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Abstract Concept lattice drawings are an important tool to visualize
complex relations in data in a simple manner to human readers. Many
attempts were made to transfer classical graph drawing approaches to
order diagrams. Although those methods are satisfactory for some lattices
they unfortunately perform poorly in general. In this work we present a
novel tool to draw concept lattices that is purely motivated by the order
structure.
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1 Introduction

Line diagrams are a great tool for interpreting data ordered through formal
concept analysis. In such diagrams every concept is visualized as a dot on the
plane and the covering order relations are visualized as straight lines that are not
allowed to touch other concept dots. Additional to these strong conditions, there
are several soft conditions to improve the readability of diagrams for a human
reader, for example, to minimize the number of crossing lines or to minimize
the number of different slopes. Another desirable condition is to draw as many
chains as possible on straight lines. Lastly, the distance of dots to (non-incident)
lines should be maximized. Experience shows that in order to obtain a (human)
readable drawing one has to balance those criteria. Based on this idea, there are
algorithms and tools that work well on order diagrams. However, such automated
drawings usually cannot compete to those created manually by an experienced
human. Since such an expert is often not available, the task for creating a suitable
(and easily readable) line diagram for a given concept lattice is a challenging task.

Here we step in with our novel tool DimDraw. We claim that it produces
drawings that come close to the quality of hand-drawn line diagrams. In contrast
to prior approaches it tries not only to optimize for some set of criteria but also
employs the order structure of the concept lattice itself. More precisely, our tool
computes a family of linear orders, called realizer, that entails the to-be-drawn
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lattice order as its intersection. From this family we derive coordinates for our
lattice drawing. In fact, our tool does not only work on concept lattices but also
on arbitrary orders.

Related Work and Basics from Formal Concept Analysis. We rely on
notations from [4], i.e., (G,M, I) is a formal context with sets G and M , and
I ⊆ G ×M . Furthermore, ·′ : P(G) → P(M), A 7→ A′ := {m ∈ M | ∀g ∈ A :
(g,m) ∈ I} and ·′ : P(M) → P(G), B 7→ B′ := {g ∈ G | ∀m ∈ B : (g,m) ∈ I}
are derivation operators enabling B(G,M, I) = {(A,B) ⊆ P(G)×P(M) | A′ =
B ∧ B′ = A}, the set of all formal concepts. This set can be ordered through
the inclusion order on G. Various approaches for drawing line diagrams can be
found: The author in [5] employs an order approach which lays the foundation
for our work. In [2] a rank function and a force-directed approach was used and
the author in [3] focuses on additive diagrams.

2 Order Dimension Approach

Before introducing the algorithm behind DimDraw we need to recollect some basic
notions on order dimension. Let (X,≤P ) be an ordered set, i.e., ≤P⊆ X ×X
is an order relation. Two elements x, y ∈ X are called incomparable in P , if
neither x ≤P y nor y ≤P x, otherwise they are called comparable. If (X,≤L) is
an ordered set with ≤P⊆≤L, such that no two elements are incomparable in
≤L, then ≤L is called a linear extension of ≤P . The intersection of two order
relations ≤L1

and ≤L2
on X is also an order relation on X. Let L be a set of

linear extensions of ≤P with
⋂
≤L∈L ≤L=≤P . Then L is called a realizer of

≤P . The order dimension of an order relation ≤P is the cardinality of a minimal
realizer of ≤P .

A Ferrers relation is a relation F ⊆ G ×M , such that for all g, h ∈ G and
m,n ∈M the following condition holds: (g,m) ∈ F and (h, n) ∈ F ⇒ (g, n) ∈ F
or (h,m) ∈ F . Following [4, Proposition 103] we know that F ⊆ G×M is a Ferrers
relation if and only if B(G,M,F ) is a chain, i.e., all elements of B(G,M,F ) are
pairwise comparable. Those chains are essential for our drawing approach. The
Ferrers dimension of a formal context is the smallest number k, such that there
exists a set of k Ferrers relations with their intersection being I. The Ferrers
dimension of a context is equal to the order dimension of its concept lattice, see [4,
Theorem 46]. We further know that the order dimension of B(G,M, I) for some
context (G,M, I) is at most d, if there are Ferrers relations F1, . . . , Fd ⊆ G×M

with G ×M\I =
⋃d

i=1 Fi. This fact gives a handy way to compute the order
dimension of a concept lattice. One has to cover all empty cells of the cross
table of a concept with Ferrers relations. Note that those do not have to be
disjoint. Unfortunately deciding the order dimension and the Ferrers dimension
are NP-complete if the dimensions are three or higher.
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Computing Coordinates using a Realizer. First we have to compute a
minimal realizer of the order relation of the concept lattice. This can be done
with an algorithm described in [6]. Note that the algorithm described there is only
exact for certain ordered sets. Alternatively one can use the Ferrers dimension:
Try to cover all the empty spaces in a cross-table by as few Ferrers relations as
possible. Then take the inverse Ferrers relations, compute the chains given by
these relations and extend them to cover every element of B(G,M, I).

