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Abstract. We consider algorithm selection in the context of ad-hoc in-
formation retrieval. Given a query and a pair of retrieval methods, we
propose a meta-learner that predicts how to combine the methods’ rele-
vance scores into an overall relevance score. Inspired by neural models’
different properties with regard to IR axioms, these predictions are based
on features that quantify axiom-related properties of the query and its
top ranked documents. We conduct an evaluation on TREC Web Track
data and find that the meta-learner often significantly improves over
the individual methods. Finally, we conduct feature and query weight
analyses to investigate the meta-learner’s behavior.
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1 Introduction

While many ranking methods have been proposed for ad-hoc information re-
trieval, it is often unclear which domains and specific queries any given ranking
method is well-suited to be applied to. Work proposing IR axioms [6, 31] has high-
lighted behaviors that help to make a ranking method successful. The axioms
describe properties that an ideal retrieval function should satisfy. We observe
that different queries often have different retrieval needs and hence the impor-
tance of a particular axiom can vary with the query. For example, for the query
New York Tourism, capturing the proximity between the terms New and York
is important. On the other hand, for the query Bidgely Data Science Company,
the occurrence of Bidgely is most important, and documents talking about a
different Data Science Company are unlikely to be relevant. Thus, for the latter
query, we would like a retrieval function to weight the occurrence of rare uni-
grams higher than the occurrence of ordered bigram or trigram matches. This
behavior may not be ideal for the former query.

Different retrieval methods are generally sensitive to different retrieval ax-
ioms, especially in the case of neural ranking methods. [6, 24] Many neural rank-
ing methods are not sensitive to document length normalization, for example,
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and others are not sensitive to term discrimination because they do not consider
IDF. This observation motivates our effort to combine scores from different re-
trieval method based on a given query’s retrieval needs. Determining the optimal
behavior for a given query (or even domain) is inherently difficult, however, and
axioms cannot yet describe a retrieval method’s optimal behavior on a per-query
level. In this work we aim to reduce this gap by investigating query-level meta-
learning in order to select an optimal combination of retrieval methods for a
given query.

Meta-learning in Information Retrieval is most common in the context of
Query Prediction Performance (QPP), which share some similarities with this
work. The goal of QPP is to predict a retrieval model’s performance for a given
query. Prior work in this area has used these predictions to select a retrieval
algorithm [33] or to weight an ensemble of models [32]. We follow this line of
research by investigating axiom-inspired features for differentiating between the
performance of two ranking functions and predicting how to combine their scores
in order to improve retrieval performance. This additionally shares some simi-
larities with Learning to Rank (LTR) [23], where scores from different ranking
functions are considered by a model in order to predict an improved ranking.
However, we focus on learning when one model should be preferred over another
for a given query instead of attempting to produce a ranking directly.

In this work we propose performing a query-dependent weighted combination
of retrieval models’ scores in order to improve retrieval performance. Inspired
by IR axioms, we identify a set of nine feature types upon which to base this
linear combination of relevance scores. This proposed meta-learner predicts the
weights that should be given to the scores from two retrieval models M1 and
M2 on a per-query basis. We consider several pairs of retrieval models, which
consist of both BM25 and four neural re-ranking models. Our contributions are:
(1) the proposal of a meta-learner using nine feature types to predict how to best
produce relevance scores for a given query; (2) an evaluation of the proposed
approach against the base models themselves; and (3) an analysis of the weights
given to the meta-learner’s features and the model weights predicted by the
meta-learner.

2 Related Work

Instance level meta learning, as defined in [2], refers to the task of selecting
the best algorithm or appropriately combining a pool of algorithms for every
instance in a dataset. Recent work has considered instance level meta learning
in the context of recommender systems. Collins et al. [2] trained a meta-learner
to select the best recommendation algorithm from a pool for each instance by
predicting the error for each model. At test time they perform recommendations
by selecting the meta-learner with the lowest predicted error for a given instance.
Their analysis showed that an oracle’s RMSE was over 25% higher than the best
RMSE obtained by a single model, motivating us to explore meta learning for ad-
hoc information retrieval. In the context of ad-hoc information retrieval, instance
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level meta learning shares some similarities with query performance prediction,
learning to rank, and federated search.

