
Modeling of NonFunctional Characteristics of the

Software for Selection of Accurate Scope of Information

for Their Evaluation

Tetiana Hovorushchenko
1[0000-0002-7942-1857]

, Olga Pavlova
2[0000-0003-2905-0215]

and Artem Boyarchuk
3[0000-0001-7349-1371]

1, 2 Khmelnytskyi National University, Institutska str., 11, Khmelnytskyi, Ukraine
3 National Aerospace University "Kharkiv Aviation Institute", Chkalova str., 17, Kharkiv, Ukraine

1
tat_yana@ukr.net

2 olya1607pavlova@gmail.com
3 a.boyarchuk@csn.khai.edu

Abstract. The article proposed set-theoretic models of nonfunctional characteris-

tics of software used to systematize information on nonfunctional characteristics

and bring it to the common (unified) form in accordance with ISO 25010:2011,

ISO 25023:2016. In addition, basic and real ontological models of nonfunctional

characteristics of software are developed based on ISO 25010:2011 and ISO

25023:2016 standards. These models provide the basis for choosing the sufficient

information to evaluate nonfunctional characteristics of software.

Keywords: Software, Software Project, Software Requirements Specification

(SRS), NonFunctional Software Characteristics, Ontology.

1 Introduction

Now mankind is often requiring the software for solving the difficult problems and

the high-value software projects are rapidly developed. Therefore, software errors

threaten with disasters that lead to human and environmental casualties, disasters,

losses of time and finances. Most software failures were due to errors in the require-

ments specification [1]. So, the success of the software project’s implementation (both

the timely implementation of the software project within the allocated budget and the

implementation of all necessary features and functions [2]) essentially depends on the

early life cycle stages, therefore, the urgent task is automation of evaluating the level

of early life cycle stages based on the specifications’ analysis (assessing the sufficien-

cy of specification’s information as a key factor of the software projects’ success [3]),

and special attention should be focused on the nonfunctional characteristics–

components of quality of software (according to ISO 25010 [4] these nonfunctional

characteristics are: Reliability, Performance Efficiency, Functional Suitability, Com-

patibility, Maintainability, Portability, Usability, Security).

The evaluation of nonfunctional characteristics-components of quality of software

according to ISO 25010 standard [4] is carried out as follows: based on the attributes

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0)
2019 DCSMart Workshop.

mailto:tat_yana@ukr.net
mailto:olya1607pavlova@gmail.com

specified in ISO 25023 [5], subcharacteristics are evaluated, which in turn assess the

nonfunctional characteristics. Then, with sufficient information for the nonfunctional

characteristics in the specification, we will understand the presence in the require-

ments of all elements (attributes) necessary to determine the nonfunctional

characteristics. The analysis of ISO 25010 [4], ISO 25023 [5] standards made it

possible to conclude that there are attributes on which more than one nonfunctional

characteristic depends, that is, there is a correlation of nonfunctional characteristics

according to certain attributes (so according to ISO 25023 [5] subcharacteristics of

nonfunctional characteristics depends on 203 attributes, but only from 138 various

attributes). The relationships (correlations) between characteristics and

subcharacteristics on attributes influences on the significance of such attributes [6]. If

the attributes that are part of several nonfunctional characteristics are absent (there is

a lack of information), the simultaneous use of these attributes will significantly affect

the reliability of the estimates of nonfunctional characteristics-components of quality

of the software. In such case, it is important to mitigate the influence of the mutual

correlation of nonfunctional characteristics on attributes. Such mitigation is done by

identifying common attributes and ensuring their availability. Thus, it was found that

information about nonfunctional characteristics is conveniently presented as

ontologies [7], which allow to reveal the causal relationships between concepts and to

identify missing attributes, their influence on one or more nonfunctional

characteristics, and also the correlation of nonfunctional characteristics for attributes.

