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Abstract. A good team functions like a well-oiled machine. Team mem- 

bers train individually and together in order to do well as a team. Realistic 

simulations can offer safe and repeatable environments for teams to 

practice without real-world consequences. However, instructional support 

is often needed to help the team and individuals in case of mistakes and 

impasses and to guide the team on the path to success. In our work, we 

designed a simulated learning environment for teams of autonomous 

agents using PsychSim. The simulation provides a testbed for developing 

tutoring strategies suited for team training and for the skills it aims to 

engender. The simulation implements a “capture-the-flag” scenario, 

where a team of agents (the Blue team) must work to capture the flag 

being defended by an opposing team of agents (Red team). While the 

scenario is simple, the tutoring strategies to be used by a tutoring agent 

can be complex and dynamic. For example, what type of student behavior 

is considered a mistake and what should the tutoring agent instruct the 

student agents to do instead? In this paper, we will discuss the simulation 

experiments we designed to uncover tutoring strategies. 

 

 

Keywords: collaborative learning, team-based training, intelligent agents, social 

simulation 

 

1 Introduction 
 

Individual mastery and mastery as a member of a team are two fundamentally 

critical concepts in teams. The nature of team dynamics necessitates that each 

member be proficient in not only their individual role, but also their ability to 

communicate and adjust to their teammates. In order to achieve this level of 

proficiency at a task, team members must train both individually and as a team. 

Due to the prevalence of team tasks in today’s society, particularly in medical 

care, emergency responses, and the military, team-based training has been 

explored and refined over a long history, particularly with the use of simulations 

(e.g., [10], [18], and [26]). While realistic simulations can offer safe and 

repeatable environments for teams to practice without the real-world 

consequences, they are often not enough to ensure learning without instructional 

support. Providing this support in teams has its unique challenges, such as 

deciding who to target (individual vs. team), 
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communication channel  (private  vs.  public),  and the timing of the feedback 

(immediate vs. delayed). These and other variables can greatly impact how such 

support is received by the team and the efficacy of the feedback [33]. The correct 

decision as to these actions often depends on the team structure (e.g., with 

leadership or leaderless) and what the team is trying to learn (e.g., task-related vs. 

teamwork related, for review, see [7] and [28]), and incorrect decisions can lead to 

feedback being ignored or worse, causing a negative impact on the team’s learning 

[34]. 

A simulation of team training and the influence of instructional feedback on 

team members and a team is desired to mitigate the cost and resources needed for 

testing with human participants. We have developed a testbed containing such a 

simulation where team members are modeled as virtual agents in a collaborative 

learning setting where they can learn from experience to improve team 

performance, as well as interact with a tutor agent. In collaborative learning, there 

is an emphasis on each individual of the team training how to collaborate to improve 

as a whole [28], as opposed to cooperative learning wherein members try to 

maximize learning of other team members. However, our simulation testbed is not 

limited to collaborative learning only. 

Instructional support in team tutoring often can be adapted to the structure     of 

the team being tutored. For example, tutorial feedback for a team with a vertical 

leadership structure is more likely to cater to members based on their level in said 

structure. In horizontally organized teams, the feedback is likely to be designed for 

a group of peers [1]. When a team is actively engaged in learning, team members 

communicate among themselves to discuss best actions, ask each other questions, 

and explain their reasoning. In our simulation testbed, we build upon both 

instruction from a tutor and feedback from peers and their own experience. 

In this paper, we discuss a multiagent simulation testbed for experimentation 

to explore team-tutoring strategies. This testbed forms a foundation for 

developing and testing automated team tutor agents. In the testbed, a team of 

simulated agents attempt to complete a collaborative task with or without a 

tutoring agent. In order for a tutor agent to be of any help to our team, we first 

need to know what it should teach. If we do not know what our team should be 

doing in order to win, then we have no basis for teaching them how to win. 

Thus, the focus of our work will be determining what exactly our tutor should 

teach the team. This paper details our work in the design of the testbed, and our 

work in uncovering what the tutor agent should teach. 