Query Performance Prediction. Query performance prediction (QPP) is
the task of predicting a model’s retrieval performance on a given query. [9]
QPP has applications for tasks like choose performance sensitive parameters for
early stage retrieval [17] and performing selective query expansion. [36] QPP
techniques can be broadly categorized into two types: pre-retrieval and post
retrieval approaches. Pre-retrieval approaches use linguistic features of the query
as well as other features that can be computed without computing relevance
scores for the collection. As a result, the pre-retrieval approaches are usually
more efficient. Mothe et al. [20] use linguistic features, such as part of speech tags
and polysemy information obtained from Wordnet, to predict query difficulty.
They found a significant correlation between these features and performance
for a query. He et al. [9] use corpus statistics like average query length, IDF
of the query, and query scope to predict query performance. Query ambiguity,
which was estimated by considering the coherence between documents containing
query terms, has also been observed to be a useful feature. [11] Hauff et al.
[8] provide a comprehensive overview of pre-retrieval predictors. Post-retrieval
approaches use the ranked list for a given query to predict query difficulty.
They have been found to outperform pre-retrieval approaches. Townsend et al.
[3] use predicted relevance scores to estimate query ambiguity. Zhou and Croft
[38, 39] estimate performance by measuring how robust the ranked list is to
perturbations. The retrieval score distribution can also give crucial insight into
query performance. [29] More recently, neural approaches with weak supervision
has been employed for this task. [37] There has also been some work in using
these query performance prediction features for meta learning. Yom-Tov et al.
[36] query different datasets and compute the query’s difficulty for each dataset.
This query difficulty is used to weight the scores from each dataset to produce
a final combined ranked list. Winaver et al. [32] used a query clarity measure
to predict the best performing language model from a pool of language models
with different parameters. In [33], the authors use the ranked results produced
by systems submitted to TREC and predict the performance of each of these
systems. They use this predicted performance to categorize input systems as
good, fair, or bad. This categorization is used to weight results from the input
systems and produce a final ranking. While our approach shares some similarities
with this prior work, we build upon it by predicting the retrieval systems’ weights
directly and attempting to characterize the systems’ strengths in terms of axiom-
related features.

Learning to Rank. Another area of research closely aligned to ours is learn-
ing to rank. In learning to rank (LTR), multiple features are computed for each
query-document pair and considered by a supervised model to produce a docu-
ment ranking. Relevance scores from different retrieval functions are commonly
used, making LTR an effective way to combine scores for different retrieval func-
tions. Corpus statistics (e.g., TF, IDF) and their combinations may also be used
as features [21, 1]. Nallapati et al. [21] compute these features separately from
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the entire text of document, the anchor text, and the title. LTR features may also
be based on only the document or query. For example, Nie et al. [22] showed
that combining relevance scores with page importance scores calculated using
PageRank and HITS can improve performance. He et al. [10] tried to incorpo-
rate topic of user’s interest and other characteristics of user to improve retrieval
process. Linguistic features, such as the number of adjectives in a paragraph,
have also been considered. [35] The Letor Benchmark [23] includes many pre-
computed features like relevance scores from a range of retrieval models over
different fields, the document’s PageRank, and features derived from the URL.
In terms of LTR models, a variety of algorithms have been proposed and can
be group into three broad categories indicating how documents are compare
to one another: pointwise, pairwise, and listwise approaches. While this work
shares some similarity with LTR approaches, our approach differs in that we
combine models’ retrieval scores directly in order to produce an improved rank-
ing, whereas LTR approaches use these scores as features to predict a ranking
for a set of documents. In addition, our features are mostly based on properties
of an initial result set rather than on relevance scores.

