
Business and Society

What Is This Thing Called Use Case Inheritance?

Pierre Metz1

1 Brose Fahrzeugteile GmbH & Co. KG, Germany
(formerly Cork Institute of Technology, Computing Dept., Cork, Ireland and Darmstadt Uni-

versity of Applied Sciences, German)
pierre.metz@brose.com, pierre.metz@intacs.info

Abstract.

In more than two 2 decades of use case modelling there has been a imprecisely
defined notion in UML since v1.1 that has never been fully understood, namely
use case inheritance (UCI). Therefore, this paper suggests a necessary reconcil-
iation to achieve a broader acceptance and attractiveness in practice while re-
ducing confusion, with a clear demarcation from the Include/Extend relation-
ships.
This is done based on implications from the author’s completed PhD research,
UCI suggestions found in research contributions, technical text books as well as
literature about OO inheritance semantics, and the author’s personal profession-
al industry experience. Rather than being a typical formal research paper, the
drivers of the presented solution proposal are to offer pragmatic and practical
UCI application rules for the industry. This should offer a basis for further qual-
itative validation by requirements engineers in practice, and, also for future
conceptual research.

Keywords: Use Cases, Use Case Relationships, Requirements Engineering, In-
heritance, Specialization, Generalization, Subtyping, Polymorphism, UML.

1 Recollection of Use Case Basics

1.1 Actors, Goals, and Use Cases

An actor specifies a role that can be taken by a person, a piece of hardware, a compo-
nent, or a software application [18],[17],[20]. Each actor has certain operational re-
sponsibilities imposed by the surrounding business processes and rules. In order to
fulfil its responsibilities, the actor has to perform a number of operations. It wants
some subset of these operations to be facilitated by a software application or hardware

Business and Society

285

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

2

apparatus. Thus, it sets corresponding goals for the system to deliver. These goals
lead to desired functional system requirements specifications, i.e. not internal design
solutions, expressed by use cases [1],[10]. Each use case delivers a single go al (see
Example 1). An
actor instance processes only those use cases that the actor is connected to.

Example 1: Use Case Goal
“Register New Customer Order”

Basic Course:
1. Sales clerk enters customer

ID.

2. System displays customer pro-

file.

3. Sales clerk confirms that the

customer’s credit rating is suf-

ficient.

4. System assigns an order ID.

5. Sales clerk registers the

desired trade items and payment

information.

Use Case Postconditions:

System has initiated an order,

has documented payment infor-

mation, and has registered the

order with the customer.

Register New

Customer Order
Clerk of

the Sales

Dept.

Fig. 1: Use case diagram for Example 1

Alternative Courses:
1a. Sales clerk wants to look up

the customer:

.1 System shows all custom-

ers.

.2 Sales clerk browses the

list and selects one.

Rejoin at 2.

3a. Customer’s outstanding debts

are above the threshold:

.1 System notifies the key

account manager for media-

tion purposes.

Use case fails.

1.2 Use Case Pre- and Postconditions

From the goal of each use case a set of corresponding outcomes is derived to be estab-
lished upon successful goal delivery [1],[10], i.e. successful use case completion.
Each of these results is required by the business processes associated with the dis-
cussed use case and, therefore, is delivered to at least one primary actor or stakeholder
[1],[4],[5],[10],[19],[20],[25]. The set of use case business results are also called use

case postconditions [4],[5],[20],[30], In many cases, a use case requires some condi-
tion to hold before it can be triggered and executed by an actor instance. These are
called use case preconditions. The view of use case goals, use case pre- and postcon-
ditions were considered a “contractual” specification [10],[20],[31] thereby seemingly
resembling the Design-by-Contract principle in [25]. However, there is a fundamental
difference: Design-by-Contract demands the caller of a service to guarantee the pre-
conditions in order for the callee to deliver this service, the result of which is speci-
fied by postconditions. Clearly, for use cases an actor instance is the “caller”. Howev-
er, use case precondition checking is always a system responsibility, i.e. done by the
callee but never by the caller [1],[4],[5],[10],[20],[30]. For example, the preconditions
of an ATM’s “Withdraw Cash” use case would include “Cash reservoir not empty”.
Therefore, use case pre- and postconditions do not correspond to Design-by-Contract.

