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Abstract The problem of optimal behavior of an investor in high-developed op-

tion markets is studied. On a basis of a specific investor's risk-preferences func-

tion, the continuous VaR-criterion (CC-VaR) as a continuous generalization of 

well-known common VaR-criterion is introduced. This criterion suggests the 

investor to construct a portfolio that ensures maximizing the average income 

and satisfying continuous set of restrictions on income from bottom. In fact, the 

investor specifies in advance the distribution function and finds the portfolio, 

which generates random income that satisfies all these restriction. Newman-

Pearson procedure as the essence of methods that construct optimal on CC-VaR 

portfolios is given and their properties in relation to CC-VaR problems are stud-

ied. The theoretical δ-market and the theoretical option market as its equivalent 

are being investigated. As usual, the investor has own forecast on probability 

properties of future behavior of option underlier. The optimal portfolio in theo-

retical one-period option market with the given prices picture is constructed. 

The method is illustrated by an example with two-sided exponential probability 

distributions. 

Keywords: continuous VaR-criterion (CC-VAR), Newman-Pearson procedure, 

optimal portfolio. 

1 Introduction 

Any instrument (portfolio) that an investor acquires in the option market generates 

some random income. The type of randomness forecasts the investor himself. The 

result of investment is estimated thru the average yield (or income) and risk – the first 

has to be maximized, and the second is measured usually by the variation or so-called 

VaR-criterion. In markets with restricted choice of instruments this can suffice. How-

ever in markets with broad toolkits, one can construct portfolios from common calls 

and puts that generate random income as the function of arbitrary future underlier’s 

price. In this case usual measures of risk can be non-adequate [1-3]). 

So, the application of VaR-criterion in the problem of maximizing the average in-

come produces an income that is no more than critical income level of criterion (usu-

ally less than investment amount) with the probability near the one (at the dense lat-

tice of strikes). This result hardly suits the rational investor. Also, using the variation, 

as in the theory of Markowitz [1], leads to significant impoverishment of the space of 
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the optimum choice. The theory is founded on probability properties of the second 

order and hence don’t admit to allow some nuance of distributions as, e.g., their heavy 

tails, which needs allowing for probability properties if only of fourth order such as 

kurtosis.  

So we arrive at an idea of using continuous VaR-criterion (CC-VaR), when the 

priority for the investor is to solve market problems with fulfilling continuous set of 

restrictions, which provides the distribution function of incomes given by the investor 

in advance. Formally, we introduce the CC-VaR as follows.  

The risk interests of an investor are described by monotone increasing and non-

negative risk-preferences function (r.p.f.) ϕ(ε), ε[0, 1]. As a rule, we assume that 

ϕ(1) < ∞, and even ϕ(1) = 1. As a typical example, we can consider the function 

ϕ(ε) = ελ, ε[0, 1], λ > 0. The more the value of , the more the investor is ready to 

risk for increasing the average yield [4-7]. The investor must fulfill a handsome sys-

tem of inequalities. CC-VaR denotes a set of requirements P{q ≥ ϕ(ε)} ≥ 1 − ε jointly 

for all ε[0, 1], which have to be fulfilled for the random income q generated by the 

investor's portfolio; here P{M} is the probability of the set M from the point of view 

of the investor. We adopt that the income is non-negative because of mechanism of 

margin calls that operates in option markets.  

Questions about forming the forecast of the investor remain beyond our considera-

tion. The forecast probability distribution of the future underlier’s price as well as 

investor’s risk preferences are subjects of the responsibility of the investor and are set 

in the model from outside. And optimization algorithm has to work with arbitrary 

forecast and risk-preferences functions.  

It is easy to conceive that a portfolio of, for instance, butterflies, which generates 

the income rather well approximating arbitrary (non-negative) function of future un-

derlier’s price, can be constructed in this market. It is sure that in this case butterflies 

with mutually rather nearby arranged strikes can be needed.  

These considerations lead us to the construction of theoretical market where so 

called δ-instruments that are marginal instruments for the set of all butterflies form a 

basis, from which we can receive arbitrary portfolios. The offered construction can be 

conceived also as marginal for generalized roulette whose positions correspond to 

future prices of underlier, and probabilities of stopping form arbitrary distributions. 