Federated Search. In the area of federated search there has been much work
on combining results from various algorithms and document collections [28],
such as using the presence of a document in an external result set to predict
relevance. [5] More recently, some neural models for ad-hoc retrieval have tried
to implicitly combine signals from multiple relevance models by incorporating
the scores as features that are fed into the model. [26, 27] This work differs from
ours because the scores considered are constant regardless of the query, whereas
we perform algorithm selection on retrieval models trained independently and
weight the models’ scores based on a query.

3 Methodology

Our algorithm selection approach consists of a supervised meta-learner and a
pair of retrieval methods M1(q, d) and M2(q, d). The meta-learner is trained to
combine the scores from both retrieval methods to produce a ranking. That is,
given a query q and features calculated over the top N documents returned
by an initial ranking method, the meta-learner’s goal is to predict a value α ∈
[0, 1] that maximizes the retrieval performance of the query-document ranking
function score(q, d) = αM1(q, d)+(1−α)M2(q, d). In this section we describe the
meta-learner and its features. We instantiate the approach with specific retrieval
methods M1 and M2 in the next section.

The meta-learner consists of a regression model for predicting α based on a
training set of queries and documents. In this work we use a linear regression
since this allows for interpretable feature weights.3 The meta-learner’s predic-
tions are based on nine features that were inspired by prior work studying how
IR axioms relate to retrieval methods’ performance. [6] Of these nine features,

3 We did not observe substantial improvements when using more powerful models.
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two consider only the query terms (i.e., average query IDF and max query IDF ).
The remaining seven features consider interactions between the query and the
top N documents returned by an initial ranker.
Average query IDF and max query IDF. These feature consider the sat-
isfaction of Term Discrimination Constraints (TDC) [6], which state that terms
more popular in a collection should be penalized. A query with a low average
IDF may not benefit from a model’s ability to satisfy TDC, whereas retrieval
performance on a query with a high IDF is expected to improve when a retrieval
model satisfies this axiom.4

Frequency of query terms. This feature is computed as the average frequency
of query terms normalized by document length. It is used as a proxy for Term
Frequency Constraints (TFC1) [6], which requires a retrieval function to give
higher a score to document with more query term matches, and for TF-LNC
[6], which requires the retrieval method to balance the interaction between term
frequency and document length. Neural IR models that truncate documents to
a fixed size, such as PACRR, are not capable of normalizing term matches by
the document length.

Frequency of highest IDF query term. This feature is also normalized.

Document length. This feature is averaged over the top N documents. It is
related to Length Normalization Constraints (LNCs). [6].

Query coverage. This feature is calculated as the average percentage of query
terms that occur in the top N documents for the query. It is closely related to
TFC3 [6], which requires a retrieval method to give a higher score to a document
with more distinct query terms.

Bigram and trigram matches. These features are the average numbers of
bigram matches and trigram matches in the top N documents (normalized by
document length). They are related to the term proximity constraints that re-
quire term proximity [31] to positively contribute to the retrieval score of docu-
ment. Given that the retrieval models we consider commonly have a maximum
kernel size of three, we do not consider larger n-gram sizes.

Unordered matches. This feature is the average number of query term matches
occurring within a 3 term window in the query’s top N documents (normalized
by document length). As mentioned in [18], noncontiguous presence of query
terms can provide evidence of a document’s relevance.

4 Evaluation

Data. We evaluate our approach on the 2010–2014 TREC Web Track ad-hoc
task benchmarks, which consist of 248 queries and approximately 89,700 judg-
ments over about 88,500 documents from the ClueWeb09 and ClueWeb12 doc-
ument collections. We preprocess the documents and perform stopword removal

4 Results from prior work [7] have suggested that neural IR models do not always
benefit from the presence of an explicit IDF signal (cf. TV vs. IDF in Table 2).
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using Terrier. [16] We instantiate our approach using every pair of the following
models to serve as M1 and M2: BM25 [25], KNRM [34], PACRR [12], Deep-
TileBar [30] and ConvKNRM [4] . These five models additionally serve as our
baselines. We re-rank the TREC qrels (i.e., all judged documents) in order to
remove the effects of an initial ranking method. All methods are evaluated using
the common nDCG@20 (normalized discounted cumulative gain), MAP (mean
average precision), and P@30 (precision at 30) metrics. We create five folds cor-
responding to years 2010–2014 of the Web Track and use them for training,
testing, and validation in a round robin manner. Three folds are used for train-
ing, one fold for validation (i.e., hyperparameter and epoch selection), and the
remaining fold for testing. We consider all combinations of these folds, resulting
in 20 testing folds for each method evaluation. We consider nDCG@20 on the
validation set.

