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Abstract. The most popular algorithm for aligning of 3D point data is the Iterative Closest 

Point (ICP). This paper proposes a new algorithm for orthogonal registration of point clouds 

based on the point-to-plane ICP algorithm for affine transformation. At each iterative step of 

the algorithm, an approximation of the closed-form solution for the orthogonal transformation 

is derived. 

1. Introduction

The Iterative Closest Point (ICP) algorithm [1-5] has become the dominant method for aligning three
dimensional models based purely on the geometry. For alignment it is necessary to find a geometric

transformation that connects two point clouds in ℝ3 by the best way with respect to the 𝐿2 norm. The

ICP algorithm consists of two main stages:

1. Searching of corresponding points (pairs) in two clouds;
2. Minimizing the error metric (variational subproblem of the ICP).

There are two basic approaches to choosing the error metric for pairs of points. Within the point-to-

point approach [1],  the distance between the elements of the pair in ℝ3 is used. Within the point-to-
plane approach [2] the distance between the point of the first cloud and the tangent plane to the 

corresponding point of the second cloud is used.  

The key point [6] of the ICP algorithm is the search of either an orthogonal or affine 
transformations, best in the sense of a quadratic metric that combines two point clouds with a given 

correspondence between points (the variational subproblem of the ICP algorithm).  

For the point-to-point metric in the case of orthogonal transformations, the solution in a closed-

form was obtained by Horn [7,8]. The solution [7] is based on the use of quaternions, whereas the 
solution [8] uses orthogonal matrices. The solutions are linear in time with respect to the number of 

point pairs. The original ICP algorithm is widely used for the rigid objects registration, but it does not 

work well for the case of the non-rigid objects. An extension of the ICP algorithm is proposed [9], 
using scaling in addition to rotation and translation. A generalization of this algorithm to the case of an 

arbitrary affine transformation was done [10,11]. A closed-form solution to the point-to-point problem 

was derived [12-14].  

The above mentioned approaches for solving the variational subproblem of the ICP algorithm are 
based on the point-to-point metric. The point-to-plane metric has been shown to perform better than 

the point-point metric in terms of accuracy and convergence rate [15].  A closed-form solution to the 

point-to-plane case for orthogonal transformations is an open problem. Instead, iterative methods 
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based on the linear least-squares optimization or closed-form methods for small angles only are often 
used [12]. Iterative solutions require an initial approximate estimate of the transformation parameters, 

and the iterations might converge slowly, converge to a local optimum or not converge at all.  

In [16,17] a closed-form solution to the point-to-plane problem for an arbitrary affine 
transformation is proposed.  The affine approach works well when the correspondence between point 

clouds is good. In this case, the affine point-to-plane method precisely reconstructs original geometric 

transformation for arbitrary affine transformations, in particular for orthogonal transformations 
[16,17]. When a correspondence between clouds is not sufficiently good, the affine approach cannot 

reconstructs an original orthogonal transformation.  

In this paper, we propose an approximation of a closed-form solution to the point-to-plane problem 

for orthogonal transformation. The method is based on the closed-form solution for the affine point-to-
plane problem [16,17], matrix polar decomposition and the Horn’s method for calculating the nearest 

orthonormal matrix [8]. The proposed method does not require an initial approximate estimate. 

Computer simulation results are provided to illustrate the performance of the proposed method of 
solving the minimization problem.   

 

2. Closed-form solution for affine point-to-plane problem 

Let 𝑃 = {𝑝1,… , 𝑝𝑛}  be a source point cloud, and 𝑄 = {𝑞1, … , 𝑞𝑛}  be a destination point cloud in ℝ3. 

Suppose that the relationship between points in  𝑃 and 𝑄 is given in such a manner that for each point 

𝑝𝑖 exists a corresponding point 𝑞𝑖. The ICP algorithm is commonly considered as a geometrical 

transformation for rigid objects mapping 𝑃 to 𝑄 

                                                                            𝑅𝑝𝑖 + 𝑡,                                                                             (1) 

where 𝑅 is a rotation matrix,  𝑡 is a translation vector, 𝑖 = 1,… , 𝑛.  

