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Abstract

Convolutional Neural Networks (CNNs) have been
demonstrated to achieve state-of-the-art results on
complex computer vision tasks, including medi-
cal image diagnosis of Diabetic Retinopathy (DR).
CNNs are powerful because they determine rele-
vant image features automatically. However, the
current inability to demonstrate what these features
are has led to CNNs being considered to be ‘black
box’ methods whose results should not be trusted.
This paper presents a method for identifying the
learned features of a CNN and applies it in the con-
text of the diagnosis of DR in fundus images using
the well-known DenseNet. We train the CNN to di-
agnose and determine the severity of DR and then
successfully extract feature maps from the CNN
which identify the regions and features of the im-
ages which have led most strongly to the CNN pre-
diction. This feature extraction process has great
potential, particularly for encouraging confidence
in CNN approaches from users and clinicians, and
can aid in the further development of CNN meth-
ods. There is also potential for determining previ-
ously unidentified features which may contribute to
a classification.

1 Introduction
Convolutional Neural Networks (CNNs), a deep learning
approach to image classification, can offer extremely fast
classification predictions based on learning relevant features.
These features are learned within the network structure itself;
from labeled images that the network has ‘seen’. Recently
CNNs have been used to enhance accuracy on a wide range
of computer vision tasks [Krizhevsky et al., 2012]. This has
extended to the application of automated medical image diag-
nosis. For example, the classification of Diabetic Retinopathy
(DR) severity through the use of colour fundus images [Pratt
et al., 2016; Gulshan et al., 2016]. The CNNs presented in
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these papers have learned features of DR in order to deter-
mine the level of DR severity within a fundus image using
clinically labeled images.

However, the DR classification predictions presented in
these papers do not offer any insight in to the reasoning be-
hind the CNN model predictions. Although the CNN mod-
els have learned from ground truths based on a clinical grad-
ing framework the methods do not present the features that
have been learned by the CNN in order to arrive at the pre-
diction. DR feature extraction from fundus images typi-
cally involves manual algorithms [Ravishankar et al., 2009;
ManojKumar et al., 2015] which are undertaken before the
classification process commences. The extracted features
then correspond to a predicted severity of the disease. In
the case of CNN models we wish to implement the reverse
procedure. Through dissecting the CNN model we wish to
determine which features have led to the prediction.

Feature extraction is a vital process in the grading of DR
because the manual process used by clinicians are typically
feature based processes, for example the process prescribed
in[ETDRS Study Group, 1991]. Deep learning in the clini-
cal community is widely perceived to be black box. Conse-
quently it is unclear to clinicians whether the feature based
framework used in manual grading is the same as the classifi-
cation framework produced by the CNN. As a result there is
a lack of trust in the ability of deep learner.

In [Zhou et al., 2015] Class Activation Maps (CAMs) were
presented as a method of determining the regions within a
CNN input image which have contributed most towards the
classification. In the case of disease classification this offers
insight into the areas of the image containing features of the
disease under consideration. The severity of DR within a fun-
dus image directly relates to the location of certain features
[ETDRS Study Group, 1991]. These features, their location
and how they relate to DR classification are presented in Ta-
ble 1. The idea of saliency maps was presented in [Simonyan
et al., 2013]. Saliency maps offer a method of determining
the most significant pixels involved in the classification pre-
diction of an image.

This paper aims to open the CNN black-box in order to
make CNNs more transparent in the context of feature based
prediction of DR. Deep learning classification methods do
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not justify prediction values. This paper presents a novel
method of extending CNN black box prediction models so
that they become feature based models. Through determin-
ing the learned features and their locations we explore how
the CNN reached its prediction and how this corresponds to
the manual feature based grading.