 

2 Related Work 
 

Research on such support in the context of team training is relatively scarce in 

comparison to the growing abundance of research on automatically-generated 

instructional support for individual learning (for review, see [3]). Early research 

in this topic focuses on creating simulation environments that allow teams to 

practice together. One such effort, the Advanced Embedded Training System 

(AETS), is an intelligent tutoring system built for an Air Defense Team 
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on a ship’s Combat Information Center to learn how to utilize the command and 

control system [38]. In AETS, multiple users train as a team while receiving 

assessment and feedback on an individual basis. A human tutor then takes this 

feedback and offers team-based feedback. A similar effort is the Steve agent-based 

training simulation for emergency response on a military vessel [26], where Steve 

agents can serve as a tutor as well as an individual team member. This allows the 

simulation to support a team of any combination of Steve agents and humans to 

train together, learning to complete tasks through communication between team 

members. 

In a more recent example, one team training simulation testbed implements a 

scenario where a team of three completes errands following a shopping list in a 

virtual mall, called the Multiple Errands Test [34]. This testbed was used in a study 

in which privacy (Public vs. Private) and audience (Direct vs. Group) of feedback 

and other such variables showed no influence on team performance. Even more 

recently the Recon testbed, built with the Generalized Intelligent Framework for 

Tutoring (GIFT) [7], was developed to explore the collaborative team task of 

reconnaissance [2]. Once again, this testbed was used by researchers to experiment 

with different targets (individual vs. team) for feedback within 2-person teams [14]. 

On simulating students as virtual agent, the SimStudent project developed an 

approach that could accurately model a single student’s cognitive processes for 

one-on-one intelligent tutoring system research [16]. This work shows the promise 

of using simulated students, albeit in one-on-one tutoring scenarios. These 

examples all point to a resurgence of research into automated tutorial support for 

team training. 

Our testbed simulates the training process, similar to the training that takes 

place in the aforementioned work. Agents learn to improve both their own and the 

team’s performance from their own experience, by observing other agents, by 

communicating with teammates, and via the guidance of a tutor agent. Existing 

formalisms within the body of multiagent research on simulating teamwork and 

learning represent team goals, plans, and organizations that operationalize decision-

making found in human teams [6, 9, 30]. Embedding these mechanisms within 

intelligent agents has enabled the construction of high-fidelity simulations of team 

behavior (e.g., simulated aircraft performing a joint mission [31]). As uncertainty 

and conflicting goals are prevalent in most team settings, decision-theoretic 

extensions of these models incorporating quantitative probability and utility 

functions captured these dynamics effectively [24, 32]. In addition, the use of 

reinforcement learning (among other methods) to derive agents’ models through 

experience in a decentralized fashion has been incorporated to accurately model 

how team members can arrive at a coordinated strategy through their individual 

experience [5, 20, 29]. 
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3 PsychSim 
 

We have built our testbed using the multiagent social simulation framework, Psy- 

chSim [15, 21].  PsychSim grew out of the prescriptive teamwork frameworks cited 

in Section 2 (especially [24]), but with a different aim toward being a descriptive 

model of human behavior. PsychSim represents people as autonomous agents 

that integrate two multiagent technologies: recursive models [8] and decision- 

theoretic reasoning [11]. Recursive modeling gives agents a Theory of Mind [37], 

to form complex attributions about others and incorporate such beliefs into their 

own behavior. Decision theory provides the agents with domain-independent 

algorithms for making decisions under uncertainty and in the face of conflicting 

objectives. We have used PsychSim to model a range of cognitive and affective 

biases in human decision-making and social behavior (e.g., [22, 23]). 

Another motivation behind the use of PsychSim is its successful application 

within multiple simulation-based learning environments. The Tactical Language 

Training System (TLTS) is an interactive narrative environment in which students 

practice their language and culture skills by talking to non-player characters built 

upon PsychSim agents [27]. We also used PsychSim’s mental models and 

quantitative decision-theoretic reasoning to model a spectrum of negotiation styles 

within the ELECT BiLAT training system [12]. Additionally, UrbanSim used a 

PsychSim-driven simulation to put trainees into the role of a battalion commander 

undertaking an urban stabilization operation [17]. In SOLVE, PsychSim agents 

populate a virtual social scene where people could practice techniques for avoiding 

risky behavior [13, 19]. 

We have also used PsychSim to build experimental testbeds for studying human 

teamwork. In one such testbed, we used a PsychSim agent to autonomously 

generate behaviors for a simulated robot that teamed with a person, in a study of 

trust within human-robot interaction [35, 36]. Another PsychSim-based testbed 

gave four human participants a joint objective of defeating a common enemy, but 

with individual scores that provided some impetus for competitive behavior within 

the ostensible team setting [25]. We build upon PsychSim’s capability for such 

experimental use in the expanded interaction of the current investigation. 