The group of affine transformations in the dimension of three has 12 generators. It means that the 

affine transformation in the dimension of three is a function of 12  variables. Let us consider the ICP 

variational problem for an arbitrary affine transformation in the point-to-plane case. Denote by 𝑆(𝑄) a 

surface constructed from the cloud 𝑄, by 𝑇(𝑞𝑖) denote a tangent plane of 𝑆(𝑄) at point 𝑞𝑖. Let 𝐽(𝐴, 𝑇) 
be the following function: 

                                                         𝐽(𝐴) = ∑ (< 𝐴 𝑝𝑖 −  𝑞𝑖 , 𝑛𝑖 > )2𝑛
𝑖=1 ,                                                  (2) 

where <∙,∙> denotes the inner product,  𝐴 is a matrix of an affine transformation in the homogenous 
coordinates: 

                                                      𝐴 = (

𝑎11 𝑎12 𝑎13 𝑡1
𝑎21 𝑎22 𝑎23 𝑡2
𝑎31 𝑎32 𝑎33 𝑡3
0 0 0 1

),                                                  (3) 

𝑝𝑖 is a point from the cloud 𝑃, 𝑛𝑖 is the unitary normal for 𝑇(𝑞𝑖)  

                                                        𝑝𝑖 = 

(

 
 
𝑝1
𝑖

𝑝2
𝑖

𝑝3
𝑖

1 )

 
 

,        𝑛𝑖 = 

(

 
 
𝑛1
𝑖

𝑛2
𝑖

𝑛3
𝑖

0 )

 
 

.                                                        (4) 

The ICP variational problem can be stated as follows: 

                                                                           arg𝑚𝑖𝑛𝐴 𝐽(𝐴) .                                              (5) 

The solution of the problem (5) is given by the following way [16,17]:  

                                                                             𝑀𝐴 = 𝐶.                                                                    (6) 

 𝑀 is the coefficients matrix 12 × 12 

𝑀𝑗 = (𝑚11
𝑗 𝑚21

𝑗 𝑚31
𝑗 𝑚41

𝑗 𝑚12
𝑖 𝑚22

𝑗 𝑚32
𝑗 𝑚42

𝑗 𝑚13
𝑗 𝑚23

𝑗 𝑚33
𝑗 𝑚43

𝑗 ), 

                                                                         𝑗 = 1,… ,3,             (7) 

                                          𝑚𝑘𝑙
𝑗 = ∑ (𝑛𝑗𝑃𝑁)𝑘𝑙

𝑖𝑛
𝑖=1 , 𝑘, 𝑙 = 1,… ,4, 𝑗 = 1,… ,3,                                        (8) 
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                                (𝑛𝑗𝑃𝑁)
𝑖 =

(
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𝑖𝑛2
𝑖 𝑛𝑗
𝑖 𝑝1

𝑖𝑛3
𝑖 𝑛𝑗
𝑖 0
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𝑖𝑛3
𝑖 𝑛𝑗
𝑖 0

𝑝3
𝑖𝑛1
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𝑖𝑛2
𝑖 𝑛𝑗
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𝑖 0
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𝑖 𝑛𝑗
𝑖 0)

  
 
, 𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,3,              (9) 

𝑀3𝑖+𝑗 = (𝑚11
𝑖𝑗

𝑚21
𝑖𝑗

𝑚31
𝑖𝑗

𝑚41
𝑖𝑗

𝑚12
𝑖𝑖 𝑚22
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𝑚32
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𝑖𝑗

𝑚43
𝑖𝑗 ), 

𝑖, 𝑗 = 1,… ,3,                            (10) 

                                    𝑚𝑘𝑙
𝑖𝑗
= ∑ (𝑝𝑗𝑛𝑖𝑃𝑁)𝑘𝑙

𝑖𝑛
𝑖=1 , 𝑘, 𝑙 = 1,… ,4, 𝑖, 𝑗 = 1,… ,3,                                      (11) 