Business and Society

286

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

3

1.3 Use Case Interaction

Accomplishing the goal-driven postconditions by the system might require active
interaction with the actor instance at the system boundary

[1],[4],[10],[17],[18],[19],[20]

1.4 The Extend- and Include-Relationships

The Include and Extend relationships have been defined and explained as static rela-
tionships for use case restructuring or refactoring of specifications, e.g. for removing
redundancy or use case decomposition [1],[4],[5],[15],[14],[18],[19],[22],[23],
[24],[32]. In this respect, Extend is explained as attaching to a base use case a descrip-
tion of a set of interaction steps that can be subject to a condition. On the contrary,
Include is understood as attaching a description of a mandatory set of interaction
steps. Therefore, an inclusion/extension use case always remains a part of a static

system functionality description. In fact, in [24] it has been shown that Include and
Extend follow whole-part (aggregation) relationship semantics.

If factored out by Include/Extend these interaction parts also form a use case, i.e. they
receive a goal and post-
conditions. It follows
that this goal is a sub-
goal of the base use
case, i.e. the summaris-
ing goal for the factored-
out interaction which is
a subset of the base use
case interaction. This is
obvious for Include-
attached interaction, and
it is also true extension
(and therefore condi-
tional) use cases. Arguing that an extension use case may or may not be executed
depending on condition evaluation is a runtime or at least a scenario perspective; in
contrast, as shown above use cases are static requirements descriptions (see Section
1.1) prior to design, so talking about goals is a conceptual and business semantics

perspective.
Hence, exclusion use cases hold sub-goals, i.e. either something additional, or a

different approach to fulfilling a base use case interaction step [23]. See Fig. 2 as an
example: the goal “Create order” would be a summarising goal of the interaction steps
4 and 5 in Example 1; the goals for alternative course 1a in Example 1 would be
“Look Up Customer”, and its postcondition could be “Customer has been marked”.
We see that goal-subgoal semantics are independent of model restructur-
ing/refactoring through Include/Extend [1],[10].

Register New

Customer Order
Clerk of

the Sales

Dept.

Look Up Customer

Have Resolved Order

from Customer with

Outstanding Debts

«extend»

«extend»

Create Order

«include»

Fig. 2: Use case diagram of Example 1 showing the alterna-
tive courses, and interaction steps 4 and 5 factored out

by Include and Extend, respectively

Business and Society

287

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

4

2 Use Case Inheritance – Literature Review and Related Work

In practice, and in some literature e.g. [20], it is sometimes believed that Extend can
be seen as a generalisation relationship. However, Section 1.4 and, also, references
[22],[24],[32],[36] show that this view cannot be uphold. Furthermore, the fact that
UML [26] keeps Extend explicitly separate from UCI implies that Extend is not
meant to have the same semantics since otherwise this distinction would be meaning-
less.

It can often be observed that it is silently assumed, or even explicitly claimed, that
UCI works the “same way” as with classes in the OO domain [17],[18],[19],[26],[27].
This view is probably fostered by UML’s persisting foundation of use cases as Classi-
fiers since v1.1, which yields object semantics [26], and also by former UML v1.4’s
statement:

“A generalization relationship between use cases implies that the child use case

contains all the attributes, sequences of behavior, and extension points defined in

the parent use case, and participates in all relationships of the parent use case.

The child use case may also … add additional behavior into and specialize … be-

havior of the inherited ones.” [26].

Most authors avoid making any commitment and prefer to provide explanations like
UCI is about “variations”, “indicating commonalities”, the child use case “doing a bit
more” than the parent use case, or “adding to and redefining/overriding” parent inter-
action and properties [1],[3],[4],[5],[6],[19],[20],[28],[29].