2 Continuous δ-market and instruments 

For simplicity and elucidating peculiarities of the offered criterion, ideal theoretical 

one-period option market generated by some underlier X, e.g. a stock, is considered. 

We call the market theoretical because strikes of options can be arbitrary real num-

bers, and ideal because all bid-offer spreads and all commissions are equal to zero, 

and then all instruments can be traded in any quantities (even though fractional). At 

the beginning of the period, the underlier's price is known and equal, say, to μ0, but 

this value is for our purposes inessential. At the end of period, this price is the variate 

Χ, that takes on values x from a continuous set X+ (or even ),  is the set of all 

real numbers, + is that of all positive numbers. The value x is the income from X at 
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the end of period, too. Investor elaborates own forecast for the future price of underli-

er in the form of forecast probability density p(x), xX.  

In the market, the arbitrary instrument generating income g(x), xX, which is a 

non-negative measurable function, can be traded. We call the function g(x) the payoff 

of instrument and write g(x) = π(x; G); in particular, π(x; X) = x. Prices of instruments 

are formed by the market towards the beginning of period. We denote |G| the price of 

G, and ||G|| its average income.  

We consider so-called δ-instruments D(s), sX, as options of special kind, and s is 

its strike. The income of the instrument D(s) is singular and defined as δ-function 

δ(x − s), s, xX, which is equal to zero if x ≠ s and infinity if x = s, with integral with-

in X in x equal to the one. The price and the average income of D(s) are equal, respec-

tively, to c(s) and p(s), sX.  

In terms of δ-instruments, we can describe practically any continuous-in-s portfoli-

os:  

( ) ( ) ( )( )g s s ds g= =G D X
X

.  (1) 

Therefore we can consider a collection of δ-instruments {D(s), sX} as a basis of 

the market, and we call it δ-market. These instruments can be considered as marginal 

for such instruments of real markets as simplest common butterflies properly normal-

ized. The price and the average income of δ-instruments D(s) are, respectively, 

( ) ( )s c s=D ,     ( ) ( )s p s=D ,   sX. 

Non-negative function c(x), xX, has to be produced by the market. Also, 

( ) ( ) ( ) ( )g s s ds g s c s ds= = G D
X X

,    ( ) ( ) ( ) ( )g s s ds g s p s ds= = G D
X X

. 

In theoretical markets, such instruments as indicators of sets play significant role. 

The payoff of the indicator H{М} of the set МX is its characteristic function: 

π(x; H{М}) ≡ χM(x) ≡ {1, xM; 0, xM}. There is among indicators also the riskless 

asset of unit size U = H{X}. We have the representations 

  ( )
M

M s ds= H D ,       ( )s ds= = U H D
X

X , 

( ) 1c x dx r= =U
X

,    ( ) 1p x dx= =U
X

. 

The parameter r denotes the riskless return relative for period, and r − 1 is then the 

riskless yield. Without loss of generality we can set r ≡ 1 and consider the price func-

tion c(x), xX, as probability density. We call it the cost density. Usual calls Cs and 

puts Ps of strikes sX are given, respectively, by relations 

( ) ( )
 s x s

x s x dx


= −C D ,    ( ) ( )
 s x s

s x x dx


= −P D ,   x, s  X. 

By analogy, representations of other known option instruments such as spreads, 

butterflies, condors et cetera can be given. 

The methods of constructing optimal portfolios expounded further have to consider 

divergences between densities c(∙) and p(∙) (or measures C{∙} and P{∙}). The special 

significance is therefore attached to the function of return relative ρ(x) = p(x)/c(x),  

xX. Functions of such type are considered in the theory of mathematical statistics; 

they are called likelihood functions and are at the heart of the so-called Newman-

Pearson procedure [8].  



4 

In the market under consideration, we can state investment problems differently. 

Some most important settings are as follows:  

Problem CO (original). Given investment amount and r.p.f. of the investor ϕ(ε), the 

portfolio that achieves max Eq (E is the symbol of the expectation) under condition 

P{q  ϕ(ε)}  1 − ε for all ε[0, 1] is searched out.  

