CEUR-WS.org/Vol-2520/paper2a.pdf

Migrating Learning Management Systems
Towards Microservice Architecture

Pia Niemelg[0000—0002-8673-9089] a1 Heikki Hyyro

Tampere University, Tampere, FINLAND https://www.tuni.fi/en

Abstract. Microservice architecture provides on a set of modular, in-
dependent and fault-tolerant services. In recent years, new architectures
have evolved with an emergence of recurrent, and effective architectural
patterns essential in maintaining and scaling microservice-based systems.
However, in the domain of education there is a lack of open-source,
microservice-based systems that are easily configurable for various teach-
ing, research, and commercial purposes. Preferably, these services should
be orchestratable as part of other education-related service compositions
as well. In this paper, a study of microservice-based learning manage-
ment systems is conducted by focusing on two systems that the authors
are involved in: WETO and Plussa. We report the current status of
these systems through the lens of microservice architecture and draft a
proposal for the synthesis of an ideal, decoupled learning management
system.

Keywords: Learning management system - migration from monolith -
microservice architecture - open data

1 Introduction

Learning environments and Learning Management Systems (LMSs) have been
in focus of active development and research. However, the development is led by
multinational companies whose topmost interest is commercial. The cross bet
between non-profit organizations and commercial actors is far from unseen. In
the domain of scientific publishing, it has led to the situation where some data
is freely available, and some are behind the paywall of commercial journals. This
is an obstacle from the viewpoint of open data: publications on the other side of
the wall will get less reads and references. Research Data Alliance (RDA) works
against these obstacles and promotes openness and reuse of data [32].

In Finland, opening public data sources started approximately in the be-
ginning of the 2010s, which triggered such initiatives as Open Data [15] and
Linked Data [12]: Open Data fosters citizens’ participation by increasing the
transparency of decision-making mechanisms [15], Linked Data fosters the ex-
ploitability of data, by agreeing on meta-data formats in spirit of semantic web
[12]. In consequence, public organizations were called to open up their data and
provide RESTful web service APIs for its retrieval, i.e., so-called microservices.
This call for openness and microservices was promptly responded by National

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0)

2 P.Niemeli et al.

Land Survey of Finland [22] and Open API Project of Helsinki City, the Cap-
ital of Finland. As desired, opening data catalyzed plenty of new business and
services in the SME sector, built on top of this data.

In Finland, education is a public service sustained with tax money, where
the 2019 government programme states: An equal society seeks to provide oppor-
tunities for every citizen to study to their full potential [30]. Thus, educational
resources and opportunity for learning should be as open and as accessible as
possible, and this concerns data gathered during all educational events as well,
including learning analytics data'. Accordingly, the Ministry of Education funds
multiple projects that focus on developing and innovating more accessible learn-
ing environments [21]. These projects include Digital Education For All [33,
DEFA], FITech [7], and Smart Learning Environments [6, Alyoppi].

DEFA provides a shortcut to university studies: participants can just take
individual courses, or compile courses as bigger and meaningful entities, with a
bonus of being accepted as a student, dependent on one’s success. All the studies
are available as MOOCS, enrolling several thousand participants simultaneously.
An example of this is *Elements of Al, a prize-winner MOOC implemented by
University of Helsinki that introduces artificial intelligence theory with practical
exercises. FITech network fills the digital skills gap and prepares ICT profes-
sionals for the industry, the initiative is called FITech ICT. It runs for three
years and the target output is 4000-5000 ICT-savvy individuals. Smart Learn-
ing Environments project develops and expands university-specific e-learning en-
vironments (including automatic validation, visualizations and simulations) for
national inter-university use. As its sub-project, the material converter from La-
TeX to RST, or shortly *LaRST, seeks to find underlying ultimate data format,
where Latex is upvoted by mathematicians, in particular. The original Latex
content can then be printed as a book or converted to on-line course area with
auto-assessed exercises.