In [18] Jacobson introduces the idea of “abstract use cases”, i.e. a use case which
contains generic interaction step placeholder to be expanded on in a child use case, a
concept which is also supported by UML [26].

In [4],[17],[18],[27] it is claimed that a child use case must preserve the parent use
case order of interaction steps. Apparently, this is driven by the assumption that use
case inheritance should ensure OO behavioural conformity when substituting child
entities for parent entities (see Section 3 for more explanation).

In [2] it is suggested that

“inheritance between use cases should be applied whenever a single condition

… would result in the definition of several alternative courses.”

thereby making fuzzy the concepts of locally specified alternative interaction courses
(ScenarioPlusFragments use case pattern in [1],[10] and the extracting of such alter-
native courses via Extend (PromotedAlternative pattern in [1]). Why creating a new
use case instead of simply adding the new behaviour to the given use case?

To [1] Rawsthorne contributed the CapturedAbstraction use case pattern, which
develops further Cockburn’s idea of documenting Technology Variations [10]. This
pattern suggests placing pure technology variations of given parent use case (e.g.

Business and Society

288

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

5

interactions for blind people, voice control, loading of a keycard instead of money
dispensing for a Withdraw Cash use case) into new child use cases instead of clutter-
ing the parent use case up with a large number of alternative courses.

Cockburn [10], looking at use case inheritance from a Generalization perspective,
disregards the concept in practice. The UML [26] use case inheritance semantics of
allowing a child use case to be substituted wherever a parent use case is mentioned he
explains as being in conflict with business process logic.

Without any connection to use case inheritance, he suggests removing redundancy
through parameterisation: consider the use case “Find Customer Order” in the sales
domain. Further consider the use case “Find Insurance Policy” in the insurance do-
main. Cockburn states that, though there are differences due to the different business
domains, these use cases will contain identical interaction logic with respect to “find-
ing something”. He suggests placing all identical interaction steps into the parent use
case and adding placeholders at those places at which each child use case sets con-
crete concern-specific interaction (see Example 3, below). A notation for this is not
proposed though. The same suggestion is made in [5] by Bittner/Spence and [16] by
Hitz/Kappel.
In [30] it is claimed, without further explanation, that there is no UCI at all.

3 Consulting Object-Oriented (OO) Inheritance Semantics

Basically, in the OO domain inheritance is not only considered an implementation
tool but also a general modelling and “thinking” concept. It addresses the creating of
abstractions based on existing abstractions without modifying the latter (Open-Closed

principle). Ideally, inheritance ought to represent subtyping which is also referred to
as conceptual specialisation, or strict inheritance [35]. Subtyping demands true se-
mantic correspondence of the child to its parents. A further goal of subtyping is the
enabling of the processing of an object of a subtype on behalf of an object of a super-
type (substitutability), thereby demanding behavioural compatibility, a term which is
also referred to as semantic conformance or behavioural subtyping. This introduces
dynamic polymporphism, as also called subtyping polymorphism or dynamic typing,

that is realised by late-binding. Such behavioural compatibility has been addressed by
e.g. Meyer’s Design-by-Contract [25], the Liskov Substitution Principle (LSP) [21],
or by Cook/Daniels [11], all of which guarantee the Open-Closed principle.

Inheritance further introduces the possibility of defining semantic abstractions
with the decision about their properties’ data types being deferred to instantiation
time. This is called parametric polymorphism which does not require runtime con-
cepts like late-binding [8],[34]. Today, in the programming domain this concept is
often compared to template classes or generic programming.