             (𝑝𝑗𝑛𝑖𝑃𝑁)
𝑘 =

(
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, 𝑘 = 1,… , 𝑛, 𝑖, 𝑗 = 1,… ,3.      (12) 

𝐶 is the coefficients column with 12 elements 

                                           𝑐𝑗 = ∑ 𝑛𝑗
𝑖  < 𝑞𝑖 , 𝑛𝑖 >𝑛

𝑖=1 , 𝑗 = 1,… ,3,                                                        (13) 

                                        𝑐3𝑖+𝑗 = ∑ 𝑝𝑗
𝑘𝑛𝑖

𝑘  < 𝑞𝑘 , 𝑛𝑘 >𝑛
𝑘=1 , 𝑖, 𝑗 = 1,… ,3.                                           (14) 

𝐴 is the column of variables with 12 elements 

  𝐴 = (𝑎11 𝑎12 𝑎14 𝑎14 = 𝑡1 𝑎21 𝑎22 𝑎23 𝑎24 = 𝑡2 𝑎31 𝑎32 𝑎33 𝑎34 = 𝑡3) 
𝑡 .   (15) 

The reconstructed affine transform is done by the following formula: 

                                                                             𝐴 = 𝑀−1𝐶.                                                              (16) 

 

3. Polar decomposition and orthogonal transformations 

A square matrix M can be decomposed into the product of an orthonormal matrix R and a positive 
semi-definite matrix S [5]. The matrix S is always uniquely determined. The matrix R is uniquely 

determined when M is nonsingular. When M is nonsingular, we can actually write directly [8] 

                                                                 𝑀 = 𝑅𝑆,                       (17) 

                                                                𝑅 = 𝑀(𝑀𝑡𝑀)−
1

2.                       (18) 

The matrix 𝑀𝑡𝑀 is  positive semi-definite and  symmetric. The orthogonal matrix 𝑅 in (18) can be 
computed by the following way [8]: 

                                                      𝑅 = 𝑀𝐶

(

 
 

1

√𝜆1
0 0

0
1

√𝜆2
0

0 0
1

√𝜆3)

 
 
𝐶𝑡 ,                      (19) 

where  𝐶 is orthogonal matrix consisting of  columns, that are eigenvectors of the  matrix 𝑀𝑡𝑀. 

Numbers 𝜆𝑖, 𝑖 = 1,… ,3, are eigenvalues of the  matrix 𝑀𝑡𝑀. The formula (18) also defines [8] a 

nearest orthogonal matrix 𝑅 for the nonsingular matrix 𝑀. It means that the  formula (18) describes the 

projection from the group 𝑆𝐿(3)  to the subgroup 𝑆𝑂(3).    
 

4. Projection on 𝑺𝑶(𝟑)    
For approximation of the exact solution of the problem (5) we propose the following method. At each 

step of the ICP algorithm, we project a top-left submatrix 𝐴′ (size of 3 × 3) of a matrix 𝐴 of an affine 

transform, computed by the formula (16),  to 𝑆𝑂(3) by the formula (19).  After that it is necessary to 

recalculate a translation 𝑡 = (𝑡1, 𝑡2 , 𝑡3) 
𝑡 .  

Denote by 𝑅 a result of projection of a top-left submatrix 3 × 3 of a matrix 𝐴 to 𝑆𝑂(3).  Denote by 

𝑁 the following matrix 𝑛 × 3:  

                                                              𝑁 = (
𝑛1
1 𝑛2

1 𝑛3
1

…
𝑛1
𝑛 𝑛2

𝑛 𝑛1
𝑛
),                      (20) 
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denote by 𝑣 the following vector-column 𝑛 × 1:  

                                                                𝑣𝑖 =< 𝑞
𝑖 − 𝑅𝑝𝑖 , 𝑛𝑖 >.                                                         (21) 