Problem CB (basic). Investment amount is not given, and ϕ(ε) is investor's r.p.f.. 

The regular portfolio that achieves min A under condition P{q  ϕ(ε)}  1 − ε for all 

ε[0, 1] is searched out. 

Problem CH (homogenious). Given investment amount S (> 0) and r.p.f. in the 

form bϕ(ε), where b is a scale parameter, the regular portfolio and the value of param-

eter b that achieve max Eq under condition P{q  ϕ(ε)}  1 − ε for all ε[0, 1] is 

searched out. Parameter b is defined from equality S = bA.  

Emphasize that for original problem CO, singular solutions are inherent. The prob-

lem CB, on the contrary, straight requires constructing the regular portfolio, but with 

minimum investment amount, and hence is a base for solving many other problems. 

The problem CH is an important example of applying problem CB to solving prob-

lem CO in case of r.p.f. that is homogeneous in scale of investment.  

3 Fundamental theoretical results  

As we have said above, the problem CB is of special interest. And all subsequent 

constructions just aim at solving this problem. If we already know its solution then the 

solution, particularly, of the problem CO  is derived if we add to the investment 

amount received for the problem CB all the rest from given original amount invest-

ment, which investor directs to acquiring D(s*) where s* is an element on X that 

achieves the maximum of ρ(s). And we receive a singular solution. But this is just the 

reason why we have refused using VaR-criterion in favor of CC-VaR.  

So we suggest that reasonable approach is in adequate setting the problem. For ex-

ample, the problem CH is may be adequate just in fully homogeneous case. And prob-

lem CO can be transformed into adequate one if investor choices the r.p.f. in a form 

ϕ(b; ε), where b is a scale parameter, and find its value to nullify the singular compo-

nent of portfolio.  

At the heart of solving problem CB is the Newman-Pearson procedure, which is 

broadly used in mathematical statistics [8].  

Newman-Pearson procedure. The set family Z = {Z(τ), τ0} is constructed by the 

rule: xZ(τ) if and only if ρ(x)  τ, where ρ(x) is defined above and τ ≥ 0. The function 

fP(τ) = P{Z(τ)}, τ[τ′, τ″], τ′ = minxρ(x), τ″ = maxxρ(x), is introduced. The family Z 

non-decreases in τ, hence fP(τ) is a non-decreasing function. Moreover, 0  fP(τ)  1 

and fP() = 1. For each ε[0, 1], the set XεZ is defined from condition P{Xε} = ε. 

The function introduced just ascertains a connection between τ and ε:  ε = fP(τ) (also 

τ = fP
←(ε)). Additionally, the function fC(τ) = C{Z(τ)}, τ[τ′, τ″], is introduced. Func-

tions fP(τ), fC(τ), τ[τ′, τ″], γ(ε), ε[0, 1], are called forecast function, cost function, 

dissonant, respectively. For regular pair (C{∙}, P{∙}), the set Xε exists for each 
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ε[0, 1] and is unique, and the price γ(ε) = C{Xε} is maximized among all C{Y}, 

P{Y} = ε, YX.  

The next assertions can also be proved:  

• The functions fP(τ) and fC(τ) are distribution functions of ρ(Χ) for measures P{∙} 

and C{∙}, respectively, where Χ is the random future price of the underlier.  

• The dissonant γ(ε), ε[0, 1], is the concave function, and is equal to the superpo-

sition of functions fC(τ) and fP
←(ε).  

• The ordering function w(x)  defined by equivalence rule  

( ) ( )( )( ) ( )limw x x x X X   
  

= =   = −fP ,  ε[0, 1],  xX. 

• The variate w(Χ) is uniform distributed over the interval [0, 1], and does not de-

pend on ϕ(ε).  

• The distribution function of the random income q = g(Χ) = ϕ(w(Χ)), is equal to 

the function ϕ←(z), z[ϕ(0), ϕ(1)), and the identity P{q ≥ ϕ(ε)} ≡ 1 − ε holds for all 

ε[0, 1].  

