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Abstract

Scalar multiplication of a point is the central
operation in the elliptic curves cryptography
(ECC). It’s a complex operation that requires
a lot of optimization especially on execution
times to reduce resource consumption in sys-
tems with low computing power and memory
such as embedded systems. Several works on
the acceleration of computation and many oth-
ers on the reduction of the complexity of math-
ematical methods used in the computations on
the elliptic curves have been realized. Many
algorithms for computing scalar multiplication
are proposed, each using their own calculation
technique and mathematical methods. In this
paper, we combine the techniques of acceler-
ated computations with optimized mathemat-
ical methods and we implement them on al-
gorithms for scalar multiplication of a point.
This work aims to distinguish the most efficient
computation algorithm with the best accelera-
tion technique. The results show that the Joye
algorithm combined with the co-Z Doubling-
Addition acceleration technique gives better
results and saves more than one second of com-
putation time compared to the other algorithms
implemented in this paper.
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tations, co-Z addition

Copyright c© by the paper’s authors. Copying permitted only for pri-
vate and academic purposes.
In: Proceedings of the 3rd Edition of the International Conference on
Advanced Aspects of Software Engineering (ICAASE18), Constan-
tine, Algeria, 1,2-December-2018, published at http://ceur-ws.org

1 Introduction

Cryptography has emerged as a reliable and power-
ful solution for maintaining data confidentiality. To
make information eligible, cryptographic mechanisms
use complex mathematical methods that often involve
intensive computations. This intensity is often a prob-
lem for low-resource systems like embedded systems.

There are two ways to encrypt a message; symmet-
ric method (Secret Key Cryptography SKC) based on
shared private keys, and asymmetric method (Public-
Key Cryptography PKC) based on a couple of public
and private keys. The advantage of the latter is that all
exchanges are public and its security is based on the dif-
ficulty of finding the secret from information exchanged
publicly.

One of the most recently used asymmetric cryptosys-
tems is Elliptic Curve Cryptography (ECC). ECC uses
short keys for equal security to other asymmetric cryp-
tosystems [MKY16]. It is recommended for systems
in which electronic devices have low computing power
and very limited memory such as embedded systems.
However, despite recent optimizations on ECC, essen-
tially the reduction of computational complexity, this
cryptosystem remains complex and requires further op-
timization.

The important and costly operation in Elliptic Curve
Cryptography for encryption, decryption, digital sig-
nature, key exchange, etc is scalar multiplication of a
point. This is a complex operation that requires more
optimizations for the acceleration of cryptographic com-
putations. The execution time of any ECC operation de-
pends on the execution time of the scalar multiplication.

An embedded system is an autonomous system, gen-
erally dedicated to specific tasks, having a limited size
and low resources. There are two important constraints
of an embedded system: optimized computing power
while respecting the temporal and spatial constraints,
and an essential security to ensure data confidentiality
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especially for sensitive applications. The system used
in this work is an Arduino card very limited in memory
resources and computing power. It is an open source
system, open hardware and open source bootloader.

In this paper, we present an implementation of scalar
multiplication algorithms on a low-resource system to
compare and derive the most optimized computation
method for such systems. We define the scalar multi-
plication of a point and present some algorithms of its
computation, in section 2. Section 3 is dedicated to ac-
celeration techniques of cryptographic computations on
a scalar multiplication and to the system of coordinates
used. In Section 4, we present the software implemen-
tation of acceleration techniques in scalar multiplication
algorithms and present the comparison results in Section
5.

2 Scalar multiplication
The basic operation performed in protocols based on El-
liptic Curve Cryptography is the scalar multiplication of
a point on the curve. Each scalar multiplication requires
several thousand operations in a finite field. Let k be a
scalar of n bits, P and Q two points of an elliptic curve
defined on a finite field F by the Weierstrass equation
[Gui13][BJ02]:

E : Y 2 +a1XY +a3 = X3 +a2X2 +a4X +a6 (1)

where a1, a2, a3, a4 ∈ F. In this work, we consider the
finite prime fields Fp. Equation (1) then becomes:

E : Y 2 = X3 +aX +b (2)

where a, b ∈ Fp. The multiplication of the scalar k by
the point P of the curve is another point Q s.t Q = k · P
= P + P + . . . + P (k times).

