
Tight Slalom Control for Sailboat Robots

Mael Le Gallic
ENSTA Bretagne

mael.le gallic@ensta-bretagne.org

Joris Tillet
ENSTA Bretagne

joris.tillet@ensta-bretagne.org
Fabrice Le Bars
Lab-STICC

ENSTA Bretagne
fabrice.le bars@ensta-bretagne.fr

Luc Jaulin
Lab-STICC

ENSTA Bretagne
lucjaulin@gmail.com

Abstract

Existing controllers for sailboat robots are usually developed for speed
performances and for long straight lines. In this context, the accuracy
is not the main concern. In this paper, we consider the tight slalom
problem which requires accuracy. We propose a feedback-linearization
based method combined with a vector field approach to control the
sailboat. Some simulations show that the robot is able to perform the
slalom without missing any gate.

1 Introduction

We consider a mobile robot described by the state equations (Jaulin, 2015a)

{
ẋ = f(x,u)
p = g(x)

(1)

with an input vector u = (u1, . . . , um), a state vector x = (x1, . . . , xn) and a pose vector p = (p1, . . . , pm+1)
with n ≥ m + 1. The goal of this paper is to show we can follow a chosen vector field in the p space (Khatib,
1986)(Pêtres et al., 2011)(Schmitt et al., 2016), using a feedback-linearization based method. It means that we
can control m+ 1 state variables and not only m of them, as given by the theory (Isidori, 1995). This is due to
the fact that we perform a path following instead of a trajectory tracking where the time is involved. In practice,
the vector p corresponds to the position of the center of the robot and may be of dimension 2 (if m = 1) or 3 (if
m = 2). This is consistent with the fact that we need one actuator to control the direction of a 2D vehicle such
as a car or a boat and two actuators for a 3D vehicle such as a plane.

The approach we propose is to find a controller so that the vector ṗ be collinear (instead of equal) to the
required field. This is illustrated in this paper in the case where the mobile robot is a sailboat (Miller et al.,
2012)(Cruz and Alves, 2008)(Holger et al., 2009). The input u is scalar (i.e., m = 1) and corresponds to the
rudder. Moreover, we will show that this approach is particularly adapted to sailboats where the speed is hardly
controllable (Neumann and Schlaefer, 2012)(Stelzer et al., 2007).

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: S. M. Schillai, N. Townsend (eds.): Proceedings of the International Robotic Sailing Conference 2018, Southampton, United
Kingdom, 31-08-2018

87



2 Method

In order to facilitate the understanding of our approach, we will deal with a Dubins car, which is much simpler
than a sailboat. The extension to other type of mobile robots is straightforward.

2.1 Line following for a Dubins car

To introduce our approach, we consider a robot (here a Dubins car) moving on a plane and described by the
following state equations: 




ẋ1 = cosx3
ẋ2 = sinx3
ẋ3 = u

(2)

where x3 is the heading of the robot and p = (x1, x2) are the coordinates of its center. The state vector is given
by x = (x1, x2, x3).

Let us choose as the control output the variable

y = x3 + atan(x2). (3)

and let us find a classical feedback linearization based controller (Jaulin, 2015b) such that the output y (which
can be interpreted as an error) converges to 0. In such a case, we will have
x3 + atan(x2) = 0
and the robot will perform a line following. Differentiating (3) we have

ẏ = ẋ3 +
ẋ2

1 + x22
= u+

sinx3
1 + x22

. (4)

Since u occurs in (4), the relative degree of the system is 1. We may thus choose a first order equation for the
error y, such as

ẏ + y = 0, (5)

We then choose u to have this error equation satisfied. From (4) and (5), we get:

u = −y − sin x3

1+x2
2

= −x3 − atan(x2)− sin x3

1+x2
2

(6)

Note that we do not have any singularity. As illustrated by the simulation depicted on Figure 1, the associated
vector field makes the car attracted by the line x2 = 0.

