

Vaiśesịka Graph Grammar (VGG) System
Rajesh TAVVAa, and Navjyoti SINGHa 1

a Center for Exact Humanities, International Institute of Information Technology,
Hyderabad, Telangana, India

Abstract. Graph grammars, being a natural extension of string grammars as well
as tree grammars, are highly expressive as well as powerful enough to capture the
generative structure of a wide variety of scenarios - both simple and complex. But,
unfortunately, we do not find many instances which leverage this power graph
grammars provide us. Most of the graph grammars available so far are either toy
grammars or limited to addressing highly specialized problems. In this paper, we
present Vaiśesịka Graph Grammar (VGG) system, which is as wide as any graph
grammar can get i.e., a grammar for reality as theorized in Vaiśesịka - the
foundational ontology found in Indian analytic tradition. This paper extends the
work presented in [1]. In [1], the generative as well as the interpretation rules of
this system were presented. Here, apart from briefly discussing some of these
rules, we also present a parser for such a system which makes it extremely
powerful in terms of its ability to classify an input graph as a valid Vaiśesịka graph
or an invalid one which, in itself, is an immensely significant breakthrough for any
ontological application. Apart from that, we also present a verification mechanism
to verify the interpretations of graphs generated by the generative rules. This is
done, at least statistically, if not formally, to give a statistical proof of the
soundness of the system (that every generated graph has at least one Vaiśesịka
interpretation, and no useless graphs are generated.)

Keywords: Vaiśesịka, Graph Grammar, Generative Ontology, Parser

1. Introduction

The notion of a grammar in itself is quite intriguing. It is a finite number of rules which
can generate a (potentially) infinite number of sentences. It is something which brings
parsimony into the system. A grammar captures the repeating patterns in a system and
encodes them into a finite set of rules. It is extremely simple and yet highly powerful.

Graph grammars, compared to string and tree grammars, are more powerful,
expressive and intuitive. Yet, there are very few instances of uses of graph grammars in
real world. In this paper, we present the parser for Vaiśesịka Graph Grammar (VGG)
system whose generation rules (GRs) and interpretation rules (IRs) were already 2

presented in [1]. This is a grammar for reality itself based on Vaiśesịka - the
foundational ontology found in Indian analytic tradition.

1Corresponding author, Center for Exact Humanities, IIIT-Hyderabad, Gachibowli, Hyderabad,
Telangana, India; E-mail: vrktavva@research.iiit.ac.in

2 One can find a working prototype of this system here: http://ceh.iiit.ac.in/vgg

In ontology engineering, a fairly recent discipline, one of the fundamental
questions is how to construct ontologies as well as how to analyze a given scenario or
state-of-affairs (SOAs) in terms of known ontological categories. Currently these
problems are addressed mostly manually or, even if done automatically, involve a lot of
human intervention at various stages. Hence there are various problems like
interoperability issues, internal contradictions within the systems etc. One way to
overcome these problems is to minimise human intervention as much as possible, and
what better way can be there to do it than to construct grammars for such systems
where the human intervention is minimal, and is required only at the beginning of
building the grammar. Once the generation or parsing process is set in motion, the
system is on its own and requires no human intervention in between.

We presented one such system, a novel idea called Generative Ontology, based on
Vaiśesịka in [1] in which the GRs and IRs of the system are presented. But they only
enable one to generate graph structures as well as interpret them according to Vaiśesịka
system. There is still one crucial step left to complete the system i.e., to give it an
ability to decide whether any given graph is derivable within the system or not. This
eliminates the burden of generating every possible graph and matching it with the input
graph to decide upon its derivability. It is similar to the role which a parser plays in
compilers in programming languages. It parses a program in a particular language and
identifies syntax errors in it saving a lot of resources to the system. In that sense, a
parser is an immensely useful and necessary tool and it gives enormous power to the
existing system.

In this paper, we present the parser for VGG as well as give a statistical proof for
the soundness of VGG. Since this is an extension of the work done in [1], we will
provide a brief overview of it in Section 2, and then move on to present the parser in
Section 3, and then present the results and conclusion in Section 4.

2. Overview

2.1. Vaiśesịka System

Since a significant portion of the system (Vaiśesịka categories, Generative Rules and
Interpretation Rules) are formally presented in [1] already, we give a brief overview of
them here in a more informal manner for the comprehension of the rest of the paper.