2 Method
Initially a CNN was trained on fundus images to predict DR
severity. Once the model had been trained the model param-
eters remained immutable throughout the rest of the process.
The trained model was then used to produce prediction val-
ues, saliency maps and CAMs for unseen test images. Atten-
tion maps and other techniques would produce similar results
to the class activation maps and saliency maps if applied to
the CNN. The two selected methods were used as they com-
pliment each other and highlighted features within the image
in different manners. For evaluation, these were compared to
the clinical ground truth and the features identified within the
images.

2.1 Dataset
The dataset used for training and evaluation was from Kaggle
[Kaggle, 2016]. The dataset is a large set of 88,702 high-
resolution retina fundus images; 78,076 training, 10,626 test-
ing. A clinician has graded the level of DR using five classes:
no DR, mild DR, moderate DR, severe DR and proliferative
DR. The images were provided by eyePACS [EyePacs, 2018]
from a diabetic screening process. Example images from the
dataset are given in Figure 1.

2.2 Convolutional Neural Network Training
The adopted CNN architecture was the well-known DenseNet
[Huang et al., 2016] demonstrated in Figure 2. The DenseNet
weights were initialised with pre-trained ImageNet weights, a
learning rate of 0.0003 was used with Adam backpropagation
on a NVIDIA k40 GPU using Keras [Keras, 2019] library.
Training was undertaken until the categorical cross entropy
loss function plateaued on the test data.

2.3 Class Activation Maps
In this section, we define the procedure for producing Class
Activation Maps (CAMs). CAMs require global average
pooling after the final convolution layer in the CNN. Pooling
provides the localisation for the region detection. Applying
the trained CNN to test activated weights in the output layer
depending on nodes that have beeen activated. These weights
can be projected back on to the convolutional feature maps
in order to identify regions of importance for a certain class.
Hence, to compute the class activation maps of an input im-
age we computed a weighted sum of the feature maps of the
last convolutional layer. CAMs are defined as follows:

• Let input image I with coordinates (x, y) be I(x, y)

• Let fk(x, y) be the activation of a node k in the last layer
of convolution

• The result of global average pooling is Fk =∑
(x,y) fk(x, y)

• For class c softmax input is Sc =
∑

k w
c
kFk where wc

k
is the weight for node k

• Softmax output, probability, is given as Pc =
eSc∑

c=0 eSc

• The weighted sum of feature maps, the CAM, is defined
as,

CAMc =
∑
k

wc
kfk(x, y). (1)

Therefore, it is clear the CAM for class c, CAMc, directly
relates to the prediction value of the class Sc. The weights w
in the definition of CAMc and Sc remain constant from the
trained CNN. This therefore indicates the direct importance
of the activation at pixel fk(x, y) to the prediction within the
CAM of an image to class c. Therefore, for our CNN trained
for DR severity, CAMs are an effective method for determin-
ing the region of pixels relating to disease severity prediction.
This process is shown in Figure 2.

2.4 Saliency Maps
The idea of saliency maps is to compute the gradient of the
output class with respect to the input image. This tells us
how the output category value changes with respect to a small
change in the input image pixels. Therefore, like CAMs, in
saliency maps the weights remain unchanged. Positive values
in the gradient tell us that a change to that pixel will increase
the output class value. Hence, the larger the positive gradi-
ent, the more reliant on this pixel the image is in the classi-
fication process. Visualising all of the gradients, which are
the same shape as the input image, produces a saliency map
which highlights the salient pixels that contribute the most
towards the output class. Saliency maps are described as fol-
lows:

• Let the input image be defined as I

• Let Sc(I) be the class score function for the image

• We want to rank each pixel (x, y) based on its influence
on Sc

• Sc is a highly non-linear function in a CNN. Hence Sc is
approximated with a first-order Taylor expansion in the
neighborhood of the pixel

• Sc(I(x,y)) ≈ wT (x, y) + b

• Where w is the derivative of Sc with respect to image I
at point (x, y)

w =
δSc

δI
|Ix,y

The computation of an image-specific saliency map for a sin-
gle class is extremely quick, since it only requires a single
back-propagation pass. Saliency maps differ from CAMs as
they look at how changes in the input image affect the class
prediction as opposed to combining feature maps in order to
determine the most filtered region of an image.