In the development of reusable learning materials and flexible infrastructure,
the key to success from the technical point of view are such architectural choices
that maximize flexibility and the independence of services. By the same token,
microservices have trended since 2014 [28] with the motivation of decoupled
services, better maintainability, scalability, DevOps support, zeitgeist (*because
everybody else is doing it), fault tolerance, easy technology experimentation,
and delegation of team and software responsibilities [29]. In migrating towards
microservices, it is first essential to identify the core functionalities and then
divide them as services in an appropriate manner. Thus, this study asks:

— RQ1: Which microservices are the core functionality of an LMS?
— RQ2: How (micro)service-oriented are the LMSs of Tampere University?
— RQ3: What would a more decoupled architecture of LMS look like?

Next, we introduce our research context, the LMSs used more in detail, fol-
lowed by a short explanation of the method used. Next chapter summarizes

! Privacy disclaimer: after anonymization and pseudonymization etc.

Migrating learning management systems towards microservice architecture 3

the currently identified state-of-art solution, as the target state of our LMS de-
velopment. In the Discussions and Conclusions section, we validate our results
and ponder critically different architectural choices made and (false or over-
emphasized) promises attached to them.

2 Method and research context

2.1 Feasibility study

This study follows loosely the method of feasibility study [5]. Essential in the
method is the determination of the viability and benefits of a proposal without
forgetting to evaluate the problems as well. In the Finnish landscape of different
LMSs, the studied systems of Tampere University offering, WETO and Plussa,
provide both plenty of data to analyze as well as lessons learned, thus, are a
representative sample.

2.2 Higher education LMSs evolving towards micro-services

In the evolution from monolithic to microservice architecture, WETO resides in
a more monolithic position than Plussa that can be described largely service-
oriented. In comparison with more traditional service-oriented architecture, mi-
croservice architecture stands out as being more decoupled, its services can
be deployed independently and scaled horizontally with proper load-balancing
mechanisms.

Using microservices each learning service can be developed and deployed
independently, which makes the exploitation of common resources easier. De-
veloped learning materials exemplify such resources, and they should be as ex-
ploitable and open as possible keeping in mind that the funding comes from the
Ministry of Education. The target is that reusable parts of learning materials
and gathered data will be publicly available for all national actors and service
providers mainly in the domain of education and employment services.

2.3 WETO

WETO? is an LMS developed and used at Tampere University since early 2000’s.
Its core features are:

— Basic content management: course pages may be created/edited using a
browser, e.g., images and files may be uploaded and linked to the pages.

— Submission management: pages may upload student submissions (e.g. home-
work or exam answers).

— Grade management: pages may comprise student grades, and grading rules
may be defined hierarchically:

2 An acronym derived from Web Teaching Organizer.

4 P.Niemeli et al.

e E.g. the top-level page could show overall course grades, its “Exercise”-
and “Exam”-sub-pages exercise and exam grades, respectively.
Automated grading: submissions may be graded automatically. WETO has a
built-in support for multi-choice questions; programming tasks can be graded
by an external grader.
— Rights management: pages may define permissions for viewing and uploading
submissions, these permissions may be time- and student-specific.
— Peer-reviewing: submissions may be peer-reviewed anonymously.
— Basic discussion forum: pages may have a forum where teachers and students
can discuss learning-related issues. Students remain anonymous.

WETO is a fairly tradi-
tional Java EE 6 Servlet appli-
cation. A WETO instance needs prImnmeenoeeo s -

i WETO Java EE application

a single PostgreSQL master | Y oo
Authentication U S b
database and one or more Post- ~i Carn
: Material (HTML + files) | |
greSQL course databases. The | Submissions L Graders
. | Basic grading 3 |
master database contains global A Anonymized foum b
. . | ser activity log P
information about users and Master = etc. [| Graderm

database : v
courses. Course databases con- e ;

tain course-specific information P ‘|
Course

such as teachers, enrolled stu-
dents, grades and submissions.
Each course database may host
several courses. In principle, the
WETO instance may be con- Fig. 1. WETO architecture.

nected with one or more het-

erogeneous external automated

graders. A restriction is that each external grader needs to directly manipulate
WETO’s course databases, which implies the need to implement WETO-specific
middleware for any non-WETO-specific grader. The architecture is illustrated
in Fig. 1. Evidently, WETO itself is a monolithic application even though the
mechanism of exploiting external graders might resemble microservices.