In spite of the fact that subtyping was often regarded as the only legitimate reason
for applying inheritance [35], the evolution of OO approaches, systems, languages,
and concepts has shown that inheritance does not necessarily ensure subtyping. Ra-
ther, inheritance allows the modification of child properties in various manners by
adding, redefining/overriding, and even removing properties, and by changing visibil-

Business and Society

289

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

6

ity of properties [35]. In the implementation domain, this is particularly exploited for
pragmatic reasons such as saving coding effort (reuse), reducing memory needs, or
introducing more efficient algorithms, all of which is not based on conceptual rea-
sons. Furthermore, inheritance can be used as a pure hierarchical structuring tool by
introducing abstract classes revealing abstract operations, i.e. having no methods; in
contrast, concrete sub-classes provide such methods, thereby further supporting pol-
ymorphism. Pure abstract classes, i.e. having abstract operations only, equal to the
concept of interfaces. This, in turn, has led to the concept of interface inheritance as
opposed to property inheritance [35], i.e. inheriting operations vs. inheriting meth-
ods, attributes, constraints and associations. Due to the possibility of object concate-
nation (delegation) [33],[35] the concept of static vs. dynamic inheritance was dis-
cussed, the latter of which provides the ability for an object to change its parents at
runtime [8],[33],[35].

All this makes it impossible to make the objective statement that the “very es-
sence” of all types and variations of inheritance apparently is allowing incremental

modification while following the Open-Closed principle [35].

4 My Proposal – Discouraged Use Case Inheritance Semantics

4.1 Use Cases Cannot be Treated Polymorphically “At Runtime”

In agreement with Cockburn [10] I suggest that substitutability (see Section 3) should
not valid for use cases. Why? Use cases are not programs but static requirements
specifications (see Section 1.1). Hence, why would an actor instance need to process a
more special or more general use case on behalf of the one that was specified for it
based on its individual operational responsibilities, role definition, job description?
Why would an actor instance perform a use case the postconditions of which would
deliver more or even less than needed by the surrounding business process needs and
business rules? Therefore, use case performances are non-substitutable, i.e. for use
cases there neither is runtime polymorphism and late binding nor dynamic inher-

itance.

4.2 Multiple Use Case Inheritance Disregarded

UML allows multiple inheritance of use cases [26]. However, my opinion is that the
idea of multiple UCI is not applicable
because it violates the Separation of
Concerns principle [12],[22]: as we
know from Section 1.1 a use case is a
goal-driven requirements specification
of an individual, independent, and
behaviourally coherent system func-
tionality representing a system-
supported part of the pre-existing busi-

ness processes. In this respect, a use

UC
1

UC
2

UC
3

Actor A

Actor B

Actor C

Fig. 3: Multiple use case inheritance

Business and Society

290

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

7

case is, in fact, a single business concern [22]. Consequently, the collapsing of two
distinct business concerns, i.e. use cases, into one is in conflict with this principle
(even if UC3 in Fig.3 was adding further interactions). Would stakeholders and end
users actually demand new a system functionality that consists of an assembly of two
distinct already existing ones?

In fact, the existence of a use case child with multiple parents rather indicates the
general confusing of inheritance and the employing of whole/part-like use case rela-
tionships, i.e. Include or Extend (see Section 1.4). A similar confusion has already
been reported in the OO programming domain [34] where often mixin classes [7] are
created where delegation, i.e. aggregating classes by associations, or single inher-
itance, respectively, would have been the appropriate tool [34].

5 My Proposal – Encouraged Use Case Semantics

5.1 Parametrization of Identifiers Within Interaction Steps (“Parametric

Polymorphism”)

I combine Cockburn’s [10] notion of parameterized use cases, and the ideas of
Bittner/Spence [5] and Hitz/Kappel [16], to suggest the idea of parametric polymor-

phism for use cases as follows:

Rule 1. Parameterizing Identifiers

Use case interaction steps contain identifiers (i.e. generic data placeholders) instead of
concrete values, e.g. “customer name” instead of “John Doe”. Now, for maximum
reuse purposes and reducing redundancy, even such identifiers may be left unspeci-
fied (parameterization) in the parent, and in the child use cases only the expanding
concrete identifier names have to be listed. The rest of the parent use case is valid also
in the child use cases. E.g. a child use case identifier “customer name” could be ab-
stracted to “search criterion” in the parent use case.