Figure 1: Precise line following

Remark. For more robustness with respect to small uncertainties, a sliding mode effect could be added. It
suffices to take for required error

y = x3 + atan (x2 + α · sign (x2)) ,

ROBOTIC SAILING 2018

88



where α is a small positive coefficient, e.g., α = 0.1. In such a case, the robot will go to the line in a finite
time (and not asymptotically, as previously). Moreover, it will remains exactly on the line even if some small
uncertainties occur.

2.2 Generalization

We want our robot to follow the field ψ(p), more precisely, we want that ψ(p) and ṗ point toward the same
direction. This condition can be translated into the form ϕ (ψ(p), ṗ) = 0, where ϕ is a collinearity function
which satisfies

ϕ (r, s) = 0⇔ ∃λ > 0, λr = s. (7)

Typically, this function corresponds to one angle (the heading) if m = 1 and two angles (heading, elevation) for
m = 2. Note that the function ϕ cannot be expressed with a determinant since r, s should not point toward
opposite directions. We define the output

y = ϕ (ψ(p), ṗ) = ϕ

(
ψ(g (x)),

∂g

∂x
(x) · f (x,u)

)
. (8)

Since y ∈ Rm, we can apply a feedback linearization method and we get y → 0. This means that the robot
will follows the required field. Note that we have no control on the speed, which is not our main concern in this
paper.

2D case. Consider for instance the case where m = 1. We have

ψ(p) =

(
ψ1 (p)
ψ2 (p)

)
. (9)

We take as an output y, the angle between the actual heading vector ṗ = ∂g
∂x (x) · f (x,u) and the desired heading

vector given by ψ(p). Denote by θ (x) the argument of the vector ṗ. We have

y
(8)
= = angle

(
ψ(g (x)), ∂g∂x (x) · f (x,u)

)

= angle

(
ψ(g (x)),

(
cos θ
sin θ

))

= sawtooth(θ−atan2(ψ2(g (x))︸ ︷︷ ︸
b

,ψ1(g (x))︸ ︷︷ ︸
a

))

(10)

The sawtooth function is given by:

sawtooth(θ̃) = 2atan
(

tan θ̃
2

)
= mod(θ̃ + π, 2π)− π (11)

As illustrated in Figure 2, the function corresponds to an error in heading. The interest in taking an error
θ̃ filtered by the sawtooth function is to avoid the problem of the 2kπ modulus: we would like a 2kπ to be
considered non-zero.

Figure 2: Sawtooth function used to avoid the jumps in the heading control

We have

ẏ = θ̇ − (− b

a2 + b2︸ ︷︷ ︸
∂atan2(b,a)

∂a

· ȧ+
a

a2 + b2︸ ︷︷ ︸
∂atan2(b,a)

∂b

· ḃ)

= u+ b·ȧ−a·ḃ
a2+b2 ,

(12)

Manoeuvre & Route Planning

89



if we assume that the input u corresponds to the desired angular velocity. We propose a feedback linearization
based control based on the required equation ẏ = −y. We have

u
(12)
= ẏ − (b·ȧ−a·ḃ)

a2+b2

= −y − (b·ȧ−a·ḃ)
a2+b2 (since ẏ = −y)

(10)
= − (sawtooth(θ − atan2(b, a))− (b·ȧ−a·ḃ)

a2+b2 .

(13)

We thus have the guarantee that after some time, the error angle y is 0 and that we follow exactly the vector
field.