Course
i database 1 database n

2.4 Plussa

Plussa is Tampere University’s application of A+ of Aalto. Plussa divides into
two parts: a front that takes care of role-based authentication (students, teachers,
admins), and stores grades, the other part is MOOC grader that runs in the
background invisible to the user and manages courses and provides such built-in
exercise types as multi-choice questions [2]. Teachers interact with the course
area mainly through Git version control system, as illustrated in Fig. 2.

The A+ platform manages user authentication and authorization, stores sub-
missions and grading results (feedback and points), manages course configuration
and setup, provides course monitoring (student progress and statistics) and web
user interfaces for students and teachers. [25].

Migrating learning management systems towards microservice architecture 5

One major design principle -
of Aalto A+ was to provide an @ kubernetes

local cloud instance

easily extendable, service-oriented
architecture that could be en-
hanced with different services, for
example, with new graders for
automated assessment [17]. Tam- e
pere University Plussa has been Tcher'< mmtssgt—(ﬁeue
enhanced with such services as T
Grading Helper [35], and Peer-

review component [11] that both Fig. 2. A+ architecture visualized by the lead
are integrated by using the LTI developer J. Kantojarvi [16]

protocol explained in more detail

in Ch. 2.4.

In addition to LTI services, A+ LMS can be extended with graders. The
graders do not require separate authentication, since a student has already been
authenticated by A+ frontend. If the grader runs in a separate server, such as
in Fig. 3, this is signified in the exercise configuration with the *submit RST
directive and by giving the URL to the exercise. The exercise itself is represented
inside an iframe element (1), and after completion when the student presses
Grade button (2), grading is done and points are returned to A+, which stores
the results (both feedback and points) in its database. In Fig. 3, grading is done
by an external grader. Other options exist, e.g., grading within temporary docker
containers, or submitting exercises to a separate Kubernetes cluster for grading.

Automatic assessment with
graders has been one of the
principal goals when construct- .

exercise and its
grading

MooC,

Jutut

ing A+ . The WOI‘k began Wlth tication/grades,
. . . MOOC der:
a literature review of different % -~

course repository
auto-assessment systems. In the
review, such features as submis-

sion/resubmission, manual as- (1) opens an exercise
. . GET service URL

sessment options, sandboxing,) o “Form_method POST

. o | exercise put in iframe |
distribution and availability of () POST form ™~ =
different LMSs were examined

. . . . gets graded
with the mindset of designing as <o L
decoupled assessment system as
possible [13]. Fig. 3. A Plussa grader running in a separate

server.

Synchronous, asynchronous,
and static analysis e.g. with
Git and SonarQube In their A+ study, Karavirta et al. divide the assess-
ment systems in three categories: synchronous, asynchronous, and static [17];
synchronous meaning assessment during one HTTP transaction, asynchronous
allows later grading with the provided unique submission URL; and static implies

6 P.Niemeli et al.

batch assessment of stored code files (use, e.g., in Rubyrik). Static assessment
covers also Git-based assessment. Students submit new files into their own repos-
itories. In this scenario, the only thing returned to the LMS is the URL of the
Git repository.

The industry partners of Tampere University have listed Git skills to be
an important asset, which is confirmed by Haaranen’s study, which corroborates
their high demand in the software industry, and the emphasis on their importance
in the literature as well [10]. Haaranen was not content with the literature review
only, but also tested Git during a large (ca. 200 students) course and evaluated
the results from both instructor’s and learners’ point of view. The study proved
that Git served well for exercise submissions and course material dissemination.