Hyperparameters. We tune BM25’s parameters k1 and b on the concatenation
of the training and validation folds, fixing the values that performed best across
folds. We choose the value of k1 from [0.1, 4.0] in intervals of 0.1 and b from
[0.1, 1.0] in intervals of 0.1. We use pre-trained word2vec embeddings5 [19] with
the neural IR models (i.e., KNRM, PACRR, DeepTileBar, and ConvKNRM)
and train them further on our collection to avoid missing terms. We freeze the
embeddings during training with all models. Given the high computational costs
of hyperparameter tuning, we keep most of the models’ parameters at their
default values. We set PACRR’s k-max pooling parameter to 2, replace its RNN
with a fully connected layer of size 32 as in prior work [13], and keep PACRR’s
other parameters at their default values (as described in the original paper).
Following prior work [13], we add a fully connected layer of size 30 with a tanh
nonlinearity to KNRM. We leave KNRM’s other parameters at their default
values. For DeepTileBar, We use all parameters set to their default values as
provided in [30] (i.e., α = 20 and β = 6 for text tiling, nq = 5, nb = 30,
l = 10, number of units in LSTM to 3 and MLP with 2 hidden layers with
32 and 16 units each). We perform TextTiling using NLTK’s implementation.
We change the loss function from ranknet loss to hinge loss in DeepTileBar and
our empirical evaluation show no difference in performance. For ConvKNRM, we
used all default parameters but freeze the embeddings. For ConvKNRM, KNRM,
and PACRR we set the maximum document length to 800 and the maximum
query length to 4; we truncate or zero pad to reach these lengths. All models are
trained using a pairwise ranking hinge loss and the Adam optimizer [14] with
its default parameters. We use a batch size of 32 and train for 150 iterations
consisting of 128 batches each.

Meta-learner training. We instantiate one meta-learning method for each pair
of models considered and train each meta-learner using the same approach as
with the neural IR models. That is, the meta-learner is trained on three out of
five folds, and its single hyperparameter N is chosen using the validation fold
from the following values: 20, 50, 100, 200, 500. Each meta-learner’s ranking

5 https://code.google.com/archive/p/word2vec/
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methods M1 and M2 are trained using the same training and validation folds as
the meta-learner is.

Each meta-learner is trained to predict the optimal value of α for a given
query based on the features described in the previous section. To determine the
optimal values of α, we vary α from [0, 1] in 0.1 intervals. For each query we
choose the value of α that maximizes the performance of the two methods as
measured by nDCG@20 and use this value as the ground truth when training.
When calculating the seven features that require an initial result set, we identify
the top N documents using the strongest bag-of-words ranking method con-
sidered by the meta-learner. In cases where both the ranking models consider
n-grams, we depend on BM25’s top N documents to compute the features (i.e.,
we use KNRM for the KNRM+BM25, KNRM+PACRR, KNRM+DeepTileBar,
KNRM+ConvKNRM pairs and we use BM25 for the remaining pairs). We cal-
culate these seven features twice in order to consider the impact of document
length, which neural models may be sensitive to: once over the entire top N doc-
uments and once over the first 500 terms of the top N documents. This yields
16 features total. In cases where the linear regression model that serves as our
meta-learner predicts values for α outside of the range [0, 1], we round the value
to 0 or 1 as appropriate. Given that M1 and M2 may produce scores in differ-
ent ranges, we first normalize the scores before combining them. We do so by
dividing the scores by the absolute value of the result set’s average score.