For this, we use the ontologies, which systemate the subject industry, holistic

represent the subject industry, identificate gaps in knowledge, visualize missing

logical connections, provide basis for intellectual agents [8-10].

In order to solve the problem of assessing the adequacy of the volume of

information for determining the nonfunctional characteristics in the specifications of

the requirements, it’s necessary the basic (universal) ontology for software quality

domain based on ISO 25010 [4], ISO 25023 [5], the components of which will be

ontologies for each of the nonfunctional characteristics-components of quality of

software. Basic ontologies will display the required information (attributes) that

should be available in the specification of software requirements to ensure that its

information about nonfunctional characteristics is sufficient. During developing the

specific software, in addition to the basic ontologies, it is necessary to have the

ontology of this software, which will reflect the requirements in the specifications for

the specific software attributes necessary for determining the nonfunctional

characteristics. Comparison of developed ontology of the specific software with basic

ontologies allows to identify the deficiency (Fig. 1 [3]) or sufficiency (Fig. 2 [3]) of

information about nonfunctional characteristics in the specification of requirements

for the specific software.

Base ontology

Ontology for

concrete

software

Base ontology

Ontology for

concrete

software

Fig. 1. Two cases of deficiency of requirements’ information

Base ontology

Ontology for

concrete

software

=

Ontology for concrete

software

Base ontology

Fig. 2. Two cases of sufficiency of requirements’ information

Criterion of the sufficiency of requirements’ information was developed in [3]. Let

SAMI is the set of missing measures:

 SAMI = Base ontology \ (Base ontology Ontology for concrete software). (1)

Then:

 if SAMI =, then requirements’ information is sufficient;

 if SAMI ≠, then information in the SRS is insufficient, and the SRS requires the

complement by attributes of nonfunctional characteristics.

In order to determine the structure and filling of the basic (universal) ontologies of

software quality domain, set-theoretical and ontological models for nonfunctional

characteristics are needed, which is the objective of this study.

2 Models of NonFunctional Characteristics-Software Quality

Components

Models of nonfunctional characteristics-components of quality of software contain

information about nonfunctional characteristics, their subcharacteristics and attributes,

taken from the standards [4, 5]. Since nonfunctional characteristics models are used to

systematize information about nonfunctional characteristics and bring it to the com-

mon (unified) view in accordance with standards, then it is expedient to develop such

models in the set-theoretical form.

According to the ISO 25010: 2011 standard, such nonfunctional characteristics as

Functional Suitability (Fs), Performance Efficiency (Pe), Usability (Ub), Reliability (Rb),

Compatibility (Cb), Security (Scr), Maintainability (Mb), Portability (Pb) are functions of

several subcharacteristics, then we represent each of the above-mentioned nonfunctional

characteristics as a function of the subcharacteristic [7]:

 F_S = f1 (F_Com, F_Cor, F_Appr), (2)

where F_Com – Functional Completeness, F_Cor – Functional Correctness, F_Appr –

Functional Appropriateness;

 P_E = f2 (T_B, R_U, Cc), (3)

where T_B – Time Behaviour, R_U – Resource Utilization, Cc – Capacity;

 Ub = f3 (A_R, Lb, Ob, U_E_P, U_I_A, Ab), (4)

where A_R – Appropriateness Recognisability, Lb – Learnability, Ob – Operability,

U_E_P – User Error Protection, U_I_A – User Interface Aesthethics, Ab – Accessibility;

 Rb = f4 (Mat, Avb, F_T, Rcv), (5)

where Mat – Maturity, Avb – Availability, F_T – Fault Tolerance, Rcv – Recoverability;

 Cb = f5 (C_E, Ib), (6)

where C_E – CoExistence, Ib – Interoperability;

 Scr = f6 (Conf, Int, N_R, Acb, Auth), (7)

where Conf – Confidentiality, Int – Integrity, N_R – Non Repudiation, Acb –

Accountability, Auth – Authenticity;

 Mb = f7 (Mod, Rub, Anb, Mdfb, Tsb), (8)

where Mod – Modularity, Rub – Reusability, Anb – Analysability, Mdfb –

Modifability, Tsb – Testability;

 Pb = f8 (Adb, Inb, Rpb), (9)

where Adb – Adaptability, Inb – Installability, Rpb – Replaceability.