Vaiśesịka system is a foundational ontology which classifies all the entities in
reality into 6 categories : (1) Substance (e.g: material entities like ball, car as well as 3

non-material entities like soul, space and time) (2) Quality (e.g: color, size) (3) Action
(e.g: rising up, falling down, motion) (4) Universal (e.g: car-ness, ball-ness, red-ness)
(5) Ultimate Differentiator (located in each ultimate substance (explained below) and
differentiates one from the other) and (6) Inherence (explained below).

Before comprehending any of the Vaiśesịka categories, the first category we need
to understand is ‘inherence’. Inherence is one of the primary relations of Vaiśesịka

3 It is actually a six-plus-one category system. The seventh category i.e., absence is considered to be
added later to the list of fundamental categories. The complete list of Vaiśesịka categories and subcategories
can be found in [13].

system. It is the second most prevalent relation in reality after self-linking relation . 4

Some instances of inhering can be color inhering in a rose, treeness inhering in all the
trees, a whole inhering in its parts etc., (inherence needs to be understood as something
located in something, but in an aspatial manner).

Substance, philosophically speaking, is that which stands below i.e., all other
categories ride on it or are dependent on it while this doesn’t ride on anything else.
Similarly, an ultimate substance, in Vaiśesịka, is that category which stands below
everything else - even other substances. It needs to be understood in terms of inherence
- as something inhering in something. In Vaiśesịka, qualities and actions inhere in
substances; universals inhere in qualities, actions and substances; while some
substances (wholes) inhere in other substances (parts). These latter substances in which
other things can inhere, but they don’t inhere anywhere else, are called ultimate
substances (USs).

Among USs, there are two types: ubiquitous ultimate substances (UUSs) and
mobile ultimate substance (MUSs). UUSs are those which are either in contact or in
disjunct with all other substances. MUSs are those which are in contact with some
while in disjunct with other substances. These are formal definitions of UUS and MUS
provided in [1]. Not only these, but all the fundamental categories as well as some
subcategories of Vaiśesịka are defined formally, in terms of inherence, in [1]. For
instance, universal (U) is something which inheres in 2 or more entities, but nothing
inheres in it. In this way, many categories and subcategories of Vaiśesịka are defined
formally, purely using the idea of inherence, conjunct (contact) and disjunct - i.e., how
many entities inhere in a given entity, what is the configuration of contacts, disjuncts
etc. 5

The Interpretation Rules (IRs) of VGG can be considered to be a visualization of
the formal definitions of Vaiśesịka categories and subcategories. So a quick look at
them can enable us to understand these definitions easily. They are presented in Section
3.2 of [1].

Like in [1], this paper’s focus is not on defending Vaiśesịka description of reality
or the rationale behind its categorial system. One can refer to [5] and [14] for that. The
idea of this paper is to show the possibility of an ontological system in which the SOAs
can be generated, interpreted and also parsed.

2.2. Generation and Interpretation Rules of Vaisesika

As mentioned in Section 2.1, many Vaiśesịka categories and subcategories can be
defined formally in terms of inherence, contact and disjunct. Actually these also form
the fundamental relations in the system apart from the self-linking relation. Their
formal definitions can be found in Section 2 of [1].

A punctuator is a boundary which separates as well as brings two entities into
some relationship. Its structure is like <x|y,R> where x and y are the entities being
punctuated, and R is the relational context in which they are punctuated. Here R

4 Self-linking relation is not a Vaiśesịka category since it is not an entity. In other words, it requires no
other relational entity to bring together the two relata. It is both the relata themselves put together. For the
structure of self-linking relation, see [1].

5 Refer to Section 2 of [1] for all the formal definitions of Vaiśesịka categories and subcategories.

constitutes the entire rest of the universe which itself is a set of all the chains of entities
and punctuators between x and y. So a punctuator has a recursive structure.

Given the recursive structure of punctuator and the complex nature of its relational
context as a web of entities and punctuators, it is best imagined as a graph (made up of
nodes and edges) which can also be understood as a state-of-affair (SOA). It is shown
in [1] that the three simple punctuators - (1) self-linking (2) inherence and (3)
conjunct-disjunct punctuators - constitute the building blocks for all the complex
punctuators (SOAs) in Vaiśesịka. It is also shown how these complex punctuators can
be generated from the simple punctuators (alphabet) using generative rules (GRs), and
then interpreted with Vaiśesịka categories using interpretation rules (IRs).