Two operations are necessary to perform a scalar mul-
tiplication: the point doubling P + P = 2P = P’ and the
point addition P + P’. The computations of doubling and
addition are given by formulas (3) and (4) below. Let P
(X1, Y1) and Q (X2, Y2) be two points of the elliptic curve
s.t P, Q ∈ E (Fp) and P 6= Q : P + P = 2P = (X3, Y3) is
computed as follows:

X3 =

(
3X2

1 +a
2Y1

)2

−2X1

Y3 =

(
3X2

1 +a
2Y1

)2

(X1−X3)−Y1

(3)

and P + Q = (X4, Y4) is the result of an addition of the
two points P and Q is computed as follows:

X4 =

(
Y2−Y1

X2−X1

)2

−X1−X2

Y4 =

(
Y2−Y1

X2−X1

)2

(X1−X4)−Y1

(4)

The standard algorithm called Dbl-and-add [Knu97]
for calculating scalar multiplication of a point is given
by algorithm 1.

Algorithm 1 Standard Dbl-and-add algorithm
Require: k = (kd−1,..., k1, k0)2, P ∈ E(Fp)
Ensure: Q = k·P

R0 = /0
R1 = P
for i← 1 to d-1 do

if ki = 1 then
R0 ← R0 + R1

end if
R1 ← 2 × R1

end for
return R0;

This algorithm has a huge disadvantage for the se-
curity of the private key used because it is very vul-
nerable to attacks SPA [MS00] and DPA [KJJ99]. In-
deed, by analyzing either the energy consumed or
the number of clock cycles performed per operation,
an attacker can reconstruct the private key. This
fault is corrected by several works [Mon87][Joy07]
[LS01][DSF16][FGDM+10], we choose here to work
on the algorithms of Mongomery ladder [Mon87] and
the algorithm of Joye Dbl-and-add [Joy07] (see algo-
rithms 2 and 3).

Algorithm 2 Montgomery ladder algorithm
Require: k = (kd−1,..., k1, k0)2, P ∈ E(Fp)
Ensure: Q = k·P

R0 = /0
R1 = P
for i← d-1 downto 0 do

b← ki
R1−b ← R1−b + Rb
Rb ← 2 × Rb

end for
return R0;

Algorithm 3 Joye Dbl-and-add algorithm
Require: k = (kd−1,..., k1, k0)2, P ∈ E(Fp)
Ensure: Q = k·P

R0 = /0
R1 = P
for i← 0 to d-1 do

b← ki
R1−b ← 2 × R1−b + Rb

end for
return R0;
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Table 1: Calculation of point doubling and addition op-
erations with Jacobean coordinates

P + Q 2P

A X1Z2
2 4X1Y 2

1
B X2Z2

1 3X2
1 + AZ4

1
C Y1Z3

2 /
D Y2Z3

1 /
E B – A /
F D – C /
X3 -E3 – 2AE3 + F2 -2A + B2

Y3 -CE3 + F(AE2 – X3) -8Y 4
1 + B(A – X3)

Z3 Z1Z2E 2Y1Z1

3 Related work
The complexity of the computations in scalar multipli-
cation of a point and the large number of point doubling
and point addition calculated to perform this operation
required a lot of optimization works reduce computa-
tions. In this section, we present some algorithms that
allow computation accelerations in a scalar multiplica-
tion, but before that, we will focus first on the choice of
coordinate systems used.

In the Affine coordinate system, the addition and dou-
bling formulas involve point inversion operations in Fp
which is considered very expensive on the finite fields.
In order to avoid the inversion of points [KS17], we
chose to work on the Jacobian coordinates where a point
of the curve is represented by three coordinates (X : Y :
Z) which corresponds to the Affine point ( X

Z2 ,
Y
Z3 ). Equa-

tion (2) then becomes:

E : Y 2 = X3 +aXZ4 +bZ6 (5)

The computation of the doubling P + P = 2P = (X3 : Y3
: Z3) and the addition P + Q = (X3 : Y3 : Z3) is given by
the table 1.