Then the sets of the subcharacteristics of nonfunctional characteristics have a

form:

A = {F_Com, F_Cor, F_Appr} – the set of the subcharacteristics of Functional Suita-

bility;

B = {T_B, R_U, Cc} – the set of the subcharacteristics of Performance Efficiency;

C = {A_R, Lb, Ob, U_E_P, U_I_A, Ab} – the set of the subcharacteristics of Us-

ability,

D = {Mat, Avb, F_T, Rcv} – the set of the subcharacteristics of Reliability;

E = {C_E, Ib} – the set of the subcharacteristics of Compatibility;

F = {Conf, Int, N_R, Acb, Auth} – the set of the subcharacteristics of Security;

G = {Mod, Rub, Anb, Mdfb, Tsb} – the set of the subcharacteristics of Maintainability;

H = {Adb, Inb, Rpb} – the set of the subcharacteristics of Portability.

At the same time, each subcharacteristic of nonfunctional characteristics is a func-

tion of certain attributes described in ISO 25023. Depending on the subcharacteristics

from the attributes is represented as follows:

 F_Com = φ1 (N_o_F, F_I_Cn, F_Aq, F_I_C), (10)

where N_o_F – Number of Functions, F_I_Cn – Functional Implementation Complete-

ness, F_Aq – Functional Adequacy, F_I_C – Functional Implementation Coverage;

 F_Cor = φ2 (O_T, N_I_C, N_D_I, C_A, Pc), (11)

where O_T – Operation Time, N_I_C – Number of Inaccurate Computations Encoun-

tered by Users, N_D_I – Number of Data Items, C_A – Computational Accuracy, Pc –

Precision;

 F_Appr = φ3 (O_T, N_o_F, F_I_Cn, F_Aq, F_I_C, Pc), (12)

 T_B = φ4 (O_T, Nm_o_T, R_T, N_o_E, Tn_T, Tsk_T, M_A_Thr), (13)

where Nm_o_T – Number of Tasks, R_T – Response Time, N_o_E – Number of

Evaluations, Tn_T – Turnaround Time, Tsk_T – Task Time, M_A_Thr – Mean

Amount of Throughput;

 R_U = φ5 (O_T, N_o_Fl, N_o_E, N_IO_R_E, U_W_T, N_M_R_E, N_T_R_E,

 T_Cc, IO_U, N_o_L_C_D, IO_L_L, M_M_U, M_T_U, M_O_T_E), (14)

where N_o_Fl – Number of Failures, N_IO_R_E – Number of IO Related Errors,

U_W_T – User Waiting Time of IO Device Utilization, N_M_R_E – Number of

Memory Related Errors, N_T_R_E – Number of Transmission Related Error, T_Cc –

Transmission Capacity, IO_U – IO Utilization (Number Of Buffers), N_o_L_C_D –

Number of Line of Code Directly, IO_L_L – IO Loading Limits, M_M_U –

Maximum Memory Utilization, M_T_U – Maximum Transmission Utilizaton,

M_O_T_E – Mean Occurrence of Transmission Error;

 Cc = φ6 (N_D_I, N_C_U, C_Bw, M_A_Thr, S_Db), (15)

where N_C_U – Number of Concurrent Users, C_Bw – Communication Bandwidth,

S_Db – Size of Database;

 A_R = φ7 (N_o_F, N_o_Tt, N_IO_D_I, Cn_D, F_Ua, Ua_IO), (16)

where N_o_Tt – Number of Tutorials, N_IO_D_I – Number of IO Data Items, Cn_D

– Completeness of Description, F_Ua – Function Understandability, Ua_IO –

Understandable Input and Output;