Fixed alpha baselines. In order to determine whether the gains achieved by
our meta-learners are due to query-level alpha predictions or are simply due to
the simple combination of different retrieval models, we consider baselines which
use a fixed alpha value for all queries. For these fixed alpha baselines, we compute
the optimal α that maximizes the performance on the entire training set. We
vary α from [0, 1] in 0.1 intervals as done with the meta-learners. We then use
this α to compute the performance on all queries in the test set. Since this model
performs no query specific computations, its performance can be considered to
signify the gain that can be achieved by simply combining two ranking methods
without considering any query-level features.

Oracles. In order to understand the theoretical maximum gain that can be
achieved by the meta-learners, we additionally report results using query-level
oracle models. For each query in the test, we report the results using the optimal
alpha. As before we vary α from [0, 1] in 0.1 intervals. Thus oracle results reveal
the performance of a perfect meta learner. These results signify the improvements
in retrieval that can be achieved by using query level statistics for combining
two ranking models and provide motivation of our approach.

4.1 Results

The results are shown in Table 1. All meta-learning methods significantly out-
perform the tuned BM25 baseline in terms of P@30 and usually also outperform
BM25 in terms of nDCG and MAP. Furthermore, the meta-learners significantly
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Model nDCG@20 MAP P@30

Single Models
(Baselines)

BM25 0.226 0.369 0.337
PACRR 0.232 0.367 0.350
KNRM 0.267 0.388 0.382
DeepTileBar 0.221 0.332 0.330
CoKNRM 0.291 0.396 0.411

Fixed Alpha
(Baselines)

KNRM+BM25 0.278 0.397 0.393
PACRR+BM25 0.246 0.379 0.362
PACRR+KNRM 0.271 0.392 0.388
DTB+BM25 0.259 0.366 0.373
DTB+PACRR 0.255 0.363 0.369
DTB+KNRM 0.278 0.381 0.389
CoKNRM+DTB 0.293 0.397 0.413
CoKNRM+PACRR 0.299 0.402 0.420
CoKNRM+KNRM 0.291 0.396 0.411
CoKNRM+BM25 0.294 0.398 0.414

Meta-learners
KNRM+BM25 0.278 (KB) 0.396 (KB) 0.392 (KB)

PACRR+BM25 0.248 (PB) 0.381 (FPB) 0.365 (PB)

PACRR+KNRM 0.270 (PB) 0.392 (KPB) 0.389 (KPB)

DTB+BM25 0.250 (DB) 0.359 (D) 0.366 (DB)

DTB+PACRR 0.248 (PDb) 0.355 (D) 0.363 (pDB)

DTB+KNRM 0.279 (KDB) 0.383 (FDb) 0.392 (KDB)

CoKNRM+DTB 0.300 (fCDB) 0.397 (DB) 0.415 (DB)

CoKNRM+PACRR 0.307 (CPB) 0.409 (FCPB) 0.425 (CPB)

CoKNRM+KNRM 0.321 (FCKB) 0.420 (FCKB) 0.437 (FCKB)

CoKNRM+BM25 0.324 (FCB) 0.423 (FCB) 0.439 (FCB)

Oracle
(Per-query)

KNRM+BM25 0.338 0.418 0.427
PACRR+BM25 0.308 0.398 0.395
PACRR+KNRM 0.338 0.416 0.428
DTB+BM25 0.321 0.390 0.404
DTB+PACRR 0.324 0.385 0.406
DTB+KNRM 0.351 0.405 0.431
CoKNRM+DTB 0.369 0.414 0.450
CoKNRM+PACRR 0.392 0.441 0.470
CoKNRM+KNRM 0.398 0.444 0.474
CoKNRM+BM25 0.402 0.457 0.480

Table 1: Results on the TREC Web Track years 2010–2014. Significance tests
were conducted using a two-tailed paired Student’s t-test. Uppercase or low-
ercase characters in brackets indicate statistical significance with p < 0.05 or
p < 0.10, respectively, over the BM25 (B/b), PACRR (P/p), KNRM (K/k),
ConvKNRM (C/c), DeepTileBar (D/d) and corresponding fixed alpha (F/f)
baselines. Comparisons were made only between the ranking methods combined,
the corresponding fixed alpha baseline, and BM25.
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outperform the neural IR baselines in terms of nDCG the majority of the time.
The meta-learners that include ConvKNRM consistently perform best.