GRs can be considered as the syntactic portion of reality whereas IRs can be
considered the semantic portion of it. GRs generate pure structures with no inherent
meaning whereas IRs give meaning to them by labeling them with Vaiśesịka categories.
In [1], it is shown that all the graphs generated by GRs could be interpreted using IRs
with Vaiśesịka categories, but the validity of those interpretations is provided here, in
this paper, in Section 4. VGG uses Single Pushout (SPO) approach [8] for graph
transformations.

A screenshot of an interpreted graph in VGG system is provided in Figure 1.

Figure 1. A graph generated in VGG followed by interpretation with Vaiśesịka categories. Here the following
categories are depicted - UD (Ultimate Differentiator), Q (Quality), SW (Substantial Whole), UUS
(Ubiquitous Ultimate Substance), U (Universal). And the edges ‘in’ and ‘con’ stand for inherence and contact
respectively.

In this paper, we present the parser for VGG which completes the system and gives it
real power in terms of recognizing an input graph to be derivable or non-derivable
within the system using the GRs of the system.

3. Parser

While building a system like VGG, one needs to distinguish two questions here:
● Whether a graph is derivable within the system or not?
● Whether all the graphs derivable within the system are Vaiśesịka graphs or

not?
Both the questions are independent of each other and hence require different
approaches to address them. The first one is purely a structural or a syntactic question
whereas the second one is a semantic one. The first one is a question of decidability
whereas the second one is a question of soundness. The first one is answered by
constructing a parser which parses the structure of a given graph to decide if it belongs
to the language (the set of graphs generated) of the system. The second one is answered
by verifying whether all the generated graphs (using the generative rules of VGG) are
interpretable (using the interpretation rules of VGG) i.e., is there a correlation between
the generation rules and the interpretation rules. This can be done by verifying if there
is a consistency in the generative labels (intermediate labels used in generative
grammars) and the interpretation labels (the Vaiśesịka labels used to categorize nodes
after interpretation). If there is a consistency, then the insight used while generating the
graphs matches with the insight while interpreting them though both are starting from
completely different directions. We show that, at least statistically, the system has
soundness since there is a consistent mapping between the generative labels and the
interpretation labels.

The parser, like generative as well as interpretation grammars, is a grammar, and
hence consists of a set of graph transformation rules which apply on the input graph
and stop after all the rules are exhausted. The parser, as mentioned above, addresses a
decidability problem and hence is supposed to recognize a graph as belonging to the
system or not based purely on its structure and not its labels. The rules of the parser are
arrived at, broadly, by reversing the generative rules of VGG as well as the LHS and
RHS of each rule, though not mechanically. One has to add/delete some NACs in the 6

generative grammar to formulate the parser rules. An input graph to a parser is said to
belong to the generative grammar of VGG if the process of parsing ends at the start
graph of the generative grammar of VGG. If not, the input graph to the parser is a
non-derivable graph i.e., such a structure will never be generated by the generative
grammar of VGG.

We claim that the parser identifies only the right graphs with the right combination
of labels as valid graphs generated by the generative rules of VGG. It would reject both
(1) graphs with wrong structures as well as (2) graphs with right structures but wrong
combination of labels - as non-derivable graphs.

In our grammar, the node-labels are ΩV = {g, C, D, h, i, p, q, r, s, u, v, e} and
edge-labels are ΩE = {in, con, dis}. Each of the node-labels stands for the following: g
– start node (this is the only node in the start graph of generative grammar of VGG, but

6 An NAC is a Negative Application Condition which is also a graph. If an NAC matches with the graph
in question along with its LHS, then the rule cannot be applied. So one should check for this condition as well
before applying a rule.

this should become the end graph in the parser if the parsing is done successfully), C –
conjunct entity, D – disjunct entity, h, i, p, q, r, s, u, v – are all various node labels used
in the process of parsing. These are taken from generation grammar itself and their
corresponding Vaiśesịka categories which they are intended to stand for, is also kept
intact. The node labels used during generation (or pre-interpretation) stage are supposed
to map to the following Vaiśesịka categories after interpretation (post-interpretation)
stage, as shown in Table 1.