We submit the method connected with the discretization of the problem and the 

passage to the limit continuous scheme. In discrete case, the discretization parameter 

n and levels εi, γi, ϕi, iI = {1, 2, …, n}, of continuous parameters ε, γ, ϕ are given. 

Applying the Newman-Pearson procedure is readily seen to give the next representa-

tions of the optimal portfolio at b = 1 and its characteristic: 
( ) ( )  11 i

nn

i ii
X  −=

= − −G H X ,  

( ) ( )( ) ( )1 1 0 01 1
1 , 0, 0

n nn

i i i i i ii i
A        − −= =

= − − = − = =  ,  

( ) ( )( ) ( )1 1 0 01 1
1 , 0, 0

n nn

i i i i i ii i
R        − −= =

= − − = − = =  ,  

  1i iq    −P   for all iI.  

By replacing differences in these formulae by differentials in ε, γ and ϕ, and sums 

by integrals, we obtain in continuous case 

( )( ) ( ) ( ) ( )
1 1

0 0
1A d d       = − =  ,    ( ) ( ) ( )

1 1

0 0
1R d d     = − =  . 

The next assertion can be proved: 

Theorem 1. The family of sets Z = {Xε, ε[0, 1]} constructed by the Newman-

Pearson procedure achieves the minimum of the investment amount A.  

Theorem 2. The average income R and the investment amount A for the optimal 

theoretical portfolio at b = 1 are defined by formulae  

( )
1

0
R d  =  ,    ( ) ( ) ( ) ( )

1 1

0 0
A d d        = =  . 

4 The illustrative examples  

The second Laplace distribution (also called two-sided exponential distribution), 

which we denote Exp(μ, α), has the density 

( )1
2

exp ,x x


 − −  , 

with expectation EΧ = μ, variation DΧ = 2α2 and kurtosis equal to 6 (excess = 3). 

Let's set p(x) ~ Exp(μ, α), c(x) ~ Exp(μ, β) и β ≠ α. We may set μ = 0.  So 
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( ) ( )1
2

exp
x

p x
 

= − ,    ( ) ( )1
2

exp
x

c x
 

= − ,    ( ) ( )expx x
  

 


−
= ,  x . 

Let's set κ = α/β. If κ < 1 the function ρ(x) increases at x < 0, decreases at x > 0, and 

at x = 0 is maximized; the investor «sells volatility». If κ > 1 the ρ(x) decreases at 

x < 0, increases at x > 0, and at x = 0 is minimized; the investor «buys volatility». We 

set ϕ(ε) = ελ, ε[0, 1], λ > 0. 

Volatility selling. At κ < 1 the investor supposes the market to be less volatile than 

option prices speak about it. Algorithm generates the next symmetric contractions  

( ) ( ) ( ) lnZ x x
 

  
  

−
=  = ,     X x x x =  ,  

( ) 0x x x     − = = =  , ( ) ( ) ( )x x x      = = = , 

  ( ) ( )12 expx

x x
X p x dx e dx x

 


   

 − −= = = − = P ,  

lnx  = −   is (1 − ε/2)-quantile of distribution Exp(0, α),  

   , ,x x x x    
  = = −  is the set of all (here, two) limit points of Xε. 

The ordering function with two symmetric branches, the weight function and the 

dissonant with its derivative have views  

( )  1,2 , lnu x x x     = =  = ,  

( ) ( ) ( )  ( )1 2, 0; , 0 expw x u x x u x x x  =   = − ,  

( ) ( )( ) ( ) ( ) 2, ,
x x x

g x w x e g x e g x e
  

  
− − −

 = = = = ,  

( )   1

ln

xX e dx 
  

   
− −

−
= = =C ,    ( ) 1   − = .  

The main characteristics of investment  

( ) ( ) ( )
1 1

0
A d       

−
= == + ,    ( ) ( )

1 1

0
1R d   

−
= = + ,    ( )

( )

1

1
0y

 

 

−

+
=  .  

The optimal portfolios both in put-spreads and call-spreads and both in puts and 

calls themselves are given by mixed representations, respectively, 

( ) ( )( )0

0

x xe d x e d x  
 −

−
= − + G U P C ,  

( ) ( )( ) ( ) ( )
02 2

0
0 0 x xe x dx e x dx   

 −

−
= − + + + G U P C P C . 