While the performance of the meta-learners and the fixed alpha baselines are
often similar, the ConvKNRM+BM25 and ConvKNRM+KNRM meta-learners
perform significantly better than the corresponding fixed alpha baselines across
all metrics. This provides evidence that retrieval performance can be improved
with per-query algorithm selection, and the oracle results indicate that all meta-
learners could be further improved. The oracle’s performance is generally better
when the two models being considered have different characteristics. Combining
unigram and n-gram models gives better performance than combining two n-
gram models. For example, ConvKNRM+KNRM and ConvKNRM+BM25 per-
form better than ConvKNRM+PACRR and ConvKNRM+DeepTileBar despite
the fact that PACRR outperforms BM25. The ranking of the meta-learning
methods is similar to the ranking of the oracles, suggesting that our meta-
learner’s features are robust to the choice of models being combined.

Feature
PACCR PACCR BM25+ DTB+ PACCR

+KNRM +BM25 KNRM BM25 +DTB

Average query IDF 0.014 0.046 -0.048 0.029 -0.017
Max query IDF 0.000 -0.013 0.042 -0.026 0.037

Freq. of query term -0.018 -0.009 -0.045 0.010 -0.011
Freq. of max IDF query term -0.018 0.023 -0.022 0.020 -0.004
Document length -0.040 0.025 -0.034 0.010 0.002
Query coverage -0.009 -0.009 -0.008 -0.023 -0.010
Bigram match -0.009 -0.072 0.021 -0.003 -0.015
Trigram match 0.009 0.018 -0.011 0.012 -0.019
Unordered match -0.026 0.089 -0.017 0.028 0.010

Table 2: Feature weights from the meta-learners.

Feature
DTB+ DTB+ PACRR+ CKNRM CKNRM
KNRM CKNRM CKNRM +KNRM +BM25

Average query IDF -0.011 0.008 -0.007 -0.027 -0.012
Max query IDF 0.011 -0.002 0.013 0.015 0.016

Freq. of query term -0.015 -0.004 -0.017 -0.006 -0.043
Freq. of max IDF query term 0.012 0.000 0.003 0.000 0.009
Document length -0.004 0.006 0.008 -0.014 -0.023
Query coverage 0.014 0.002 0.005 0.002 -0.019
Bigram match 0.034 -0.017 0.038 -0.000 -0.042
Trigram match 0.020 0.001 -0.002 0.034 0.002
Unordered match -0.061 0.030 -0.018 -0.056 0.035

Table 3: Feature weights from the meta-learners (continued).
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Analysis. In order to gain further insight about the meta-learning methods,
we consider the weights they assign to features. In order to mitigate the impact
of the features’ varying scales, we scale the feature values to zero mean and
unit variance before training. These feature weights are shown in Table 2 and
3. Negative weights indicate that the meta-learner favors the second ranking
method, whereas positive weights indicate the first ranking method is favored
(e.g., given PACRR+KNRM, a negative weight means the feature favors KNRM
over PACRR). Note that the two types of document features can sometimes
cancel each other out. To remove the impact of such cancellation on our analysis,
we train two separate meta-learners, with each using only one type of document
feature. We then choose the meta learner that achieved better performance and
used its feature weights in the analysis.