Lb = φ8 (N_o_F, O_T, E_F_L, Nm_o_T, H_Fq, E_U_D_H_S, H_Aa,

 C_U_D_H), (17)

where E_F_L – Ease of Function Learning, H_Fq – Help Frequency, E_U_D_H_S –

Effectiveness of the User Documentation and / or Help System, H_Aa – Help

Accessibility, C_U_D_H – Completeness of User Documentation and / or Help

Facility;

 Ob = φ9 (N_o_F, O_T, E_Cr, N_S_F, N_U_E_C, N_A_C, N_IO_R_E, N_Op,

 N_I_W_C_C_V_D, N_M_I, N_I_E, Ph_A, N_E_U_M), (18)

where E_Cr – Error Correction, N_S_F – Number of Screens or Forms, N_U_E_C –

Number of User Errors or Changes, N_A_C – Number of Attempts to Customize,

N_Op – Number of Operations, N_I_W_C_C_V_D – Number of Items which Could

Check for Valid Data, N_M_I – Number of Messages Implemented, N_I_E – Number

of Interface Elements, Ph_A – Physical Accessibility, N_E_U_M – Number of Easily

Understood Messages;

U_E_P = φ10 (N_U_R_S, N_U_E_C, O_T_P_D_O, N_O_U_H_E_O,

N_I_E_W_U_S_C, N_A_C_I_E, N_E_C_W_U_S_C, T_N_E_C_T, N_F_I_U_E_T,

 T_N_F_R_T_C, T_N_I_O_P), (19)

where N_U_R_S – Number of Unsuccessfully Recovered Situation, O_T_P_D_O –

Operation Time Period During Observation, N_O_U_H_E_O – Number of

Occurrences of User’s Human Error Operation, N_I_E_W_U_S_C – Number of Input

Errors which the User Successfully Corrects, N_A_C_I_E – Number of Attempts to

Correct Input Errors, N_E_C_W_U_S_C – Number of Error Conditions which the

User Successfully Corrects, T_N_E_C_T – Total Number of Error Conditions Tested,

N_F_I_U_E_T – Number of Functions Implemented with User Error Tolerance,

T_N_F_R_T_C – Total Number of Functions Requiring the Tolerance Capability,

T_N_I_O_P – Total Number of Incorrect Operation Patterns;

 U_I_A = φ11 (N_I_E, N_I_G_E, D_I_P_U, D_I_S_U, D_E_A, D_R_W_M_U), (20)

where N_I_G_E – Number of Interface Graphical Elements, D_I_P_U – Degree of

Increase the Pleasure of User, D_I_S_U – Degree of Increase the Satisfaction of User,

D_E_A – Degree of Ergonomic Attractiveness, D_R_W_M_U – Degree of Real

World Metaphors Use;

 Ab = φ12 (E_W_S_C_B_U_U_S_D, E_W_U_S_D, F_F_R_U_S_D, S_U_S_D,

 P_P_S_A), (21)

where E_W_S_C_B_U_U_S_D – Extent to which Software Can Be Used by Users

with Specified Disabilities, E_W_U_S_D – Effectiveness of Work of Users with

Specified Disabilities, F_F_R_U_S_D – Freedom from Risk for Users With Specified

Disabilities, S_U_S_D – Satisfaction of Users With Specified Disabilities, P_P_S_A

– Presence of Properties That Support Accessibility;

Mat = φ13 (O_T, N_o_Ft, N_o_Fl, P_S, N_T_C, N_R_F, N_C_F, F_D_A_T_C, F_Rn,

 F_Rl, M_T_B_F, T_My, E_L_F_D, F_Dy), (22)

where N_o_Ft – Number of Faults, P_S – Product Size, N_T_C – Number of Test

Cases, N_R_F – Number of Resolved Failures, N_C_F – Number of Corrected Faults,

F_D_A_T_C – Failure Density Against Test Cases, F_Rn – Failure Resolution, F_Rl

– Fault Removal, M_T_B_F – Mean Time Between Failures, T_My – Test Maturity,

E_L_F_D – Estimated Latent Fault Density, F_Dy – Fault Density;