An additional optimization of the addition, called co-
Z addition, has been proposed by Meloni [Mel07] where
he considers that two entry points share the same Z co-
ordinate. Let P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z), the
addition co-Z of P and Q (with P 6= Q) is defined by P +
Q = (X3 : Y3 : Z3) so that :

X3 = D− (B+C)

Y3 = (Y2−Y1)(B−X3)−E

Z3 = Z(X2−X1)

(6)

where A = (X2−X1)
2, B = X1A, C = X2A, D = (Y2−Y1)

2

and E = Y1(C-B)
In [Riv11], several algorithms are proposed to per-

form a scalar multiplication of a point in Jacobian coor-
dinates with Standard Jacobian Formulae and co-Z ad-
dition Jacobian Formulae. In Standard Jacobian Formu-
lae, a point doubling 2P is performed by the Jacobian

Doubling algorithm, a P + Q point addition by Jacobian
Addition and a Doubling-Addition operation (DA) 2P
+ Q by the Mixed Jacobian Affine algorithm. This last
algorithm uses mixed coordinates; a point in Jacobian
coordinates and another point in Affine coordinates. In
co-Z Jacobian Formulae, a point doubling is computed
by the Initial Doubling algorithm (XYcZ-IDBL), an ad-
dition by (X;Y)-only co-Z addition (XYcZ-ADD) and
a DA by (X;Y)-only co-Z Doubling-Addition (XYcZ-
DA).

4 Software implementation

The various techniques of computational acceleration
for point doubling and addition are implemented on
the different scalar multiplication algorithms presented
above in order to compare the performance of each al-
gorithm with each technique. The algorithms obtained
and used as support for our comparisons are presented
in the following:

• Standard Dbl-and-add with Jacobian doubling and
Jacobian addition (see algorithm 4)

• Standard Dbl-and-add with co-Z Initial doubling
and co-Z addition (see algorithm 5)

• Montgomery ladder with Jacobian doubling and
Jacobian addition (see algorithm 6)

• Montgomery ladder with co-Z Initial doubling and
co-Z addition (see algorithm 7)

• Joye Dbl-and-add with Mixed Jacobian Affine
Doubling-Addition (DA) (see algorithm 8)

• Joye Dbl-and-add with co-Z Doubling-Addition
(DA) (see algorithm 9)

Algorithm 4 Standard Dbl-and-add with Jacobian dou-
bling and Jacobian addition
Require: k = (kd−1,..., k1, k0)2, P ∈ E(Fp)
Ensure: Q = k·P

R0 = /0
R1 = P
for i← 1 to d-1 do

if ki = 1 then
(R0)← Jacobian_addition(R0,R1)

end if
(R1)← Jacobian_doubling(R1)

end for
return R0;
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Algorithm 5 Standard Dbl-and-add with co-Z Initial
doubling and co-Z addition
Require: k = (kd−1,..., k1, k0)2, P ∈ E(Fp)
Ensure: Q = k·P

R0 = /0
R1 = P
for i← 1 to d-1 do

if ki = 1 then
(R1,R0)← XYcZ-ADD(R0,R1)

end if
(R0,R1)← XYcZ-IDBL(R0)

end for
return R0;

Algorithm 6 Montgomery ladder with Jacobian dou-
bling and Jacobian addition
Require: k = (kd−1,..., k1, k0)2, P ∈ E(Fp)
Ensure: Q = k·P

R0 = /0
R1 = P
for i← d-1 downto 0 do

b← ki
(R1−b)← Jacobian_addition(R1−b,Rb)
(Rb)← Jacobian_doubling(Rb)

end for
return R0;

Algorithm 7 Montgomery ladder with co-Z Initial dou-
bling and co-Z addition
Require: k = (kd−1,..., k1, k0)2, P ∈ E(Fp)
Ensure: Q = k·P

R0 = /0
R1 = P
for i← d-1 downto 0 do

b← ki
(R1−b,Rb)← XYcZ-ADD(Rb,R1−b)
(Rb,R1−b)← XYcZ-IDBL(Rb)

end for
return R0;

Algorithm 8 Joye Dbl-and-add with Mixed Jacobian
Affine DA
Require: k = (kd−1,..., k1, k0)2, P ∈ E(Fp)
Ensure: Q = k·P

R0 = /0
R1 = P
for i← 0 to d-1 do

b← ki
(R1−b)←Mixed_Jacobian_Affine_DA(R1−b,Rb)

end for
return R0;

Algorithm 9 Joye Dbl-and-add with Mixed Jacobian
Affine DA
Require: k = (kd−1,..., k1, k0)2, P ∈ E(Fp)
Ensure: Q = k·P

R0 = /0
R1 = P
for i← 0 to d-1 do

b← ki
(R1−b,Rb)← XYcZ-DA(R1−b,Rb)

end for
return R0;

5 Results and comparison
The results presented in this comparison are the result of
experiments carried out on a low-resource device with a
very low computing capacity and a very limited mem-
ory size. The device used is an Arduino Uno R3 board
whose characteristics, shown in Table 2, are close to
most embedded devices. The curves used are those rec-
ommended in [Qu99]. The size of the keys used is 192
and 256 bits.