 

4 Team-based Training Simulation 
 

In our testbed, we implement a “capture-the-flag” scenario. In the scenario, a 

team of trainees learn how to work together to capture a goal location being 

defended by a team of opponents. Both the trainees and opponents are repre-

sented as PsychSim agents. In the preliminary testing described here, both the 

blue team and the red team consist of three agents. The three blue agents are not 

assigned any distinct roles. In this scenario, agents can be “tagged” by opposing 

agents if they are adjacent in one of the four main directions. Any agent that is 

tagged three times is eliminated from play and can no longer act in the scenario. 

PsychSim represents the decision-making problem facing the agents as a Par-

tially Observable Markov Decision Process (POMDP) [11]. Partial observability 
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accounts for the fact that the agents cannot read each other’s minds and that 

they may have incomplete or noisy observations of the environment. However, 

in this presentation, we make the environment itself completely observable,  

reducing the domain to a Markov Decision Process (MDP) instead. An MDP is 

a tuple  S A, P, R , with S being the set of states, A the set of actions, P the 

transition probability representing the effects of the actions on the states, and R 

the reward function that expresses the player’s preferences. 

The state of the world, S, represents the evolution of the game state over 

time. We use a factored representation [4] that allows us to separate the overall 

game state into orthogonal features that are easier to specify and model. The 

locations of the agents and of the goal are specified by x and y coordinates on a 

grid. The grid is 7  7 in the specific configuration described here, but obviously 

other grid sizes are possible (see Figure 1). 

 
 

 
Fig. 1. A mid-mission screenshot of the “capture-the-flag” scenario. The blue 

team agents are located at [1,3], [2,0] and [5,3], while the red team agents are 

located at [4,5], [5,4] and [6,5] and the goal is located at [5,5]. 
 

The actions, A, available to the agents are moves in one of the four directions, 

attempting to “tag” an opponent in one of the four directions, or waiting in their 

current location. The transition probability, P, represents the effect of the agents’ 

movement decisions, which we specify here to succeed with 100% reliability. In 

general, the P function can capture any desired stochastic error (e.g., due to terrain 

or visual conditions). 

Each blue team agent has three potentially conflicting objectives within its 

reward function, R: minimizing its distance to the goal (i.e., to try and reach the 

goal), maximizing the number of times Red agents are tagged (i.e., remove 

opponents from play), and minimizing the number of times that they get tagged 

(i.e., avoid being removed from play). The red agents also have three potentially 
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conflicting objectives: maximizing opponent distance to the goal (i.e., keep 

opponents away from the goal), maximizing the number of times blue team agents 

are tagged (i.e., remove opponents from play), and minimizing the number of times 

that they get tagged (i.e., avoid being removed from play). Thus, each agent has 

three conflicting objectives within its reward function, and the weights assigned to 

each determine their relative priority. Modifying these weights will change the 

incentives that each agent perceives. 

Having specified this scenario within the PsychSim language, we can apply 

existing algorithms to autonomously generate decisions for individual agents [11]. 

Such algorithms enable the agent to consider possible moves (both immediate and 

future), generate expectations of the responses of the other agents, and compute an 

expected reward gain (or potentially loss) for each such move.  It then chooses the 

move that maximizes this expected reward. Importantly, this algorithm can 

autonomously generate behavior without any additional specification, allowing us 

to observe differences in behavior that result from varying modeling parameters 

(e.g., the relative priority between objectives). 

We ran the simulation with a variety of configurations for our blue agents in 

order to evaluate our testbed’s suitability for studying team training. We aimed 

to verify that variations in an agent’s reward function would lead to different 

behavior in that agent, and that certain behaviors would consistently lead to 

better or worse outcomes for the team. These configurations would inform us as 

to what rewards our tutor agent should aim to instill in the students to ensure 

future success. Our measurement for team success was relatively simple, for each 

simulation our team would receive a score of 1 if they reached the goal within 60 

turns, and a score of 0 if they failed to do so. We chose this turn limit because 

it allowed teams with successful strategies enough time to win from any starting 

position, but limited teams enough that sub-optimal strategies would lead to 

worse outcomes. For each configuration of our blue agents, we ran simulations 

over 10 starting positions for our blue team agents and totaled the scores of each 

round. These starting positions were designed to be representative of the variety 

of different starting scenarios for our team, varying distance to the goal and 

distance between team members, for example, when the blue team starts close 

or far away from the flag, or when the blue team members start together or 

apart. 