Table 1. Mapping between pre-interpretation (syntactic) and post-interpretation (semantic) labels

Pre-interpretation label
(purely syntactic)

Post-interpretation label
(semantic)

Corresponding Vaiśesịka
category

g (start node) not applicable not applicable

h not applicable not applicable

i not applicable not applicable

p MUS Mobile Ultimate Substance

q SW Substantial Whole

r UUS Ubiquitous Ultimate Substance

s U Universal

u Q Quality

v UD Ultimate Differentiator

At the end of the generation all the (pre-interpretation) labels were replaced by a

common label, e, to show that the nodes they were labeling can be interpreted later
based purely on their structures and not on their labels. Now we will use the same ‘e’ to
start the process of parsing! And the edge labels stand for the following: in – inherence
relation, con – conjunct relation, dis – disjunct relation. But in the rules below we have
differentiated edges based on their arrows instead of their labels for aesthetic purposes.
An inherence relation has one arrow (since it is an asymmetric relation), conjunct
relation has two arrows and a thick line whereas disjunct relation has two arrows and a
dashed line (both are symmetric relations).

No two entities have more than one edge (of any type) between them. That is a
default NAC for every rule and hence not being specified with each rule.

Since we are interested in only the structure of the input graph, we can assume all
the nodes of the input graph are either anonymous or uniformly labeled (except those of
C and D since they, anyway, are revealed by their corresponding edges and cannot be
otherwise). We will assume all the nodes (except that of C and D) are labeled
uniformly, with the label ‘e’ (the same label with which we homogenized all the nodes
at the end of generation. From here, we will try to backtrack the generation process

with the hope of reaching the start graph of generation grammar of VGG. For this, we
will apply the generation rules in reverse, though, with some changes in their NACs. So
the first layer of parser rules will be the last layer of generative rules and so on. We will
look at the parser rules (PRs) now.

The concept of layers is such that once we reach layer ‘n’, we cannot apply rules of
layers 1 to n-1. A layer can have one or more rules. The rules in a given layer can be
applied in any order.

The first layer consists of six rules corresponding to the six labels that the nodes
can take during the generation mechanism in VGG. These six can be applied in any
order to give us all possible graphs with all possible combinations of node-labels. Here
we combine all these six rules into a single rule for optimizing the space. The square
bracket in the below rule indicates ‘or’ i.e., the label ‘e’ in LHS can be replaced with
any one of the labels listed between the square brackets in the RHS.

Table 2. PRs Layer 1, Rules 1 to 6

LHS RHS

An important point to note here is that the parser, like any graph transformational
system, can take multiple paths in the process of transformation. Even if one of these
paths ends at the start graph of generative grammar of VGG, the parsed graph is said to
be derivable in our system i.e., it would be generated by the generative rules of VGG.

The second layer is about ultimate differentiator (v). Wherever it is found, we will
just delete it. This layer has two rules which are applied on the TGs of first layer. 7

Again, representing both these rules together for parsimony purposes.

Table 3. PRs Layer 2, Rules 1 and 2

LHS RHS

The above rule states whenever a ‘v’ is found in a ‘p’ (or ‘r’), just delete it. Its edges
get deleted with it automatically since the grammar does not allow the possibility of
dangling edges.

There are 3 NACs associated with this rule:
1. v should not inhere in any other node (when we say ‘v should not inhere’, we

mean ‘v like structure should not inhere’. The parser makes sure of that!)

7 TGs (Terminal Graphs) of a given layer are those graphs on which the rules of that particular layer are
no more applicable. NTGs (Non-Terminal Graphs) of a given layer are those on which the rules of that
particular layer can still apply.

2. No other v should inhere in this p (or r) in which this v is inhering.
3. Nothing should inhere in this v.
The anonymous nodes in NAC1 and NAC3 stand for any node, like in interpretation

rules of VGG.

Table 4. PRs Layer 2, NACs of Rules 1 and 2

NAC1 NAC2 NAC3

The next few layers (3 to 8) are about universals (s). We will look for the nodes
corresponding to universals and remove them.

Layer 3 has only one rule. It checks if ‘s’ inheres in all Cs, and if yes, deletes ‘s’
directly. This rule has two NACs.

1. Nothing should inhere in this s.
2. It should inhere in every C i.e., there should be no C in which it is not

inhering.

Table 5. PRs Layer 3, Rule 1 with NACs

LHS RHS NAC1 NAC2

The exclamation mark (!) in NAC2 indicates ‘not’ operator. So NAC2 reads as ‘1:s not
inhering in C’. So if NAC2 is true i.e., if there is a C in which 1:s does not inhere, then
the rule will not be applicable.

The layers 4 to 8 are quite similar to layer 3, except that ‘C’ is replaced by ‘D’ (for
disjunct), ‘p’ (for MUS), ‘q’ (for SW), ‘r’ (for UUS), ‘u’ (for Q) respectively in each
layer. So not listing those layers separately here.