 Avb = φ14 (O_T, T_T_D_W_S_I_S, N_O_B, T_D_T), (23)

where T_T_D_W_S_I_S – Total Time During which the Software Is in an UpState,

N_O_B – Number of Observed Breakdowns, T_D_T – Total Down Time;

 F_T = φ15 (N_o_Fl, N_T_C, N_Bd, N_o_F, N_I_O), (24)

where N_Bd – Number of Breakdowns, N_I_O – Number of Illegal Operations;

 Rcv = φ16 (O_T, N_Bd, T_t_R, D_T, N_Rs, N_Rn, Ray), (25)

where T_t_R – Time to Repair, D_T – Down Time, N_Rs – Number of Restarts,

N_Rn – Number of Restoration, Ray – Restartability;

 C_E = φ17 (O_T, N_o_Fl, N_o_F, N_D_I), (26)

 Ib = φ18 (O_T, N_D_F_R_T, N_D_F_B_E, N_I_P, D_Eay), (27)

where N_D_F_R_T – Number of Data Formats Regarded by Tool, N_D_F_B_E –

Number of Data Formats to Be Exchanged, N_I_P – Number of Interface Protocols,

D_Eay – Data Exchangeability;

Conf = φ19 (O_T, N_I_O, N_T_C, N_I_D_C, N_D_I, N_A_T, N_C_R, A_Ca,

 N_D_I_C_E_D, N_D_I_B_R_E_D), (28)

where N_I_D_C – Number of Instances of Data Corruption, N_A_T – Number of

Access Types, N_C_R – Number of Controllability Requirements, A_Ca – Access

Controllability, N_D_I_C_E_D – Number of Data Items Correctly Encrypted

Decrypted, N_D_I_B_R_E_D – Number of Data Items to be Required Encryption

Decryption;

 Int = φ20 (O_T, N_I_O, N_T_C, N_I_D_C, N_D_I, N_A_T, N_C_R, A_Ca), (29)

 N_R = φ21 (N_E_P_U_D_S, N_E_R_N_R_P), (30)

where N_E_P_U_D_S – Number of Events Processed Using Digital Signature,

N_E_R_N_R_P – Number of Events Requiring Non-Repudiation Property;

 Acb = φ22 (N_A_S_D_R_S_L, N_A_A_O), (31)

where N_A_S_D_R_S_L – Number of Accesses to System and Data Recorded in the

System Log, N_A_A_O – Number of Accesses Actually Occured;

 Auth = φ23 (N_P_A_M), (32)

where N_P_A_M – Number of Provided Authentification Methods;

 Mod = φ24 (O_T, N_o_Fl, N_R_F, N_M_M, N_V, N_o_F, N_M), (33)

where N_M_M – Number of Modifications Made, N_V – Number of Variables, N_M

– Number of Modules;

 Rub = φ25 (F_Cy, N_F_Cy, V_Rn, Aay, Tay, C_Ra), (34)

where F_Cy – Functional Commonality, N_F_Cy – Non Functional Commonality,

V_Rn – Variability Richness, Aay – Applicability, Tay – Tailorability, C_Ra –

Component Replaceability;

 Anb = φ26 (N_o_Fl, N_D_I, Er_T, N_I_R_B_L, N_D_F_R, A_T_C), (35)

where Er_T – Error Time, N_I_R_B_L – Number of Items Required to Be Logged,

N_D_F_R – Number of Diagnostic Functions Required, A_T_C – Audit Trail

Capability;