Then the problem 

           ∑ (< 𝑅 𝑝𝑖 + 𝑡 −  𝑞𝑖 , 𝑛𝑖 > )2𝑛
𝑖=1 = ∑ (< 𝑡, 𝑛𝑖 > −<  𝑞𝑖 − 𝑅 𝑝𝑖 , 𝑛𝑖 > )2𝑛

𝑖=1 → min𝑡 ,        (22)  

is the least squares problem for the equation 

                                                                            𝑁𝑡 = 𝑣.                                                                     (23) 

Thus we have: 

                                                                      𝑡 = (𝑁𝑡𝑁)−1𝑁𝑡𝑣.                                                          (24)  

                    
Figure 1. Illustration of projection of 

the top-left submatrix 𝐴′ onto 𝑆𝑂3. 
Figure 2. Block-diagram of the proposed 

algorithm. 

 

Figure 1 illustrates projection of the top-left submatrix 𝐴′ of the matrix 𝐴 of the affine transform 

onto submanifold  𝑆𝑂3. The block-diagram of the proposed algorithm as part of the ICP algorithm is 

shown in Figure 2. 

  

5. Computer simulation 

 

5.1. We consider two variants of the ICP algorithm here 

The first is point-to-point ICP based on Horn algorithm. The second is point-to-plane ICP based on the 
proposed approximation of an exact solution of the variational problem. Other elements of ICP 

algorithm are same. 

 

5.1.1. Let 𝑃 be the cloud consisting of 34817 points, see figure 1 (blue colour) 

The cloud 𝑄 (green colour) is obtained from  𝑃  by the orthogonal transformation 𝑄 = 𝑇1 ∗ 𝑃, where 

𝑇1 is given by  

                                     𝑇1 = (

1.00000 0.00000  0.00000 3.10000
0.00000  0.83867 −0.54464 1.13270
0.00000 0.54464 0.83867 1.92795
0.00000 0.00000 0.00000 1.00000

).                                 

Computed by the proposed method transformation 𝑀1 is given as 

                                     𝑀1 = (

1.00000 0.00000  0.00000 3.10000
0.00000  0.83867 −0.54464 1.13270
0.00000 0.54464 0.83867 1.92795
0.00000 0.00000 0.00000 1.00000

).                                

The reconstructed by the point-to-point ICP geometrical transformation has the same matrix. The 

point-to-point ICP method converges in 31 iterations, processing time 1745 milliseconds. The 

proposed ICP method converges in 10 iterations, processing time 913 milliseconds.  

 Figure 3 shows the clouds  𝑃 (blue) and 𝑄 (green), figure 4 shows the clouds  𝑃′ = 𝑀1 ∙ 𝑃 (blue) 

and 𝑄 (green) together. 
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Figure 3. Cloud 𝑃 (blue), cloud 𝑄 (green).  Figure 4. Cloud 𝑃′ = 𝑀1 ∙ 𝑃 (blue), cloud 𝑄 

(green). 
 

5.1.2. Let 𝑃 be the cloud consisting of 34817 points, see figure 3 (blue colour) 

The cloud 𝑄 (green colour) is obtained from  𝑃  by the orthogonal transformation 𝑄 = 𝑇2 ∗ 𝑃, where 

𝑇1 is given by  

                                     𝑇2 = (

0.91015 −0.36772  0.19081 −0.79646
0.21782 0.81653 0.53463 2.18083
−0.35240 −0.44503 0.82326 2.41239
0.00000 0.00000 0.00000 1.00000

).                           

Computed by the proposed method transformation 𝑀2 is given as 

                                     𝑀2 = (

0.91015 −0.36772  0.19081 −0.79646
0.21782 0.81653 0.53463 2.18083
−0.35240 −0.44503 0.82326 2.41239
0.00000 0.00000 0.00000 1.00000

).                          

The reconstructed by the point-to-point ICP geometrical transformation has the same matrix. The 

point-to-point ICP method converges in 41 iterations, processing time 2458 milliseconds. The 
proposed ICP method converges in 16 iterations, processing time 1491 milliseconds.  