In this table, several features weights are related to behavior described by
the IR axioms. Features related to the frequency of query terms generally do
not favor PACRR, which may be related to the fact that PACRR’s k-max pool-
ing considers only the k strongest matches for each query term. This violates
TFC1, because it makes the model oblivious to the difference in relevance of a
document with more than k matches as compared to a document with exactly k
matches. The unordered match feature favors PACRR over BM25 and DeepTile-
Bar but prefers KNRM and ConvKNRM over PACRR. The document length
feature favors PACRR, DeepTileBar, and KNRM over BM25 even though both
these ranking methods do not consider document length as an explicit signal.
This may be related to the observation that BM25 sometimes overpenalizes long
documents. [15]. The document length feature always favors KNRM over other
models, indicating that summing query term scores can help KNRM to con-
sider document length. The query coverage feature tends to favor models that
sum query term scores rather than combining them with a fully connected layer
(i.e., KNRM and BM25 are preferred over PACRR). Query coverage seems to
strongly favour BM25 over DeepTileBar, whereas DeepTileBar is favoured over
KNRM and PACRR, which may indicate that DeepTileBar’s bagging with dif-
ferent kernel sizes is a more efficient mechanism for query coverage. Additionally,
DeepTileBar is strongly preferred over BM25 for both ordered and unordered
matches. Regarding the ConvKNRM meta-learners, which are empirically the
best-performing, bigram matches seem to favour BM25 and PACRR whereas
unordered matches seem to favour ConvKNRM in both meta learners. It may
be that ConvKNRM’s cross matching CNN layers capture unordered matches
more efficiently than PACRR’s approach. DeepTileBar and KNRM are preferred
over ConvKNRM for unordered matches, whereas ConvKNRM is preferred over
bigram matches for DeepTileBar and trigram matches for KNRM.

In Figure 1 we analyze the distribution of per-query weights predicted by
several meta-learners and compare them to the query weights selected by the
fixed alpha baseline.6 The KNRM+ConvKNRM meta-learner is an interesting
case. The baseline always gives zero weight to KNRM and exclusively uses Con-
vKNRM’s predictions. However, the meta-learner uses ConvKNRM exclusively

6 The baseline’s weights are fixed for each test set but vary across different test sets.
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Fig. 1: Weight (α) distributions for meta-learners and fixed alpha baselines.
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for only 38% of the queries, which yields a significant improvement. The dif-
ference in alphas is even larger for the BM25+ConvKNRM meta-learner: the
baseline chooses an alpha of at least 0.9 the vast majority of the time, whereas
the meta-learner chooses alphas between 0.4 and 0.6 about 50% of the time.
Our empirical evaluation demonstrates that both meta-learners significantly
improve over the fixed alpha baselines. Similar analysis holds true for Con-
vKNRM+PACRR; the baseline chooses alpha less than or equal to 0.1 for 60%
of total queries whereas the meta-learner chooses alpha between 0.2-0.5 for 75%
of queries.

It is not the case that the meta-learner simply favors the models that per-
form better. For example, with PACRR+BM25, the baseline chooses a value of
alpha greater than 0.6 about 50% of time (favors PACRR over BM25). This is
in sharp contrast to the meta-learner, which prefers BM25 over PACRR (alpha
less than 0.5) for about 64% of queries. The alpha weights can be used to dif-
ferentiate meta-learners into two broad categories: the first category consists of
model combinations where both methods are given nearly equal weights7, and
the second category consists of combinations where the meta-learner often fa-
vors one ranking method over the other8. On average the meta-learners in the
second category were more likely to perform better than the baseline than the
meta-learners in the first category. Additionally, oracle results for meta-learners
in the former category are usually higher than for those in the latter category.

5 Conclusion

In this work we investigated using a meta-learning method to improve retrieval
performance by predicting how to combine the scores from two different re-
trieval models. Using an empirical evaluation on TREC Web Track data, we
found that these meta-learning methods significantly outperformed both base
models for the majority of model combinations and metrics considered. In order
to investigate the source of this improvement, we compared these meta-learners
to baselines which used the same model weights for all queries, finding that
our best-performing meta-learners also significantly outperformed these “fixed
alpha” baselines. Finally, we consider a per-query oracle and find that it sub-
stantially improves over our meta-learning methods, demonstrating that there
is room for improvement in future work.
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