The payoffs of these portfolios are defined uniquely by parameter θ. Hence the less 

α and the greater λ the more acute is the peak of the function g(x) at x = 0 and the 

greater is the yield y. We can consider this portfolio as some continuous expansion of 

the long butterfly, which realizes in real markets the same volatility selling.  

Volatility buying. At κ > 1 the investor supposes the market to be more volatile 

than option prices speak about it. The analogical computations in this case give se-

quentially  

( ) ( ) ( ) lnZ x x
 

  
  

−
=  = ,     X x x x =  , 

( )x x x     − = = = ,    ( ) ( ) ( )x x x      = = = , 
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  ( ) ( )1

0 0
2 1 exp

x x xX p x dx e dx x
  

   − −= = = − − = P , 

( )ln 1x  = − −  – (1 + ε)/2-quantile of distribution Exp(0, α), 

   , ,x x x x    
  = = −   is the set of all limit points of Xε. 

The ordering function with two symmetric branches, the weight function and the 

dissonant with its derivative have views  

( )   ( )1,2 , ln 1u x x x     = =  = − , 

( ) ( ) ( )  ( )1 2, 0; , 0 1 expw x u x x u x x x  =   = − − , 

( ) ( )( ) ( )( )1 expg x w x x


 = = − − ,  

( ) ( )
1

1
x x

g x e e


 


−
− −

 =  − ,    ( ) 10 0, ,g  −  =     at  1, 1, 1  =  , 

( ) ( ) ( )2

2

2
11

x x x
g x e e e


  



−
− − −

 = − − , 

( )  
( )

( )
ln 11

0
1 1xX e dx

  
   

− −− −= = = − −C ,    ( ) ( )
1

1


   
−

 = − . 

The main characteristics of investment  

( ) ( ) ( ) ( )

( )

1 1 1

10
A d

  

  
    

 +  +

 + +
= = ,    ( ) ( )

1 1

0
1R d   

−
= = + ,  

( )

( ) ( )

1

1 2
1 1 0y R A

  

  

 + +

 +  +
= − = −  ,    ( ) 1

0

xx e dx
 − − =  . 

The optimal portfolio both in put-spreads and call-spreads is given by mixed repre-

sentation  

( ) ( ) ( ) ( )
0

0
g x d x g x d x



−
 = − G P C . 

The character of the optimal portfolio in puts and calls themselves depends on the 

parameter λ, and corresponds to the behavior of the function g(x) near zero. We have 

at λ > 1, λ = 1, λ < 1, respectively,  

( ) ( ) ( ) ( )
0

0
g x x dx g x x dx



−
 = + G P C , 

( ) ( )( ) ( ) ( )2 2

01 1 1

0
0 0

x x
e x dx e x dx

 

  

− −

−
= + − − G P C P C , 

( ) ( ) ( )( ) ( ) ( ) ( )( )
0

0
0 0g x x dx g x x dx



−
 = − + − G P P C C . 

These portfolios are some continuous expansions of the short butterflies or condors 

in dependency on the value of λ, which realize in real markets the same volatility 

buying. At λ < 1 the function g(x) has at x = 0 the singularity of the type "spike", and 

the less λ, the more the instrument looks like the riskless asset. At λ = 1 the function 

g(x) has at x = 0 a fracture and reminds the payoff of the short butterfly. At λ > 1 the 

function g(x) at x = 0 is smooth with g′(0) = 0, and reminds the payoff of the condor; 

here qualitative analogy with the real markets can be readily traced, too.  
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5 Conclusion  

The consideration of illustrative examples demonstrates the rationality of the optimi-

zation problem setting with the continuous VaR-criterion and efficiency of theoretical 

algorithm. However, very few problems can be solved by such analytical way. Hence 

the method of the solution has to be expanded on discrete models, which could be 

considered as approximation to the continuous ones. All the more so that it is better to 

interpret real markets as discrete. Indeed, they are such in many aspects. So, to more 

adequate formalize the optimization problems, we ought to introduce the so called 

scenario markets (see, e.g., [6, 9]). 
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