Table 2: Features of Arduino Uno R3
Feature Type/Value

Chipset Atmega328P

Clock Frequency 8/16 Mhz

Voltage 1.8 - 5.5 V

Bit Width 8 bits

Static RAM 2 kB

Program Memory 32 kB

Table 3 shows the execution time (in ms) of point
doubling, point addition and doubling-addition opera-
tions in Standard Jacobian Formulae and co-Z Jacobian
Formulae.

We find that the addition and doubling-addition oper-
ations in co-Z Jacobian Formulae are faster and require
less computations, unlike the Initial Doubling operation
where the treatments are heavier than Standard Jacobian
Formulae.

The execution time of the scalar multiplication algo-
rithms (algorithm 4 to algorithm 9) is given by table 4
and 5.

The standard Dbl-and-add algorithm gives better re-
sults, its resource consumption is very low because the
number of point addition is optimized to log(d/3) un-
like the other two algorithms where at each iteration,
an addition is performed regardless of the value of the
bit. However, its vulnerability to SPA and DPA attacks
makes it almost inappropriate. In the other results, we
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Table 3: Execution time (in ms) of point doubling, ad-
dition and doubling-addition operations

Formulae Algorithm P-192 P-256

Point Doubling (2P)

Standard
Jacobian

Jacobian
Doubling

6.064 11.732

co-Z Jaco-
bian

XYcZ-
IDBL

9.708 18.592

Point Addition (P + Q)

Standard
Jacobian

Jacobian
Addition

10.056 19.332

co-Z Jaco-
bian

XYcZ-ADD 3.628 6.916

Doubling-Addition (2P + Q)

Standard
Jacobian

Mixed DA 15.501 29.712

co-Z Jaco-
bian

XYcZ-DA 10.916 20.808

Table 4: Execution time of the scalar multiplication al-
gorithms (P-192)

Algorithm
P-192

Standard
Jacobian

co-Z Jaco-
bian

Standard Dbl-and-add
Algorithm
4

Algorithm
5

1841 2260

Montgomery ladder
Algorithm
6

Algorithm
7

2960 2641

Joye Dbl-and-add
Algorithm
8

Algorithm
9

3085 2213

Table 5: Execution time of the scalar multiplication al-
gorithms (P-256)

Algorithm
P-256

Standard
Jacobian

co-Z Jaco-
bian

Standard Dbl-and-add
Algorithm
4

Algorithm
5

4770 5724

Montgomery ladder
Algorithm
6

Algorithm
7

7471 6630

Joye Dbl-and-add
Algorithm
8

Algorithm
9

7815 5528

notice that the algorithm 9 gives very interesting results
with a reduced execution time of 428 ms compared to
the algorithm 7 for a 192-bit key and 1102 ms for a 256-
bit key.

the graph below (see figure 1) gives a global compar-
ison of all implemented algorithms.

Figure 1: A global comparison of implemented algo-
rithms

6 Conclusion
In this work, we compared the different computational
acceleration techniques for scalar multiplication by a
point on an embedded system in order to compare them
and to distinguish the best method of computing a scalar
multiplication in a low-resource system. The hardware
used is an Arduino embedded system with a microcon-
troller limited in resources including memory and com-
puting power. We used Jacobian coordinate system with
Standard Jacobian Formulae and co-Z Jacobian Formu-
lae, an improved version of the addition called co-Z ad-
dition, since this type of coordinates provides less com-
plex and more efficient computation operations. We
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have implemented acceleration techniques on three al-
gorithms widely used in practice: the standard Dbl-and-
add algorithm, the Montgomery ladder algorithm and
the Joye Dbl-and-add algorithm. We found that the Joye
Dbl-and-add algorithm widh co-Z Doubling-Addition
gives better results if we take into account the level of
security offered, unlike the standard algorithm Dbl-and-
add which offers a better time but it is very vulnerable
to SPA and DPA attacks. The time saved for a 256-bit
key is more than one second (1102 ms) for scalar multi-
plication using the Joye Dbl-and-add algorithm coupled
with the technique co-Z Doubling-Addition compared
to other algorithms implemented in this work.
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