Layer 9 deals with the deletion of quality (u) from a substantial whole (q). It has
only one rule which says that while a quality (u) is inhering in a MUS (p), and another
quality (u) inhering in a substantial whole (q), remove the quality from SW under the
condition that this quality (u) does not inhere anywhere else (this condition constitutes
the unique NAC of this rule).

Table 6. PRs Layer 9, Rule 1 with NAC

LHS RHS NAC1

Layer 10 deals with the deletion of quality (u) from MUS (p) and UUS (r). Actually
both these are separate rules, but combined into one for parsimony purpose. The
combined rule is presented below.

Table 7. PRs Layer 10, Rules 1 and 2 with NAC

LHS RHS NAC1

So the rule in layer 10 states that remove quality (u) from MUS (p) or UUS (r) under
the condition that it does not inhere anywhere else (the condition that constitutes the
unique NAC of this rule).

The next layer i.e., layer 11 has two rules which deal with deleting the contacts
among MUSs (p) and UUSs (r). Since UUSs (r) should be in contact (or in disjunct,
which will be handled in the next layer) with ALL the MUSs (p) we need to check if
that condition is satisfied or not. But since we are not using logical quantifiers like
universal quantifier or existential quantifier, we need to rely on some other technique to
verify that condition. One simple method we would use is to rename ‘r’ to ‘ar’ if it is in
contact with all the ‘p’s. Then we would delete the contacts among ‘ar’s and ‘p’s one
by one. At the end, we would rename ‘ar’ back to ‘r’ to accommodate the rest of the
rules based on ‘r’ (this rule would be part of layer 13).

The first rule of this layer renames ‘r’ to ‘ar’ if ‘r’ is in contact with all the ‘p’s.
One way to do this is to make sure that there is no ‘p’ with which it is not in contact
(this condition constitutes the unique NAC of this rule).

Table 8. PRs Layer 11, Rule 1 with NAC

LHS RHS NAC1

Please note that the ‘p’ in RHS is mapped to the ‘p’ in LHS (with the number ‘2’)
whereas the ‘p’ in NAC1 is not mapped to the ‘p’ in LHS (with any number). This is to
indicate that the ‘r’ in LHS should not be in non-contact with any ‘p’, not just the
particular ‘p’ which is under consideration in the LHS. Hence it is not restricted by
mapping it to the ‘p’ in LHS with a number.

While the first rule of this layer is mostly a verification condition, the second rule
is where the actual action happens. This rule states that the contact between ‘ar’ and ‘p’
should be deleted one by one. This rule is run till the end, until there are no more
contacts between any pair of ‘ar’ and ‘p’. It has no NACs associated with it.

Table 9. PRs Layer 11, Rule 2

LHS RHS

Layer 12 is very similar to layer 11 except that contact should be replaced by

disjunct here everywhere in the rules. The way contacts between ‘r’s and ‘p’s are
removed in layer 11, in the same way disjuncts will be removed between ‘r’s and ‘p’s
in layer 12. Other than that, everything is same in both the layers. So not listing layer
12 and its rules separately, and moving on to layer 13 directly.

Layer 13 has only one rule - to rename all ‘ar’s back to ‘r’s to continue with the
process of parsing and enabling the application of rules based on the label ‘r’. This will
be applicable only on the TGs of layer 12. It has no NACs.

Table 10. PRs Layer 13, Rule 1

LHS RHS

The remaining rules are not being presented here due to space constraints. For the full
list of PRs, one can refer to [15].

4. Results and Conclusion

Using this parser, we tested around 100k graphs (98,634 to be precise) generated by the
generative rules of VGG and found that every single one of them is a derivable graph
(because the parser could parse each one of them and found at least one path where it
landed up at the start graph). We then manually gave some graphs as input to the parser
which, we know, are not generated by the GRs of VGG. As expected, they are
classified as non-derivable graphs by this parser. This shows that the parser is powerful
enough to differentiate the graphs generated by the GRs of VGG from those not
generated by it.

But our goal is something bigger. We need to also ensure that these graphs
generated by GRs are actually Vaiśesịka graphs and not some arbitrary graphs. In other
words, are they interpretable in terms of Vaiśesịka categories, and if yes, how to verify
that.

We interpreted each of these 100k graphs using our IRs and found that every single
node of it being labeled with one of the Vaiśesịka categories. Around 4 million nodes
(3,886,374 nodes, to be precise) are labeled. To validate this labeling, we checked for
the correspondence between the generative labels (like p,q,r etc.) and the interpretation
labels (like UD, MUS, UUS etc.) and found that there is a one-to-one correspondence
between the labels presented in the following pairs: (p, MUS), (q, SW), (r, UUS), (s,
U), (u, Q), (v, UD). This is a resounding (statistical) proof of the soundness of the
system - that every graph generated by the GRs of VGG is a valid Vaiśesịka graph!