Given a linear extension of a lattice, let the position of each concept in the
linear extension be the cardinality of the set of sub-concepts. Embed the concept
lattice into Rd with d being its order dimension. The coordinates of concept
C are given as (c1, . . . , cd), such that ci is the position of concept C in the
linear extension Li. Note that for each pair of concepts X,Y it holds that X
is a sub-concept of Y , if and only if, for the coordinates X = (x1, . . . , xd) and
Y = (y1, . . . , yd), it holds that xi ≤ yi for all 1 ≤ i ≤ d. By rotating the resulting
embedding we obtain a valid embedding of the concept lattice in Rd. We have to
carefully project this embedding to the plane to obtain our drawing. The theory
we developed for the projection is based on work of [1]. It is very extensive and
will be presented in a later work due to space constraints.

Example. Take the “Life in water” context from [4], and consider the three
Ferrers-relations that cover all free spaces in the cross table:

a b c d e f g h i

1 × × ×
2 × × × ×
3 × × × × ×
4 × × × × ×
5 × × × ×
6 × × × × ×
7 × × × ×
8 × × × ×

a b c d e f g h i

1 × × 1 1 1 × 1 1
2 × × 1 1 × × 1
3 × × × 1 × × 1
4 × × 1 × × ×
5 × × 1 × 1 × 1
6 × × × × 1 × 1
7 × × × ×
8 × × × 1 × 1

a b c d e f g h i

1 × × × 2
2 × × × × 2
3 × × × × ×
4 × × × × ×
5 × × × × 2 2 2
6 × × × × × 2 2 2
7 × 2 × × × 2 2 2 2
8 × 2 × × × 2 2 2

a b c d e f g h i

1 × × 3 3 3 ×
2 × × 3 3 3 × ×
3 × × × 3 3 3 × ×
4 × 3 × 3 3 3 × × ×
5 × × × 3 ×
6 × × × × ×
7 × × × ×
8 × × × 3 ×

These Ferrers relations give rise to the following (not unique) realizer:
• S≤1Q≤1O≤1R≤1P≤1N≤1H≤1L≤1K≤1C≤1M≤1I≤1G≤1F≤1J≤1E≤1B≤1D≤1A

• S≤2P≤2O≤2M≤2J≤2H≤2F≤2B≤2R≤2K≤2I≤2D≤2N≤2G≤2Q≤2L≤2E≤2C≤2A

• S≤3R≤3Q≤3N≤3I≤3L≤3G≤3E≤3P≤3M≤3K≤3J≤3D≤3O≤3H≤3F≤3C≤3B≤3A

Note that this context is in fact 3-dimensional as the elements {E,C,D,L, I,K}
form the ordered set S3, which is well-known to be 3-dimensional. Now we embed
the concepts based on their positions in the linear extensions as described above:
A(18,18,18), B(16,7,17), C(9,17,16), D(15,16,7), E(15,16,7), F(13,6,15), G(12,13,6),
H(6,5,14), I(11,10,4), J(14,4,11), K(8,9,10), L(7,15,5), M(10,3,9), N(5,12,3), O(2,2,13),
P(4,1,8), Q(1,14,2), R(3,8,1), and S(0,0,0). Now the remaining task is to project
this into the plane, which is a research task for itself.
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We obtain the following embedding (left) which is quite close to the hand drawn
version (right):

Another example, that is also taken from [4] is the “Drive concepts for
motorcars” context. Here the embedding generated with our tool (left) is further
away from the hand-drawn version (right), however it is again easy to read:

As another example we present the contra nominal scales on n objects and
attributes, i.e., ([n], [n], 6=) where [n] := {1, 2, . . . , n}. It is easy to see that these
exhibit order dimension n. We show line diagrams of the concept lattices computed
by DimDraw for the two, three, and four dimensional contra nominal scales:
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We conclude this section by comparing our tool to previous results in [3].
There the author employed an approach to generate additive line diagrams (left).
We may note that our drawing (middle) is not additive, however, it resembles the
hand drawn additive diagram (right) more accurately.

Outlook In this work we demonstrated a novel approach for drawing lattice
diagrams automatically, which resulted in the work-in-progress software DimDraw.
This tool will be part of the upcoming version of conexp-clj (https://github.
com/exot/conexp-clj). The ongoing research for more sophisticated projection
theories, as used by this tool, will be extended in future publications.
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