Example 2:

The following automotive domain
example exploits the concept for
propagating light signals to a hitch
controller on a car driver’s actions
such as using the indicators or brak-
ing. In the parent use case generic
identifiers are given in italics:

Hitch

Controller

Receive Indicator

Left Signal

Car System

Receive Light Signal

Receive Breaking

Signal

Fig. 4: Identifier parameterization

Goal “Receive Light Signal”

Trigger: Edge change for <signal> detected

Basic course:
1. Hitch controller either activates <actuators> upon rising edge

or deactivates <actuators> upon trailing edge.

Business and Society

291

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

8

Postconditions:
Electric contacts of <actuators> activated when corresponding

car system <signal> activated.

Goal “Receive Indicator Left Sig-

nal”

signal: left indicator

actuators: IndicatorRearLeft

Goal “Receive Braking Signal”

signal: braking

actuators: BrakingRearRight,

BrakingRearLeft

5.2 Parametrization of Entire Interaction Steps (“Hierarchy Abstractions”)

I adopt Jacobson et al.’s original idea of “abstract use cases” [18] (see also [27],[28])
Rawthornes CapturedAbstraction use case pattern [1], and Cockburn’s Technology

Variations [10] by integrating in terms of the following rule:

Rule 2. Interaction step set placeholders

Even an entire set of interaction steps can be replaced by a generic placeholder, i.e.
not providing concrete behaviour (“abstractness”, “virtual” interaction step). This
indicates that a child use case will later expand on this placeholder by providing con-
crete interaction steps.

Example 3:

Fig. 6 shows a simplified example from a real
world requirements specification for 4th generation (GSM-based, i.e. no hardwired
online connections) EFTPOS terminals (electronic funds transfer at point of sale).

Goal “Make EFTPOS”

Basic course:
1. Inserter inserts

card and amount.

2. System validates

card information

remotely.

3. <interaction

placeholder>

4. System ejects

card.

Postconditions: Card taken by inserter. Debit registered.

Goal “Pay by Change Card

or Credit Card”

Basic course:
At <interaction placeholder>

1. System asks for electronic

signature.

2. Inserter signs with e-pen.

3. System debits card holder’s

credit card account.

Goal “Pay by Electronic Cash”

Basic course:
At <interaction placeholder>

1. Inserter enters PIN.

2. System validates the PIN.

3. System debits card

holder’s bank account.

EFTPOS

Terminal

Pay by Change

Card or Credit Card

Inserter

«abstract»

Make EFTPOS

Pay by Electronic Cash

Fig.5: Use case inheritance for technology variations

Business and Society

292

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

9

Postconditions:
Credit Card or Change Card tak-

en by inserter. Debit regis-

tered with credit card account.

Postconditions:
Debit card taken by inserter.

Debit registered with card

holder’s bank account.

5.3 Specialization of Use Cases (“Property Inheritance”, “Incremental

Modification”)

It follows from the general scientific principle of “Ockham’s Razor” that it is is of
little practical and scientific use if a new concept would only be an alternative to what
can already be done with given modelling elements. Therefore, UCI semantics should
be differentiable from Include and Extend in particular. Consequently, I discourage
the suggestions in [2] (see Section 2). Further, I propose the following new detailed
rules:

Rule.3 Strengthening Use Case Goals and Postconditions

This means that if Include and Extend carry sub-goals only then, in the spirit of the
OO Design-by-Contract principle [25] and the LSP [21], UCI should be able to either

maintain or strengthen the base use case goal; consequently, as postconditions must
always support the goal, they need either to be held or strengthened, too.
Example 4 below shows a strengthening scenario, while in Example 3, above, the
different wording of the goal and postconditions is only because of the different inter-
action step placeholder; from the business domain viewpoint they are actually equiva-
lent.