This measurement of success does not penalize team members for what might 

be considered individual failures, such as being far from the goal or being 

eliminated by a red agent, so long as the team achieves success. The overall 

team score over 10 trials is shown in Figure 2. The X axis represents the weight 

of reward of avoiding being tagged by a Red team agent, from least wanting to 

avoid being tagged (left) to most wanting to avoid being tagged (right). The Y 

axis represents the weight of attempting to tag the Red team agents, from least 

wanting to tag the Red team agents (bottom) to most wanting to tag the Red 

team agents (top). The reward weight for moving closer to the goal was kept 

constant at 1.0. 
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Fig. 2. Simulation Score with Varying Agent Reward Values. A value of 1 means 

that the agent’s goal, either tagging the opponent or avoid being tagged by the 

opponent, is as important as reaching the goal (i.e. capturing the flag).  The values 

on each axis range from 1/4 to 4 times as important as reaching the goal (i.e. 

capturing the flag). 

 

Looking at the overall results in Figure 2, we see a couple of trends. First of 

all, the more focus a team put on avoiding opponents, the worse they tended to 

perform. However, this effect is somewhat mitigated by focusing more on tagging 

opponents. Hence, a team that prioritizes avoiding opponents but puts almost 

no emphasis on tagging opponents could not win from any starting position. A 

team was most successful when reaching the goal and tagging opponents were 

given equal weight, and avoiding opponents was not overly prioritized. This is 

what our tutor should teach our team in this scenario. 

 

5 Discussion 
 

In this paper, we outlined a testbed for exploring team tutoring strategies. We 

did this via a simplified “capture-the-flag” scenario, in which our focus was 

uncovering what a tutor should instruct our team of agents to do so that they 

would win. Our testing showed that our team was most successful when they 

did not overly prioritize tagging, avoiding opponents, or reaching the flag. 

These results imply that our tutor should instruct our team to focus equally 

on tagging opponents and reaching the flag, but not to put too much emphasis on 

avoiding opponents. While a team with the correct strategy can win from any of 

our starting positions, team starting location currently plays a significant part in 

success or failure when a sub-optimal strategy is enacted. This is to say, when a 

team failed to win all ten rounds, it was due to losing rounds in which they started 
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further from the flag. This, combined with the turn limit being the reason for 

our team’s failures, largely explains why prioritizing avoiding opponents impacts 

success so negatively. A team that spends too much time staying out of reach of 

their opponents will struggle to reach the flag within 60 turns. Our tutor can use 

this understanding in order to better guide students towards this optimal 

prioritization of motivations. 

In this section, we propose a series of modifications that would be valuable for 

studying collaborative learning and team training. First of all, we would like to 

explore a wider variety of starting positions. Many of our chosen starting locations 

have our team very close together, and adding more locations with agents split up 

in a variety of ways (such as two in one corner, one in another) could help ensure 

the robustness of our results and conclusions. Furthermore, using an agent 

framework like PsychSim gives us many dimensions along which we can enrich 

the reasoning of our learners. For example, in the current configuration, agents 

always succeed in any action they attempt.  Tutoring students with varying skill will 

provide a more significant challenge. All of the agents also know each others’ 

objectives, which is not a realistic model of human teamwork. Giving the agents 

uncertainty about the reward function of other agents introduces the need for 

communication among teammates. We can leverage our underlying agent 

architecture’s existing algorithms for belief update [11] and communication [15] to 

explore alternate communication strategies to establish coherent joint beliefs 

among team members. In other words, our learning agents would expand their 

action space to include possible messages, such as “There is a 90% chance that the 

red agent is at (3,3)”. 

While the work discussed here focuses on simulations of how teams train 

together with virtual agents, it can help inform the design of intelligent team 

tutoring systems for real human teams. In conclusion, the multiagent testbed we 

have constructed uses a relatively simple coordination scenario as a jumping-off 

point for a wide variety of potential simulations of collaborative learning and team 

training that can have implications for intelligent tutoring systems for real-human 

teams. 
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