2.3 Dubins car following the Van der Pol cycle

We would like our Dubins car to follow a path corresponding to the limit cycle of the Van der Pol equation:

ψ(p) =

(
p2

−
(
0.01 p21 − 1

)
p2 − p1

)
. (14)

Take g (x) = (x1, x2)
T

which means that we want to build the paths in the (x1, x2)-space. We have

ψ(g (x)) =

(
x2

−
(
0.01 x21 − 1

)
x2 − x1

)
(15)

and

∂g

∂x
(x) · f (x,u) =

(
1 0 0
0 1 0

)
·




cosx3
sinx3
u


 (16)

Thus

a = x2
b = −(0.01 x21 − 1)x2 − x1
θ = x3

(17)

and

ȧ = sinx3
ḃ = − (0.01 · 2x1ẋ1)x2 −

(
0.01 x21 − 1

)
ẋ2 − ẋ1

= −0.02 · x1x2 cosx3 −
(
0.01 x21 − 1

)
sinx3 − cosx3

(18)

From (13), we get that final controller is

u = −sawtooth
(
x3 − atan2

(
−
(
x2
1

100 − 1
)
x2 − x1, x2

))

+

((
x2
1

100−1

)
x2+x1

)
·sin x3+x2·

(
x1x2 cos x3

50 +

(
x2
1

100−1

)
sin x3+cos x3

)

x2
2+

((
x2
1

100−1

)
x2+x1

)2

(19)

The behavior of the control law is illustrated by Figure 3. The car is very close to the true limit cycle, which
is not the case if we consider a classical linear controller. Indeed, the controller anticipates the fact that the
required trajectory have to take into account the curvature of the vector field.

3 Application to the slalom problem

We consider the following model which corresponds to a simplified version of the sailboat model given in (Jaulin
and Le Bars, 2013). The state equations are

ROBOTIC SAILING 2018

90



Figure 3: Dubins describing accurately the Van der Pol cycle





ẋ1 = v cos θ
ẋ2 = v sin θ

θ̇ = −ρ2v sin 2u1
v̇ = ρ3 ‖wap‖ sin (δs − ψap) sin δs − ρ1v2
σ = cosψap + cosu2

δs =

{
π + ψap if σ ≤ 0

−sign (sinψap) · u2 otherwise

wap =

(
−a sin (θ)− v
−a cos (θ)

)

ψap = angle wap

(20)

where ρ1 = 0.003, ρ2 = 0.2, ρ3 = 3. In this equation u1, u2 correspond to the tuning of the rudder and the sail,
respectively. We would like our robot to follow a path which makes a tight slalom through doors that have to
be passed. We assume that we have a Cartesian equation for our path. For instance, we consider that the path
is described by

e (p) = 10 sin
(p1

10

)
− p2 = 0 (21)

where e (p) corresponds to an error. This path corresponds to a path that should be possible for a normal
sailboat robot for crosswind conditions. We take a vector field which corresponds to a pole placement strategy.
For instance, we want the error satisfies ė = −0.1 e, so that it will converge to zero in about 10 sec. Thus

cos
(p1

10

)
ṗ1 − ṗ2

︸ ︷︷ ︸
ė(p)

= − 1

10

(
10 sin

(p1
10

)
− p2

)

︸ ︷︷ ︸
e(p)

(22)

We take ṗ1 = 1, to go to the right. As a consequence, we get the following field:

ψ(p) =

(
ṗ1
ṗ2

)
=

(
1

cos
(
p1
10

)
+ 1

10

(
10 sin

(
p1
10

)
− p2

)
)

(23)

which is attracted by the curve p2 = 10 sin
(
p1
10

)
.

We have

ψ(g (x)) =

(
1

cos
(
x1

10

)
+ 1

10

(
10 sin

(
x1

10

)
− x2

)
)

(24)

Manoeuvre & Route Planning

91



and
∂g

∂x
(x) · f (x,u) =

(
cosx3
sinx3

)
. (25)

Thus
a = 1
b = cos

(
x1

10

)
+ sin

(
x1

10

)
− 1

10x2
(26)

and
ȧ = 0

ḃ = −ẋ1 1
10 sin

(
x1

10

)
+ ẋ1

1
10 cos

(
x1

10

)
− 1

10 ẋ2
= 1

10 cosx3 ·
(
cos
(
x1

10

)
− sin

(
x1

10

))
− 1

10 sinx3.
(27)