Rule.4 Modifying Interaction Steps [1],[5],[19],[20],[28],[29]
In Section 2 we have seen that some authors claim that a child use case must not rede-
fine the parent use case’s order of interaction steps; apparently, this is to suggest that
UCI shall ensure OO behavioural conformity when substituting child instances for
parent instances. However, Section 4.1 explains why OO behavioural conformity
should not be required for use cases. Further, from Section 1.3 we understand that
interaction steps “connect” the use case goal with the postconditions. It thus appears
that what solely governs the design of interaction steps are business rules (business
domain semantics) and functional system requirements. For these reasons I suggest
allowing a child use case to reorder and modify inherited parent use case interaction
steps, and to add new ones. Correspondingly, guards of alternatives course may be
adapted, and their branching points relocated, by the child use case. Further, inherited
inclusions or extensions might need to be dissolved because former redundancy might
vanish, or new inclusions or extensions ones introduced because of new redundancies.
In a use case diagram, the dropping of a base use case’s Include/Extend is represented
simply by graphically not repeating them for the child use case. However, there are
two constraints: any such modification must ensure consistency with the underlying
business domain rules, and, also, must never cause the parent use case postconditions
and the parent use case goal be weakened (i.e. Rule 3 shall apply). Let us look at Ex-
ample 4 demonstrating the application of these rules.

Business and Society

293

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

10

Example 4: Applying the above rules 3 and 4 to Example 1

• Rule 3: the goal “Register New Cus-
tomer Order with Specials” is a
stronger goal for “Register New Cus-
tomer Order” (details given in Exam-
ple 1) because the former adds price
reduction for VIP customers. This is
reflected correspondingly by the
stronger child use case postcondi-
tions, i.e. the child establishes every-
thing the parent does plus the record-
ing of negotiated price reduction;

Register New

Customer Order

Clerk of the

Sales Dept.

Register New

Customer Order with

Specials
Key Account

Manager

Fig. 6: Use case reuse

• Rule.4: correspondingly, the child use case goal reveals the new interaction
step at label 6. It is also decided that the child use case waives the inherited
step 3 (indicated by strikethroughs) as a VIP customer shall be attended to irre-
spective of their obligations. Correspondingly, the inherited alternative course
3a is no longer applicable either.

Goal “Register New Customer Order with Specials”

Basic Course:
1. Key account manager enters customer ID.

2. System displays the customer profile.

3. Sales clerk confirms that the customer’s credit rating is suf-

ficient.

4. System assigns order ID.

5. Key account manager registers the desired trade items

6. Key account manager grants price reduction.

Alternative Courses:
3a. …Customer’s outstanding debts are above the threshold:

Postconditions:
System has initiated an order for the customer, has documented

payment information with price reduction, and has registered the

order with the customer.

Rule.5 No Constraints for Use Case Preconditions

The Design-by-Contract principle in the OO domain [25] and the LSP [21] also re-
quire a subtype to either maintain or weaken the preconditions of a parent operation.
As we know from Section 3 this is mainly for ensuring behavioural conformity when
substituting child objects for parent objects. However, we have seen that for use case
performances there neither is substitutability (see Section 4.1), nor does Design-by-

Business and Society

294

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

11

Contract apply (see Section 1.2); further use case preconditions are checked by the
system, not by the triggering actor instance (see Section 1.2). Consequently, there is
no need for use cases to enforce the same behavioural conformity semantics as de-
sired for objects.

Please note however that the proposed Rules 3 to 5 still enable, but do not necessarily

enforce, strict behavioural subtyping.

6 Critical Closing Remarks

6.1 UCI vs. Include/Extend Revisited

From the OO domain we know that any inheritance can alternatively be expressed by
object aggregations, i.e. by
whole/part relationships,
and delegation (see Section
3). Therefore, a use case
model employing Rule 4
can also be expressed via
Include-relationships as
shown in Fig. 7.

Fig. 8 shows the In-
clude-relationships version
of Fig. 6 (in Example 4,
above).