Using both the above results - (1) Given an input graph, with its structure alone,
the parser can classify if it is derivable i.e., generated by the GRs of the system or not,
and (2) All the graphs generated by the system are valid Vaiśesịka graphs - one can
actually verify whether an input graph is a valid Vaiśesịka graph or not. This, in itself,
is a significant result from an ontology engineering perspective since distinction of
valid state-of-affairs from invalid ones is immensely useful for many rich applications
like semantic search, machine translation, object recognition, text summarization etc.

But we have a long way to go before we build such applications. The work
presented here formalizes a very small, but foundational, portion of reality, and we
need to formalize much larger portions of reality to make such complex applications
possible. We are working in that direction, and hope this work also encourages others
to look at the possibility of generative ontology more seriously.

References

[1] Rajesh Tavva and Navjyoti Singh, Generative Ontology of Vaiśesịka, JOWO, 24th International Joint
Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina (2015)

[2] Kanạ̄da, The Vaiśesịka sutras of Kanạ̄da , with the commentary of Śamkara Miśra and extracts from the
gloss of Jayanārāyanạ. Translated in English by Nandalal Sinha. Allahabad (1911); 2nd edn. Revised
and enlarged, Allahabad (1923); Reprinted New York (1974), Delhi (1986)

[3] Praśastapāda, Padārthadharmasamgraha , with Nyāyakandali of Srīdhara. English Translation by
Ganganatha Jha. Chowkhamba, Varanasi (Reprint 1982)

[4] Udayana, Lakshanạ̄vali , In Musashi Tachikawa, The Structure of the World in Udayana’s Realism: A
study of the Lakshanạ̄vali and Kiranạ̄vali. Springer, Heidelberg (1982)

[5] Singh, N., Comprehensive Schema of Entities Vaisesika Category System, Science Philosophy Interface
5(2), 1–54 (2001)

[6] Singh, N., Formal Theory of Categories through the Logic of Punctuator (2002) (unpublished)
[7] Singh, N., Theory of Experiential Contiguum, Philosophy and Science Exploratory Approach to

Consciousness, pp. 111–159, Ramakrishna Mission Institute of Culture, Kolkata (2003)
[8] Rozenberg, G., et al. (eds.), Foundations. Handbook of Graph Grammars and Computing by Graph

Transformation, vol. 1. World Scientific, Singapore (1997)
[9] https://sites.google.com/site/vrktavva/resources/Generative_Ontology_of_Vaisesika.extended_version.p

df
[10] Gottfried Wilhelm Leibniz, The Labyrinth of the Continuum: Writings on the Continuum Problem,

1672-1686. Translated from Latin and French to English by Richard T.W. Arthur. (2001)
[11] Franz Brentano, The Theory of Categories, translated from German by Roderick M. Chisholm and

Norbert Guterman, The Hague, Boston, London: Martinus Nijhoff. (1981)
[12] Roberto Poli et al. (eds.), Theory and Applications of Ontology: Computer Applications, Springer

(2010)
[13] https://sites.google.com/site/vrktavva/resources/Vaisesika_Categories_table.pdf
[14] Mukhopadhyay, P.K., Indian Realism: A Rigorous Descriptive Metaphysics, K P Bagchi & Company,

Calcutta (1984).
[15] Vaiśesịka Graph Grammar (VGG) System (extended version),

https://sites.google.com/site/vrktavva/resources/Vaisesika%20Graph%20Grammar%20%28VGG%29%
20System.extended_version.pdf?attredirects=0&d=1

https://sites.google.com/site/vrktavva/resources/Generative_Ontology_of_Vaisesika.extended_version.pdf
https://sites.google.com/site/vrktavva/resources/Generative_Ontology_of_Vaisesika.extended_version.pdf
https://sites.google.com/site/vrktavva/resources/Vaisesika_Categories_table.pdf
https://sites.google.com/site/vrktavva/resources/Vaisesika%20Graph%20Grammar%20%28VGG%29%20System.extended_version.pdf?attredirects=0&d=1
https://sites.google.com/site/vrktavva/resources/Vaisesika%20Graph%20Grammar%20%28VGG%29%20System.extended_version.pdf?attredirects=0&d=1