In the strategy of Tampere University, Git system will be exploited even
further: continuous integration pipeline is set on, unit tests are automatically
run when a submission is pushed to the Gitlab repository and SonarQube static
code analysis is available for a course personnel as well as students for self-
reflection of the quality of their code. Besides auto-testing, the benefit of the
pipeline for continuous integration is that students familiarize themselves with
the DevOps development that is another skill appreciated by employers.

Learning analytics and gamification More recent studies in Aalto has con-
centrated on adding gamified features and learning analytics to the LMS. Gamifi-
cation includes such new features as earning badges [9], where learning outcome,
however, remained controversial in the executed experiments. In addition to sim-
ple built-in exercise types such as multi-choice questions and sending a file, A+
was supplemented with three systems for new exercise types, Acos, Jsvee, and
Kelmu [26]: Acos is an external server for animated exercise types such as Par-
son’s puzzles and drag-and-drop tasks; Jsvee provides *a visual representation of
a notional machine and shows how the program state changes when a program is
executed step-by-step[27]; and Kelmu enables annotated animations. In addition
to external services, more embeddable *active elements are developed [23, 24].

In addition to engaging students with gamified user experience, A+ improves
teachers’ view of the learning process as a whole. Lehtinen et al. note that teach-
ers’ want to monitor the expected progress of their students, improve allocation
of learning material, identify problematic areas in learning material, and improve
interaction with learners [18]. At a minimum, Lehtinen et al. targeted allowing
teachers and researchers to access the data collected during learning events.
Actual learning analytics was available through the service API that provided
information in various formats, and additionally, raw data files were download-
able. Service API was considered beneficial in improving interoperability with
different LMSs, e.g. A+ and Moodle.

In LukioPlussa, new graders for math exercises were added as internal graders
such as MathCheck, Geogebra, and Abitti. The ease of adding new graders
demonstrates that the plug-in architecture of A+ provides effortless extensibility.
In addition, interoperability is ensured by using consistently agreed protocols,
such as proprietary A+ protocol, and widely adopted LTI standard.

Migrating learning management systems towards microservice architecture 7

A+ protocol The A+ grader service protocol is defined in the GitHub in
Grader’s README [1]. The simplified sequence diagram in Fig. 3 represents
roughly the process. Notably, the protocol is not RESTful. Essential informa-
tion is conveyed in HTTP headers, such as status and points. Moreover, unlike
REST protocol defines, Create-Read-Delete-Update operations are supported
only partially, from HTTP methods only GET and POST are supported. When
the exercise is launched, a grader gets the submission URL. The URL can be
exploited for asynchronous grading that happens later.

LTI protocol LTI is a specification developed by the IMS Global Learning
Consortium whose main purpose is to provide a standard way of integrating
learning tools [14]. The IMS Global Learning Consortium is an international,
not-for-profit member organization dedicated to enabling the growth and impact
of learning technology globally. As a protocol, LTI is more restricted than A+
protocol. In the services concerned, LTI is used mainly at the authentication
stage.

The LTI defines a standard way in which LMS can communicate with an
off-platform learning service provider. When the LMS aims at using the service,
it sends a signed POST message with a browser. In signing the request, OAuth
protocol is used, which e.g. enables an application to use e.g. Twitter or Google
for authentication. LTT allows single-sign-on, a student needs to authenticate to
the LMS only — not individually to each service used in a course. Once student
is logged in LMS, external services linked to the platform via LTI will be in-
formed by the platform that the user has already been authenticated. Thus, a
student does not need to register to yet another service. For example, MATLAB
supports LTI, therefore being integrable to Plussa [20]. Other LTI-services done
in Tampere University comprise Grading Helper and Peer-review Platform; they
are integrated using Aalto University’s Django LTI login module [3].