Even though that it is possible to solve a problem with Include where UCI appears
appropriate it is obvious that an Include solution entails a greater graphical and textual
complexity. This impacts on the reader’s convenience and reading efficiency: in Fig.6
only one document (for “RegisterNewCustomerOrderWithSpecials”) needs to be
opened while in Fig.7 it would be four documents (“RegisterNewCustomerOrder-
WithSpecials” and three inclusion use cases), or at least 4 different document sections
have to be looked up. Since
size of use case models can
be an issue in practice, UCI
should contribute to keeping
the use case model size at a
minimum, and, therefore,
ease reading and reviewing.

In any case, what cannot be
expressed which Include or
Extend is the idea of generic
identifiers and generic interaction steps: neither Extend nor Include is an alternative in
situations as shown in Examples 2 and 3 as these relationships do not support parame-

Register New

Customer Order

(step 3)

Clerk of the

Sales Dept.

Register New Customer

Order with Specials

(step 6)

Key Account

Manager

steps 1,2

steps 4,5

steps 7,..

«include»

Fig. 7: Example 4 realised with Include. Numbers

EFTPOS

Terminal

Pay by Change Cars

or Credit Card

Insert Card

Pay by Electronic Cash

«include»

Eject Card

«include»

Inserter

Fig. 8: Example 3 realised with Include

Business and Society

295

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

12

ters and are not capable of propagating any type of “abstractness” [26]. Therefore,
Rules 1 and 2 serve as further clear semantical distinction criteria.

6.2 Comprehensibility of UCI

One might argue that UCI only appears simple and understandable to software engi-
neers, UML modellers and programmers since, historically, this audience has been
mostly familiar with inheritance. Unfortunately, this audience is not the only one that
deals with use case modelling: the use case calculus encompasses a requirements
elicitation, modelling, and textual documentation technique and, thus, by definition,
does require non-IT business domain experts to be involved. In my industry career as
a requirements engineer I have experienced that the speaking in terms of substituting

placeholders, rewriting and adding interaction sequences, and appending more to

goals and use case results can be understood (and is often found helpful) by such
stakeholders, in contrast to OO-related terminology like Open-Closed, polymorphism,
abstract classes, or subtyping etc. However, UCI still remains a hard to understand
concept in practice, irrespective of the added values identified and guidance provided
by my solution proposals above. Without effective training, operational coaching, and
industrial experience the benefits of UCI will not necessarily show.

References

1. Adolph S., Bramble P., Cockburn A., Pols A. “Patterns for Effective Use Cases”, Addison-Wesley,

2003

2. Ambler S. “Reuse in Use-Case Models: Extend, Include, and Inheritance”, Agile Modeling Essay,
http://www.agilemodeling.com/essays/useCaseReuse.htm#InheritanceUC

3. Arlow J., Neustadt I. “UML2 and the Unified Process Second Edition”, Addison-Wesley, 2005

4. Armour F., Miller G. "Advanced Use Case Modeling", Addison-Wesley, 2001

5. Bittner K., Spence I. “Use Case Modelling”, Addison-Wesley, 2003

6. Booch G., Jacobson we., Rumbaugh J. “Rational Unified Process”, Rational Software Corporation
7. Bracha G., Cook W. “Mixin-Based Inheritance”, OOPSLA/ECOOP ’90, ACM SIGPLAN Not. 25
8. Cardelli L., Wegner P. “On Understanding Types, Data Abstraction, and Polymorphism”, Computing

Surveys, December, 1985

9. Chambers C., Ungar D., Chang B.-W., Holzle U. ”Parents are Shared Parts of Objects: Inheritance

and Encapsulation in Self”, 1999, Lisp Symbolic Computing
10. Cockburn A. "Writing Effective Use Cases", Addison-Wesley, 2001