From (13), we get that the desired angular velocity should be

ω̂ = − (sawtooth(θ − atan2(b, a))− (b·ȧ−a·ḃ)
a2+b2

. (28)

Now, since the true angular velocity is θ̇ = −ρ2v sin 2u1, we take

u1 = −1

2
arcsin

(
tanh

(
ω̂

ρ2v

))
. (29)

The saturation function tanh is needed since the rudder cannot respond to any required ω̂. Indeed, if our
controller ask to turn too fast for the boat, ω̂

ρ2v
will be more than 1, and the rudder can only do its best. The

behavior of our controller is illustrated by Figure 4, where the sailboat has to slalom tightly between doors. We
can see that the trajectory follows exactly the sine path (magenta).

The Python source codes associated to the simulation can be found at:

https://www.ensta-bretagne.fr/jaulin/slalompy.zip

w
in
d

Figure 4: The sailboat robot slaloms through the blue doors

4 Conclusion

In this paper, we have proposed a new controller for sailboat robots which allows to take into account the
curvature of the required field in order to anticipate as much as possible the required trajectory. To our knowledge,
this is not considered by existing controllers (Le Bars and Jaulin, 2013) which are devoted to straight lines (Plumet
et al., 2018). It has been shown that the required vector field could be followed exactly. This anticipation is
crucial if we want to maneuver quickly and precisely as needed when we want to avoid an obstacle. This has
been illustrated on a simulated test-case where a tight slalom is performed by a sailboat robot.

References

Cruz, N. and Alves, J. C. (2008). Ocean sampling and surveillance using autonomous sailboats. In Proceedings
of the 1st International Robotic Sailing Conference.

Holger, K., Roland, S., Karim, J., and Mellinger, D. K. (2009). AAS endurance: An autonomous acoustic
sailboat for marine mammal research. In 2nd International Robotic Sailing Conference.

ROBOTIC SAILING 2018

92



Isidori, A. (1995). Nonlinear control systems: An Introduction, 3rd Ed. Springer-Verlag.

Jaulin, L. (2015a). Automation for robotics. John Wiley & Sons.

Jaulin, L. (2015b). Mobile robotics. Elsevier.

Jaulin, L. and Le Bars, F. (2013). An interval approach for stability analysis: Application to sailboat robotics.
IEEE Transactions on Robotics, 29(1):282–287.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. In Autonomous robot
vehicles, pages 396–404. Springer.

Le Bars, F. and Jaulin, L. (2013). An experimental validation of a robust controller with the vaimos autonomous
sailboat. In Robotic Sailing 2012, pages 73–84. Springer.

Miller, P. H., Hamlet, M., and Rossman, J. (2012). Continuous improvements to usna sailbots for inshore racing
and offshore voyaging. In 5th International Robotic Sailing Conference, pages 49–60. Springer.

Neumann, T. and Schlaefer, A. (2012). Feasibility of basic visual navigation for small sailboats. In 5th Interna-
tional Robotic Sailing Conference, pages 13–22.

Pêtres, C., Romero-Ramirez, M.-A., and Plumet, F. (2011). Reactive path planning for autonomous sailboat.
In 15th International Conference on Advanced Robotics (ICAR), pages 112–117. IEEE.

Plumet, F., Briere, Y., and Le Bars, F. (2018). Les voiliers robotisés. (ref. article : s7815). fre.

Schmitt, S., Le Bars, F., Jaulin, L., and Latzel, T. (2016). Obstacle avoidance for an autonomous marine
robot—a vector field approach. In Quantitative monitoring of the underwater environment, pages 119–131.
Springer.

Stelzer, R., Proll, T., and John, R. I. (2007). Fuzzy logic control system for autonomous sailboats. In Fuzzy
Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International, pages 1–6. IEEE.

Manoeuvre & Route Planning

93