Mdfb = φ27 (O_T, N_R_V, N_R_F, Er_T, N_o_F, C_C_Ca, N_T_C_P_B_M,

 N_T_S_P_A_M), (36)

where N_R_V – Number of Revised Versions, C_C_Ca – Change Control Capability,

N_T_C_P_B_M – Number of Troubles within Certain Period Before Modification,

N_T_S_P_A_M – Number of Troubles in Same Period After Modification;

 Tsb = φ28 (O_T, N_T_C, N_R_F, N_B_T_F_R, N_T_D_O_S, N_Cp), (37)

where N_B_T_F_R – Number of Built in Test Functions Required, N_T_D_O_S –

Number of Test Dependencies on Other Systems, N_Cp – Number of Checkpoints;

Adb = φ29 (N_o_F, O_T, N_o_Ft, P_U_F, N_D_I, N_D_S, Aa_D_S, H_E_A, S_E_A,

 N_O_F_T_W_N_C_A, T_N_F_W_T_D_E), (38)

where P_U_F – Porting User Friendliness, N_D_S – Number of Data Structures,

Aa_D_S – Adaptability of Data Structures, H_E_A – Hardware Environmental

Adaptability, S_E_A – Software Environmental Adaptability, N_O_F_T_W_N_C_A

– Number of Operational Functions of which Tasks Were Not Completed or

Adequated, T_N_F_W_T_D_E – Total Number of Functions which Were Tested in

Different Environment;

 Inb = φ30 (N_o_Ft, N_S_O, N_I_S, E_o_I), (39)

where N_S_O – Number of Setup Operations, N_I_S – Number of Installation Steps,

E_o_I – Ease of Installation;

 Rpb = φ31 (N_o_F, N_D_I, N_Et), (40)

where N_Et – Number of Entities.

Then the sets of attributes for subcharacteristics of nonfunctional characteristics–

software quality components have the form:

I = {N_o_F, F_I_Cn, F_Aq, F_I_C} – the set of attributes for Functional Com-

pleteness; J = {O_T, N_I_C, N_D_I, C_A, Pc} – the set of attributes for Functional

Correctness; K={O_T, N_o_F, F_I_Cn, F_Aq, F_I_C, Pc} – the set of attributes for

Functional Appropriateness;

L = {O_T, Nm_o_T, R_T, N_o_E, Tn_T, Tsk_T, M_A_Thr} – the set of attributes

for Time Behaviour; M = {O_T, N_o_Fl, N_o_E, N_IO_R_E, U_W_T, N_M_R_E,

N_T_R_E, T_Cc, IO_U, N_o_L_C_D, IO_L_L, M_M_U, M_T_U, M_O_T_E} – the

set of attributes for Resource Utilization; N = {N_D_I, N_C_U, C_Bw, M_A_Thr,

S_Db} – the set of attributes for Capacity;

O = {N_o_F, N_o_Tt, N_IO_D_I, Cn_D, F_Ua, Ua_IO} – the set of attributes for

Appropriateness Recognisability; P = {N_o_F, O_T, E_F_L, Nm_o_T, H_Fq,

E_U_D_H_S, H_Aa, C_U_D_H} – the set of attributes for Learnability; Q = {N_o_F,

O_T, E_Cr, N_S_F, N_U_E_C, N_A_C, N_IO_R_E, N_Op, N_I_W_C_C_V_D,

N_M_I, N_I_E, Ph_A, N_E_U_M} – the set of attributes for Operability; R =

{N_U_R_S, N_U_E_C, O_T_P_D_O, N_O_U_H_E_O, N_I_E_W_U_S_C,

N_A_C_I_E, N_E_C_W_U_S_C, T_N_E_C_T, N_F_I_U_E_T, T_N_F_R_T_C,

T_N_I_O_P} – the set of attributes for User Error Protection; S = {N_I_E, N_I_G_E,