                                                      
Figure 5. Cloud 𝑃 (blue), cloud 𝑄 (green).  Figure 6. Cloud 𝑃′ = 𝑀2 ∙ 𝑃 (blue), cloud 𝑄 

(green). 
 

Figure 5 shows the clouds  𝑃 (blue) and 𝑄 (green), figure 6 shows the clouds  𝑃′ = 𝑀2 ∙ 𝑃 (blue) 

and 𝑄 (green) together. 
 

5.1.3. Let 𝑃 be the cloud consisting of 34817 points, see figure 5 (blue colour) 

The cloud 𝑄 (green colour) is obtained from  𝑃  by the orthogonal transformation 𝑄 = 𝑇3 ∗ 𝑃, where 

𝑇3 is given by  

                                     𝑇3 = (

0.98163 0.00000  −0.19081 −0.64070
0.03641 0.98163 0.18730 0.03261
0.18730 −0.19081 0.96359 1.21591
0.00000 0.00000 0.00000 1.00000

).                           

Computed by the proposed method transformation 𝑀1 is given as 
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                                     𝑀3 = (

0.98163 0.00000  −0.19081 −0.64070
0.03641 0.98163 0.18730 0.03261
0.18730 −0.19081 0.96359 1.21591
0.00000 0.00000 0.00000 1.00000

).                          

The reconstructed by the point-to-point ICP geometrical transformation has the same matrix. The 

point-to-point ICP method converges in 19 iterations, processing time 984 milliseconds. The proposed 
ICP method converges in 9 iterations, processing time 747 milliseconds.  

                                                                      
Figure 7. Cloud 𝑃 (blue), cloud 𝑄 (green). Figure 8. Cloud 𝑃′ = 𝑀3 ∙ 𝑃 (blue), cloud 𝑄 

(green). 
 

Figure 7 shows the clouds  𝑃 (blue) and 𝑄 (green), figure 8 shows the clouds  𝑃′ = 𝑀3 ∙ 𝑃 (blue) 

and 𝑄 (green) together. 

 

5.1.4. Let 𝑃 be the cloud consisting of 106289 points, see figure 7 (blue colour) 

The cloud 𝑄 (green colour) is obtained from  𝑃  by the orthogonal transformation 𝑄 = 𝑇4 ∗ 𝑃, where 

𝑇4 is given by  

                                     𝑇4 = (

0.83867  0.54464  −0.00000  1.38331
−0.45677 0.70337 −0.54464 −0.29804
−0.29663 0.45677 0.83867 0.99881
0.00000 0.00000 0.00000 1.00000

).                           

Computed by the proposed method transformation 𝑀4 is given as 

                                     𝑀4 = (

0.83867  0.54464  −0.00000  1.38331
−0.45677 0.70337 −0.54464 −0.29804
−0.29663 0.45677 0.83867 0.99881
0.00000 0.00000 0.00000 1.00000

).                          

The reconstructed by the point-to-point ICP geometrical transformation has the same matrix. The 

point-to-point ICP method converges in 24 iterations, processing time 6316 milliseconds. The 

proposed ICP method converges in 16 iterations, processing time 5792 milliseconds.  

                             
Figure 9. Cloud 𝑃 (blue), cloud 𝑄 (green). Figure 10. Cloud 𝑃′ = 𝑀4 ∙ 𝑃 (blue), cloud 𝑄 

(green).

 

Figure 9 shows the clouds  𝑃 (blue) and 𝑄 (green), figure 10 shows the clouds  𝑃′ = 𝑀4 ∙ 𝑃 (blue) 

and 𝑄 (green) together. 
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6. Conclusion 
In this paper, we revised error minimizing steps of the ICP algorithm. A new algorithm for orthogonal 

registration of point clouds based on the point-to-plane ICP algorithm for affine transformation is 

proposed. At each iterative step of the algorithm, an approximation of the closed-form solution for the 
orthogonal transformation is derived. 
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