11. Cook S., Daniels J. “Designing Object Systems – Object-Oriented Modelling with Syntropy”, 1994
12. Dijkstra, E.W. “On the role of scientific thought”, 1974, in “Selected Writings on Computing: A Per-

sonal Perspective”, Springer, 1982, p.60-66

13. Fowler M., Cockburn A., Jacobson I., Anderson B., Graham I. "Question time! About use cases",

Procs. 13th OOPSLA, pub. ACM Sigplan Notices 33 (10)

14. Genilloud, Frank "Use Case Concepts from an RMODP Perspective", JOT, vol. 4, no. 6, Special Is-

sue: Use Case Modeling at UML-2004, Aug 2005

15. Génova G., Lloréns J., Quintana V. “Digging into Use Case Relationships”, UML 2002 Conference,
LNCS 2460, Springer Verlag, Germany, 2002

16. Hitz M., Kappel G. "UML @ Work", dpunkt Verlag, Germany, 1999

17. Jacobson I. “ Use Cases - Yesterday, Today, and Tomorrow”, Rational Software Corporation,

Business and Society

296

http://www.cerc-conference.eu
http://www.cerc-conference.eu

Business and Society

13

18. Jacobson I. Christerson M., Jonsson P., Övergaard G. “Object Oriented Software Engineering – A Use

Case Driven Approach”, Addison-Wesley, 1992

19. Jacobson I. “The Road to the Unified Software Development Process”, Cambridge University Press,
SIGS Reference Series, 2000

20. Kulak D., Guiney E. “Use Cases – Requirements In Context”, Addison-Wesley, ACM Press, 2000

21. Liskov B. H., Wing J. M. "Behavioral Subtyping Using Invariants and Constraints", School of Com-

puter Science, Carnegie Mellon University, Pittsburgh, July, 1999

22. Metz P., O’Brien J., Weber W. “Against Use Case Interleaving”, UML 2001 conference, LCNS 2185,
Springer Verlag, Germany, 2001

23. Metz P., O’Brien J., Weber W. “Specifying Use Case Interaction: Types of Alternative Courses“, in
Journal of Object Technology (JOT), Issue March/April 2003,

24. Metz P. “Revising and Unifying the Use Case Textual and Graphical Worlds”, PhD thesis, Cork Insti-
tute of Technology, 2004

25. Meyer B. “Object-Oriented Software Construction”, 2nd Edition, Prentice Hall, 1997
26. OMG Unified Modeling Specification, v1.4, Sept. 2001,OMG, UML v2.0 Superstructure 03-08-02

27. Övergaard G, Palmkvist K. "A Formal Approach to Use Cases and Their Relationships", Proceedings

of "UML'98: Beyond the Notation", LCNS 1618

28. Övergaard G, Palmkvist K. “Use Cases: Patterns and Blueprints”, Addison-Wesley, 2004

29. Rosenberg D., Scott K. “Use Case Driven Object Modeling with UML”, Addison-Wesley, 1999

30. Schneider G., Winters J. “Applying Use Cases – A Practical Guide”, Addison-Wesley, 1997

31. Sendall S. “Specifying Reactive System Behavior”, Ph.D. thesis, École Polytechnique Fédérale de
Lausanne, 2003

32. Simons A. "Use Cases Considered Harmful", Procs. TOOLS-29 Europe, 1999

33. Stein L. “Delegation is Inheritance”, OOPSLA ’87 Conference Proceedings, ACM Sigplan Not.22, 12
(Dec.)

34. Strachey C. “Fundamental Concepts of Programming Languages”, 1967
35. Taivalsaari A. “On the Notion of Inheritance”, ACM Computing Surveys, Vol. 28, Sept. 1996
36. Use Case Workshop “Industrial Use Case Modeling”, 7th UML 2004 Conference, October, 2004
37. Van den Berg K., Simons A. "Control-Flow Semantics of Use Cases in UML", Information and Soft-

ware Technology, Elsevier Science B.V., 19

Business and Society

297

http://www.cerc-conference.eu
http://www.cerc-conference.eu