3 Results
The purpose of the paper is to give an insight in how qualita-
tive features can be derived and presented (quantitative results
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Feature Grading DR Level
No apparent retinopathy No Retinopathy

• Haemorrhages/Microaneurysms only < 2A Mild
• < 6 Cotton Wool Spots in the absence of other features

• < 6 Cotton Wool Spots with Haemorrhages/Microaneurysms <2A
• Single venous loop

• Haemorrhages/Microaneurysms ≥ 2A in 1-3 quadrants Moderate
• ≥ 6 Cotton Wool Spots

• 1 quadrant Venous Beading/Looping/Reduplication
• Intraretinal microvascular abnormalities < 8A
• 4 quadrants Haemorrhages/Microaneurysms ≥ 2A Severe
• 2-4 quadrants Venous Beading/Looping/Reduplication
• 1 quadrant Intraretinal microvascular abnormalities ≥ 8A

• Neovascularisation of disc < 10A alone Early
• Neovascularisation Elsewhere < 1

2 disc area (DA) alone Proliferative
• Neovascularisation Elsewhere ≥ 1

2 DA and no Preretinal/vitreous haemorrhage
• Neovascularisation of disc ≥ 1/3 DA (10A) alone High-risk

• Neovascularisation Elsewhere ≥ 1/2 DA and Preretinal/vitreous haemorrhage Proliferative
• Vitreous haemorrhage precluding adequate view of fundus

• Traction retinal detachment (TRD)
Neovascularisation of disc/elsewhere have inactivated Stable treated

Fibrovascular proliferation disc/elsewhere Stable treated

Table 1: Clinical diagnosis of DR based on various feature types with different contributions to classification. One feature in each list is
required for the equivalent DR grading. 2A, 8A and 10A refer to ‘standard photographs’ from ETDRS [ETDRS Study Group, 1991].

Figure 1: Fundus images from Kaggle dataset; (a) No DR (b) Mild DR (c) Moderate DR (d) Severe DR (e) Proliferative DR. Note: Little
obvious difference between (a),(b) and (c), however it is important to distinguish these. CAMs and saliency maps should detect features such
as Haemorrhages/Microaneurysms around the vessels.
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Figure 2: Top: The DenseNet architecture used for training. Bottom: The combination of the trained weights w from the final layer and the
feature maps of the last convolution layer to produce the CAM. The feature maps vary depending on the input image.

have been widely discussed in the literature). However, in or-
der to determine the level of quantitative results required in
order to achieve this level of qualitative output the qualita-
tive results must be defined. The multi-class DenseNet model
achieved 0.81 quadratic weighted kappa on the test data for
the multi-class problem.

CAMs from test images, with an example result for each
class of DR, are presented in Figure 3. The colour range is
from red to green. The closer the region is to red the more
that region has contributed towards the prediction. Similarly,
in the saliency maps, the lighter the pixel the more the pixel
has contributed to the classification of the image.

The CAMs of each class of DR demonstrate the links be-
tween the severity ground truth and the input image that the
CNN has divulged through the training process. As seen in
Figure 3, the regions leading to classification of No, Mild or
Moderate DR relate to the main vessel structure and tend to
avoid the macula (centre of the retina). Initial signs of dis-
ease stem from the vessels in the form of haemorrhages or
microaneurysms or abnormal vessels as presented in Table 1.
Furthermore, it was also clear from the test image CAMs that
the severe and proliferative classifications look more towards
the macula. This is shown in the severe and proliferative
cases in Figure 3. This corresponds to the clinical classifica-
tion process as severe disease requires Haemorrhages or Mi-
croaneurysms and Venous Beading/Looping/Reduplication
throughout the retina. However, the saliency maps for the
proliferative case rarely took in to consideration the optic disc
region in the classification prediction. This suggests that the
CNN model is excluding an important marker for prolifera-
tive retinopathy; neovasularisation of the disc.

