEOUS algorithm, sometimes different matches
are made. For example, while most survey participants pre-
ferred patient profile 1 to all other profiles, some did not, so
the HETEROGENEOUS algorithm respects this heterogeneity
by sometimes prioritizing matching other profiles over profile
1. This difference in matching is a further indication that our
proposed algorithm more faithfully represents the full distri-
bution over preferences.

6 Discussion
Faithfully instantiating the collective values of groups with
heterogeneous individual preferences is a frequent challenge
for real-world AI systems. For example, we commonly
use AI systems to allocate scarce resources – such as kid-
ney donors, food donations [Lee et al., 2018] and interview
slots [Schumann et al., 2019] – amongst group members in
a way that we hope maximizes group welfare. Moreover,
our roads may soon be populated with autonomous vehicles,
which will have to make moral tradeoffs – such determin-
ing who to sacrifice in unavoidable collisions [Bonnefon et
al., 2016] – based on the complex and often contradictory
moral frameworks of the communities in which they operate.
It is therefore vital that the AI community develop techniques
for faithfully aggregating such heterogeneous preferences and
use them to develop socially beneficial AI systems.

In this paper, we proposed, instantiated, and evaluated one
such technique for incorporating heterogeneous ethical pref-
erences into a specific real-world AI system: an algorithm
for matching patient-donor pairs in kidney exchange. Instead

of weighting all potential kidney recipients equally, deciding
how to prioritize them in an opaque and ad-hoc way [UNOS,
2015], or prioritizing them based on a single static utility
function [Freedman et al., 2020], we proposed learning a dis-
tribution over surveyed preferences and then sampling from
this distribution for dynamic weighting during matching. We
furthermore proposed donation rank as a better measure of
preference satisfaction. We implemented our proposed algo-
rithm and compare it to predecessor algorithms on a kidney
exchange simulation, finding that our algorithm better satis-
fies survey participant preferences.

Our model was estimated based on preference data elicited
from MTurk survey participants, who are assuredly not rep-
resentative of society in general. Future work should elicit
preferences from a more representative sample, and perhaps
privilege preferences expressed by domain experts and stake-
holders such as doctors, policy-makers and kidney exchange
participants. However, we believe that our sample was not
more heterogeneous than the US population as a whole, so
we expect the challenge of heterogeneity and our method-
ology to continue to be relevant for this expanded sample.
Moreover, since even a representative sample of the general
public would still lack relevant domain-specific knowledge
about kidney transplants, future work should also investigate
methodologies that allow domain experts to correct or mod-
erate the outcomes of this process.

We hope that the challenges highlighted and methodology
prototyped in this work will suggest a roadmap for develop-
ing techniques for automating moral decision making in other
domains.
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