D_I_P_U, D_I_S_U, D_E_A, D_R_W_M_U} – the set of attributes for User Inter-

face Aesthethics; T = {E_W_S_C_B_U_U_S_D, E_W_U_S_D, F_F_R_U_S_D,

S_U_S_D, P_P_S_A} – the set of attributes for Accessibility;

U = {O_T, N_o_Ft, N_o_Fl, P_S, N_T_C, N_R_F, N_C_F, F_D_A_T_C, F_Rn,

F_Rl, M_T_B_F, T_My, E_L_F_D, F_Dy} – the set of attributes for Maturity; V =

{O_T, T_T_D_W_S_I_S, N_O_B, T_D_T} – the set of attributes for Availability; W

= {N_o_Fl, N_T_C, N_Bd, N_o_F, N_I_O} – the set of attributes for Fault Toler-

ance; X = {O_T, N_Bd, T_t_R, D_T, N_Rs, N_Rn, Ray} – the set of attributes for

Recoverability;

Y = {O_T, N_o_Fl, N_o_F, N_D_I} – the set of attributes for CoExistence; Z =

{O_T, N_D_F_R_T, N_D_F_B_E, N_I_P, D_Eay} – the set of attributes for Interop-

erability;

AA = {O_T, N_I_O, N_T_C, N_I_D_C, N_D_I, N_A_T, N_C_R, A_Ca,

N_D_I_C_E_D, N_D_I_B_R_E_D} – the set of attributes for Confidentiality; AB =

{O_T, N_I_O, N_T_C, N_I_D_C, N_D_I, N_A_T, N_C_R, A_Ca} – the set of at-

tributes for Integrity; AC = {N_E_P_U_D_S, N_E_R_N_R_P} – the set of attributes

for Non Repudiation; AD = {N_A_S_D_R_S_L, N_A_A_O} – the set of attributes

for Accountability; AE = {N_P_A_M} – the set of attributes for Authenticity;

AF = {O_T, N_o_Fl, N_R_F, N_M_M, N_V, N_o_F, N_M} – the set of attributes

for Modularity; AG = {F_Cy, N_F_Cy, V_Rn, Aay, Tay, C_Ra} – the set of attrib-

utes for Reusability; AH = {N_o_Fl, N_D_I, Er_T, N_I_R_B_L, N_D_F_R, A_T_C}

– the set of attributes for Analysability; AI = {O_T, N_R_V, N_R_F, Er_T, N_o_F,

C_C_Ca, N_T_C_P_B_M, N_T_S_P_A_M} – the set of attributes for Modifability;

AJ = {O_T, N_T_C, N_R_F, N_B_T_F_R, N_T_D_O_S, N_Cp} – the set of attrib-

utes for Testability;

AK = {N_o_F, O_T, N_o_Ft, P_U_F, N_D_I, N_D_S, Aa_D_S, H_E_A, S_E_A,

N_O_F_T_W_N_C_A, T_N_F_W_T_D_E} – the set of attributes for Adaptability;

AL = {N_o_Ft, N_S_O, N_I_S, E_o_I} – the set of attributes for Installability; AM =

{N_o_F, N_D_I, N_Et} – the set of attributes for Replaceability.

Considering the resulting sets of attributes and sub-characteristics of nonfunctional

characteristics, obtained functions of dependencies of characteristics on sub-

characteristics and characteristics on attributes, as well as the relationship between the

concepts of ontology "depends on", we develop basic ontological models of nonfunc-

tional software characteristics (principles of developing basic ontological models are

presented in [7]).

Then, for example, base ontological model of Functional Suitability is:

OFs = {{F_S, A, I, J, K}, “depends on”, {f1, φ1, φ2, φ3}} =

 ={{fsa1,…,fsa19}, “depends on”, {f1, φ1, φ2, φ3}}, (41)

where fsa1 = F_S, {fsa2,…,fsa4} € A, {fsa5,…,fsa8} € I, {fsa9,…,fsa13} € J,

{fsa14,…,fsa19} € K.