3 LMS with a decoupled microservice architecture

As discussed in Section 1, one of the main goals of the Smart Learning En-
vironments project is to find ways to share university-specific LMS resources
across different universities. Due to the heterogeneity of the systems, and lack
of consensus, convergence towards a single common LMS is unlikely, but with
the setting of a more modest target, the way to advance this objective would be
via migration towards microservice architecture. Highly decoupled and indepen-
dent microservices would lower the threshold of sharing them among universities,
although different universities would still use their own LMSs. Hence, this sec-
tion sketches out a microservice-based LMS oriented towards flexible reuse of its
components.

3.1 The major principles of decoupling

— Page hosting should be minimally restricted. The LMS will be used via a web
browser, hence the requirement is that the course pages can be hosted by any

8 P.Niemeli et al.

type of web server/service, for example, a generic web-content management

system, such as WordPress.

For the sake of simplicity, the authentication method should be common for all

services, preferably with a wide, existing support, e.g.:

e a token-based method: an authentication server provides the LMS frontend
with a token (e.g. JWT) to be included in each request,

e the widely used LTT protocol (see Section 2.4) qualifies as well.

LMS features should be split into independent (micro)services that assume min-

imal mutual knowledge and dependence.

Each service should provide both a web API and a reference implementation of

a frontend component (HTML, JavaScript etc.) for accessing the service. The

API should provide facilities to get a response from the service as plain data

(preferably in JSON).

e Many existing LTI-based services send pre-rendered HTML content to the
service consumer. Qur proposal is more stringent, as we strongly suggest
that each service provides also a data-only type API to enable the migration
towards microservice architecture.

e A reference frontend component could lower the threshold for incorporating
new services. Preferably, the reference implementation only needs tweaking
its context-specific configuration parameters, e.g., application ids and service
URLS, to be embeddable as a new service to an HTML page 3.

Fig. 4 sketches our proposal for a microservice-oriented LMS architecture and
answers to first research question: The main component is the user/rights man-
ager with a centralized responsibility for maintaining information about course
membership roles and more specific user rights. When a user accesses the LMS
through a view provided by the host, the system authenticates the user, if nec-
essary. The authenticated user receives an authorization token that will then
be attached to all LMS service requests. Each service uses the token to verify
the identity of the user and to consult the user/rights manager about the user’s
roles/rights. This solution is similar to the one proposed by Baier and Allen [4].
Alternatively, roles and rights could be attached to the token, but this fairly
common practice may result in invalidated tokens due to outdated rights [4].

Furthermore, the sketch suggests grade management, discussion forums, user
activity logs/analytics, and automatically graded exercises as the core functional-
ities of the LMS. For decoupling, each service should maintain its own database.
In service access, a request typically entails course and user ids that are unique,
which is enforced by the authentication and user/rights managers. The sketch
also depicts nested services: a service itself might employ sub-services; e.g., au-
tomated grading may use separate grader services.

Optimistically, this sketch implies independent services that are capable of
performing their tasks without employing any other services. Inter-service com-
munication would mandate the implementation of e.g. an asynchronous message
queue: a typical solution for service interoperability via HTTP with an inherent
decoupling [31].

3 E.g. assuming that Cross-Origin Resource Sharing etc. have been properly configured
to allow AJAX calls to the services.

Migrating learning management systems towards microservice architecture 9

4 Discussion and Conclusions

This paper reviews the migra-
tion of LMSs from monolithic

towards more microservice-based U Generic HTML host | ------ \
. . i ! ! Grader
architecture. Tampere Univer- | P
. Receive | 1 i i
sity LMSs, WETO and Plussa, roren | Material P |
. . Authentication ~<—> (HTML /files/etc.?) | ' Grders
are taken as starting points, | [Accessesservices | L ™ |
and are then analyzed and S R S
synthesized into one modern RN . N Automated |
microservice-based LMS. Next, | et | ERdie
. ! manager | Token t
the results are summarized as Do |
responses to the research ques- | D] | [; | D |
. . . . | - ' ! User/rights «Right} 7777
tions. RQ1: The core mi- Qe |
croservices of an LMS Au- 3 . I S -
thentication, management of L \ Analytics |
. . | SOVICE <Rights? Database | pigher™ service |
user and course information, ; | | : A
grading, and providing reports | Database | |

L ’ 3 Database !

and analysis.