The saliency maps provide insight in to the features that
have been detected through the ground truth and input im-

age training. Figure 3 demonstrates that in the early stages
of retinopathy the CNN looks along the vessel structure and
looks for deviation normal vessel structures. This is shown
through the lightest pixels being the vessels in the saliency
map for the no DR and mild DR cases. Haemorrhages and
microaneurysms from the early stage of the disease tend to
lie around the vessel structure and abnormal vessels are a key
distinction between no DR and mild or moderate DR. It is
also apparent that the saliency maps in the moderate class
have “light” pixels spread around the retina as the CNN looks
for features in more than one region of the retina; which is
key to moderate classification.

In the saliency maps for the severe and proliferative classi-
fications we can see identification of features relating to clin-
ical diagnosis. In the severe DR saliency map in Figure 4 we
can identify the microaneurysms and cotton wool spots. The
microaneurysms in different regions of the retina relate di-
rectly to the severe DR classification. Similarly, in the prolif-
erative saliency map in Figure 4 the lighter pixels correspond
to features that the CNN has identified. The laser spots pro-
duced through treatment to the eye remain dark in the saliency
map and therefore the CNN is, correctly, not treating these as
a feature of disease. An example of this is shown in Figure 4.

4 Discussion
The visualisation techniques presented in this paper demon-
strate that CNN models are achieving some success in repli-
cating the clinical process undertaken during diagnosis of
fundus images. Similar features are being detected and simi-
lar regions are being related to the appropriate classes. How-
ever, in order to fully determine if the CNN has learned a
similar classification process we would require fundus images
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Figure 3: Left to right; No DR, Mild DR, Moderate DR, Severe DR and Proliferative DR. Top to bottom; Original Kaggle Image, Class
Activation Map of preprocessed image and Saliency Map of preprocessed image.

annotated with every single feature present in the image and
saliency maps annotated to the same criteria. Furthermore,
the CNN is only told the severity of the image, not the com-
bination of features involved, so it may therefore be deemed
unfair that the CNN is expected to learn the precise mecha-
nism that was used to determine the ground truth. Especially
when grader agreement is often variable; complex structures
of DR can become subjective when based on such minute fea-
tures.

The method presented also discovers features of disease
severity that are missed in the automated procedure and there-
fore indicates where the CNN needs to be improved; such as
neovasularisation of the disc detection. This could be used to
determine a general set of features that CNNs struggle to de-
tect. During training image preprocessing techniques could
be used in order to make the missed features more apparent
within the image to aid CNN learning.

The methodologies have been validated on images from the
Liverpool Diabetic Eye Screening Program (LDESP) in or-
der to test their ability to generalise to other datasets. Figures
5 and 6 demonstrate the class activation maps and saliency
maps abilities to generalise to unseen data. Numerous fea-
tures are identified in multiple fundus images from the same
eye, including images that aren’t macula centred.

5 Conclusion
In conclusion, we have demonstrated that the correlation be-
tween CNN predictions and manual grading of DR can be

visualised through the use of Class Activation Maps (CAMs)
and saliency maps. These methods provide a useful tool to
determine if deep learning classification models relate accu-
rately to clinical diagnosis procedures. The presented meth-
ods could also be used in the screening process to reduce the
time a clinician spends looking for features within a fundus
image. CAMs present a good method for ‘flagging’ regions
of disease, whereas saliency maps present a solution for fea-
ture detection.
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Figure 5: (Left) Fundus images from the Liverpool Diabetic Eye
Screening Program (LDESP). Middle) Saliency map from the
trained DenseNet multi-class DR model overlayed on the original
fundus image. Right) CAMs from the trained DenseNet multi-class
DR model overlayed on the original image.

Figure 6: (Top) 4 montaged fundus images. (Bottom) Overlayed
saliency map from the trained DenseNet multi-class DR model over-
layed on the original fundus image.
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