Ontologies (ontological knowledge base), which are developed by models (41)

etc., are filled up based on the information taken from ISO 25010 [4], ISO 25023 [5]

standards.

The ontological models of concrete software nonfunctional characteristics have

the form, for example, ontological model of Functional Suitability is:

 OFs_real = {{fsa1,…,fsam}, “depends on”, {f1, φ1, φ2, φ3}}, (42)

where m≤19 – the number of attributes of subcharacteristics of functional suitability,

available in the specification requirements for the specific software, as well as the

number of functional suitability subcharacteristics that can be calculated based on

available attributes.

Ontologies (ontological knowledge bases), which are developed on the models

(42) etc., are filled up based on the information taken from the specification require-

ments for the specific software [3, 7].

Practical case of selection of accurate scope of information for evaluation of the

nonfunctional characteristics is represented at [3, 7].

3 Conclusions

The urgency of the task of automation of evaluating the life cycle initial phases based

on analysis of specifications necessitates the development of software quality models,

in particular, the models of nonfunctional characteristics-software quality

components.

This article proposed set-theoretic models of nonfunctional characteristics of

software used to systematize information on nonfunctional characteristics and bring it

to the common (unified) form according to ISO 25010: 2011, ISO 25023: 2016

standards, as well as basic (universal) ontological models and ontological models of

specific software nonfunctional characteristics, based on the requirements of ISO

25010 and ISO 25023standards. These models are basis for selecting the sufficient

volume of information to evaluate the software nonfunctional characteristics.

The proposed models will become the theoretical basis for the model and method

of activity of the intelligence agent on the basis of the ontological approach for

assessing the specifications of the requirements for software, the operation of which

will be based on the comparison of ontologies. Such the intelligence agent will

compare the ontology of the specific software with basic ontology and determine how

many and which attributes are not sufficient to determine the particular nonfunctional

characteristic, which will make the decision on the adequacy or lack of information on

nonfunctional characteristics in the specification requirements to software.

References

1. McConnell, S.: Code complete. Microsoft Press, Redmond (2013).

2. Hastie, S., Wojewoda, S.: Standish Group 2015 Chaos Report – Q&A with Jennifer Lynch,

http://www.infoq.com/articles/standish-chaos-2015, last accessed 2019/10/29.

3. Hovorushchenko, T., Pomorova, O.: Information technology of evaluating the sufficiency

of information on quality in the software requirements specifications. CEUR-WS. 2104,

555-570 (2018).

4. ISO/IEC 25010:2011. Systems and software engineering. Systems and software Quality

Requirements and Evaluation (SQuaRE). System and software quality models (2011).

5. ISO 25023:2016. Systems and software engineering. Systems and software Quality Requirements

and Evaluation (SQuaRE). Measurement of system and software product quality (2016).

6. Sugiyanto, S., Rochiman, S.: Integration of DEMATEL and ANP methods for calculate the

weight of characteristics software quality based model ISO 9126. In: Proccedings of the 5-th In-

ternational Conference on Information Technology and Electrical Engineering. 143-148 (2013)

7. Hovorushchenko, T.: Information technology for assurance of veracity of quality infor-

mation in the software requirements specification. Advances in Intelligent Systems and

Computing II. 689, 166-185 (2018).

8. Burov, E. Complex ontology management using task models. International Journal of

Knowledge-Based and Intelligent Engineering Systems. Vol 18, no 2, 111-120 (2014).

9. Shostak, I., Butenko, I. Ontology approach to realization of information technology for

normative profile forming at critical software certification. In Herald of the Military Insti-

tute of Kiev National University named after Taras Shevchenko. № 38, 250–253 (2012).

10. Bajnaid, N., Benlamri, R., Pakstas, A., Salekzamankhani, Sh.: An Ontological Approach to

Model Software Quality Assurance Knowledge Domain. Lecture Notes on Software Engi-

neering. 4 (3), 193-198 (2016).