RQ2: Current microser-
vice provision of Tampere Fig.4. A decoupled microservice architecture.
University LMSs In the con-
tinuum from monolith to mi-
croservice architecture, WETO is more to the left, but taking steps to service-
oriented direction. Plussa mainly waits for an agreed common exercise format
and the anticipated outcome of LARS project, i.e., the Latex to RST converter.
In addition, teachers’ user experience is defective in many respects, leaving a lot
of space for improvement.

RQ3: The decoupled target architecture of LMS In particular, easy
authentication services are of paramount importance. In general, LMS should
provide open, reusable and standard services that can function independently.
Standard solutions are promoted, such as LTT for authentication and grading.
Other standard solutions include: Sharable Content Object Reference Model
(SCORM), a set of specifications for creating and sharing e-learning [34], xAPI
as learning analytics metadata [19], and *Learning analytics interoperability [8].

The benefits of microservice architecture become more apparent when the
target is to co-operate between multiple universities, such as in Smart Learning
Environments project, i.e., when the complexity of a system increases. Then,
micro-architecture may facilitate better coordination, re-usability of resources,
such as learning material, and orchestration of different services represented in
Fig. 4. However, we want to highlight that there are problems ahead and too
much unfounded hype: microservice architecture will provide neither a single
point of failure nor easy logging, and service orchestration is, in fact, quite com-
plex. Cooperation with many players is not supposed to be smooth, e.g., sud-
den and poorly informed changes may cause discontinuities in service provision.
Thus, realization of this vision requires a lot of work, good will, and co-operation.

10

P.Niemeli et al.

References

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

Aalto University: A+ grader service protocols (2016), https://github.com/Aalto-
LeTech/a-plus/blob/master /doc/GRADERS.md

Aalto University: A+ LMS (2018), https://apluslms.github.io/architecture/
Aalto University: Django LTI login (2019), https://github.com/Aalto-
LeTech/django-lti-login

Baier, D., Brock, A.: Authorization is hard! implementing authorization in web
applications and apis (2018), presentation in NDC London 2018. Video available
at https://vimeo.com/254635640 (accessed on 31.10.2019).

Bowen, D.J., Kreuter, M., Spring, B., Cofta-Woerpel, L., Linnan, L., Weiner, D.,
Bakken, S., Kaplan, C.P., Squiers, L., Fabrizio, C., et al.: How we design feasibility
studies. American journal of preventive medicine 36(5), 452-457 (2009)
eOppimiskeskus: Alykkdét oppimisympéaristot ja niiden sisélldntuotanto (AlyOppi)
-hanke (2019)

Finnish Institute of Technology: Upgrade your knowledge and study ICT courses
with FITech! (2019), https://fitech.io/en/upgrade-your-knowledge-and-study-ict-
courses-with-fitech/

Griffiths, D., Hoel, T., Cooper, A.: Learning analytics interoperability: Require-
ments, specifications and adoption. Public Deliverable D 7 (2016)

Haaranen, L., Ihantola, P., Hakulinen, L., Korhonen, A.: How (not) to introduce
badges to online exercises. In: Proceedings of the 45th ACM technical symposium
on Computer science education. pp. 33-38. ACM (2014)

Haaranen, L., Lehtinen, T.: Teaching Git on the side: Version control system as a
course platform. In: Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education. pp. 87-92. ACM (2015)

Heino, P.: Peer-review Platform (2018), https://github.com/piehei/prplatform
Hyvonen, E., Tuominen, J., Alonen, M., Méakeld, E.: Linked Data Finland: A 7-
star model and platform for publishing and re-using linked datasets. In: European
Semantic Web Conference. pp. 226-230. Springer (2014)

Thantola, P., Ahoniemi, T., Karavirta, V., Seppéld, O.: Review of recent systems
for automatic assessment of programming assignments. In: Proceedings of the 10th
Koli calling international conference on computing education research. pp. 86-93.
ACM (2010)

IMS Global Learning Consortium: LTI Message (2019)

Jaakkola, H., Mékinen, T., Eteldaho, A.: Open data: opportunities and challenges.
In: Proceedings of the 15th International Conference on Computer Systems and
Technologies. pp. 25-39. ACM (2014)

Kantojarvi, J.: Architecture of A+ LMS (2018),
https://apluslms.github.io/architecture/presentation/ /step-4

Karavirta, V., Thantola, P., Koskinen, T.: Service-oriented approach to improve
interoperability of e-learning systems. In: 2013 IEEE 13th International Conference
on Advanced Learning Technologies. pp. 341-345. IEEE (2013)

Lehtinen, T., et al.: Bootstrapping learning analytics case: Aalto online learning
(2017)

Lim, K.C.: Using xAPI and learning analytics in education. In: Elearning Forum
Asia. pp. 13-15 (2016)

MathWorks: MATLAB Grader (2019), https://se.mathworks.com/products/matlab-
grader.html

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Migrating learning management systems towards microservice architecture 11

Ministry of Education: The Key Projects (2019), https://www.aalto.fi/en/aalto-
university /the-key-projects-funded-by-the-ministry-of-education-and-culture
National Land Survey of Finland: Maps and Spatial Data (2019)

Piitulainen, R.: A+ Active Element (2017), https://apluslms.github.io/events/2017-
1st-a-plus-con/active_element.pdf

Piitulainen, R.: A+ RST tools (2017), https://version.aalto.fi/gitlab/piitulrl /aplus-
rst-tools-ae

Riekkinen, M., et al.: Integrating Stratum and A+ functionalities in Moodle: Ar-
chitecture and evaluation (2017)

Sirkid, T., Haaranen, L.: Improving online learning activity interoperability with
ACOS server. Software: Practice and Experience 47(11), 1657-1676 (2017)
Sirkid, T., Sorva, J.: How do students use program visualizations within an inter-
active ebook? In: Proceedings of the eleventh annual International Conference on
International Computing Education Research. pp. 179-188. ACM (2015)

Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of mi-
croservices: A systematic grey literature review. Journal of Systems and Software
146, 215-232 (2018)

Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating
to microservices architectures: An empirical investigation. IEEE Cloud Computing
4(5), 22-32 (2017)

The Government of Finland: Programme of Prime Minister Antti Rinne’s Govern-
ment: INCLUSIVE AND COMPETENT FINLAND - a socially, economically and
ecologically sustainable society (2019)

de la Torre, C., Wagner, B., Rousos, M.: .NET Microservices: Architec-
ture for Containerized .NET Applications. Microsoft Corporation (2018),
https://aka.ms/microservicesebook.

Treloar, A.: The Research Data Alliance: globally co-ordinated action against bar-
riers to data publishing and sharing. Learned Publishing 27(5), S9-S13 (2014)
University of Helsinki: Digital Education for All (2019),
https://www.helsinki.fi/fi/projektit/digital-education-for-all

Vossen, G., Westerkamp, P.: Towards the next generation of e-learning standards:
SCORM for service-oriented environments. In: Sixth IEEE International Confer-
ence on Advanced Learning Technologies (ICALT’06). pp. 1031-1035. IEEE (2006)
Vikevé, E.: Grading Helper (2018), https://github.com/eliisav/gradinghelper

