
Towards Coq Formalisation of {log}
Set Constraints Resolution

Catherine Dubois1, Sulyvan Weppe2,
1. ENSIIE, lab. Samovar, CNRS, Évry, France

2. ENSIIE, Évry, France

Abstract. The language {log} is a Constraint Logic Programming lan-
guage that natively supports finite sets and constraints such as (non)
equality and (non) membership. The set constraints resolution process
is mathematically formalised by Dovier et al in [5] using rewriting rules.
In this paper we present a formalisation in the Coq proof assistant of the
term and constraint algebra, the rewriting rules and check all the exam-
ples given in the reference paper by applying the rewriting rules manually
with the help of some tailored tactics. The main problem we encountered
is the non-determinism captured by the rewriting rules, which prevents
us from automating their application in Coq. However the rules for non-
membership and set checking are deterministic. So we propose a function
that iteratively applies the latter rules. We prove its correctness with re-
spect to the corresponding rewriting rules. This work is a first step of a
larger project whose objective is to provide a formally verified resolution
process for {log} set constraints resolution.

1 Introduction

The language {log}1 is a freely available implementation of CLP(SET), recently
extended to include binary relations and partial functions [4]. This language
embodies the fundamental forms of set and a number of primitive operations for
set management. It includes constraints for constructing and manipulating finite
sets. In this paper we focus on the resolution of set constraints as it is detailed
by Dovier et al in [5], considered in the following as the reference paper.

We contribute a formalisation within the Coq proof assistant [10] of the {log}
resolution process of set constraints, or more precisely a first step towards this
objective. Our motivation is to have a mechanized formal basis, in order to have
a reference that could be used to study extensions, like the recent ones about
partial functions and relations.

The resolution process extends the unification on first-order terms by adding
specific set constraints e.g. (non) membership, (non) equality.

There are many formalisations of first-order unification in proof assistants,
e.g. [8,9,2,1,7,6]. We can also mention a Coq proof of unification modulo as-
sociativity and commutativity with a neutral element embedded in the library
Coccinelle [3] and also several proofs about nominal unification, e.g. [11].
1 http://people.dmi.unipr.it/gianfranco.rossi/setlog.Home.html

The work described in this paper is the first step of a larger project whose ob-
jective is to provide a formally verified resolution process for {log} set constraints
resolution.

In this paper we present, in Section 2, the formalisation of the term and
constraint algebra and the rewriting rules used in the set constraints resolution of
{log} as exemplified in [5]. We go a step further by introducing some automation
in the rewriting strategy. We propose to turn some of the rewriting rules into
an operational process. It is described in Section 3 and we prove its termination
and correctness. In Section 4, we conclude and present future work.

2 Coq Formalisation

In this section, we present first the formalisation of the term and constraint
algebra and then the way we have formalised the rewriting rules used in the
set constraints resolution of {log} as exemplified in [5]. Coq code is available at
http://www.ensiie.fr/~dubois/CoqSetlog.

2.1 Terms and Constraints

A term is either a variable, the emptyset, a non-empty set or any non-set term
built from a function symbol and a list of terms (let us call them ordinary
terms). The type of terms, term, is represented in Coq as the following inductive
datatype:

Inductive term: Set :=
| Var: variable → term
| SetC: term → term → term
| OTerm: symbol → list term → term
| EmptySet: term.

Ordinary terms are represented as varyadic terms. If necessary, we use a
predicate for checking the well-formedness of such a term (stating that the length
of the list of sub-terms is equal to the arity of the function symbol). The types
of variables and symbols are any arbitrary types equipped with a decidable
equality. Non empty sets are denoted by set terms of the form {a|t}, represented
in Coq by SetC a t: a denotes an element of the set and t the set of the other
elements. This notation stands for the set {a} ∪ t. The function symbol {_|_}
used to construct sets is such that: (i) duplicates in a set do not matter and
(ii) the order of elements is irrelevant. Both facts are taken into account by the
resolution process.

The primitive constraints are equality (Eq), non-equality (Neq), membership
(Mem), non-membership (Nmem) and set term constraints (IsSet). The type of
primitive constraints is again defined as an inductive data-type. FalseC is added
(wrt to the reference paper) to indicate that the resolution fails. A constraint is
defined as a conjunction of primitive constraints, represented in Coq as a list of
primitive constraints.

Inductive primitiveConstraint: Type :=
| Eq: term → term → primitiveConstraint
| Neq: term → term → primitiveConstraint
| Mem: term → term → primitiveConstraint
| Nmem: term → term → primitiveConstraint
| FalseC: primitiveConstraint
| IsSet: term → primitiveConstraint.

Definition constraint:=list primitiveConstraint.

Let pc be one of the primitive constraint of the constraint C. pc is in solved
form if it has any of the following forms: (i) X = t, and neither t nor the rest of
C contains X; (ii) X 6= t, and X does not occur in t; (iii) t /∈ X, and X does
not occur in t; (iv) IsSet(X). A constraint C is in solved form if it is empty or
all its components are in solved form.

We define also functions for checking occur-check, applying a substitution
and some more helpers. We try to use as much as possible Coq notations to
ease the reading and make our formalisation look like the paper presentation.
For example the construct {t1|t2} represented in Coq by SetC t1 t2 is written in
Coq {{ t1 | t2 }}. The constraint of equality t1 = t2 (resp. t1 6= t2) is written
t1 == t2 (resp. t1 /== t2), x ∈ t (resp. x /∈ t) is written x : s t (resp. x /:s t).

2.2 Rewriting Procedures

In [5], the constraint solver is defined as a procedure named SATSET that nonde-
terministically transforms a constraint to either false, error, or a finite collection
of constraints in solved form. This solver uses different rewriting procedures,
one per kind of primitive constraints, to rewrite a set constraint to its equivalent
solved form. Each rewriting procedure, made of different rules, models one step
of rewriting. And each rule corresponds to a certain case of primitive constraint.

In our Coq formal development, we now formalise each single rewriting pro-
cedure as an inductively defined predicate. Each rule is translated into a clause
of the predicate. We try to be very close to the original definitions.

In a constraint, once an equality X = t where X does not occur in t, has
been processed, it can be isolated because X has been eliminated from the rest
of the constraint as it is usually done for first-order unification (e.g. in Color [2]
and Coccinelle [3]). We follow the same approach and introduce the notion of
problem as a pair whose first component contains solved equalities - called the
solved part - and second component is a constraint to be rewritten - called the
unsolved part. The type problem is defined in Listing 1.1. All Coq rewriting
procedures share the type problem → problem → Prop, showing that a rewriting
procedure rewrites a problem into another one.

At the beginning of the resolution, the solved part is empty. When the rewrit-
ing process is complete (that is no more rules can be applied), either the unsolved
part contains FalseC meaning that a dead-end has been reached or the unsolved
part provides us with a constraint in solved form.

All the Coq rules share the same format as exemplified in Listing 1.1: the
first predicate specifies the position of the primitive constraint to be rewritten
and its form, then optional conditions are stated and finally the new problem is
specified. Usually in a rule (e.g. stepMem2_2 in stepMem procedure) the targetted
primitive constraint is removed and replaced in the unsolved part by one or some
other primitive constraints. In some others, e.g. stepMem1, when a contradiction is
found, the unsolved part is replaced by [FalseC], stopping the rewriting process.
Definition problem := constraint * constraint.

Inductive stepEq: problem → problem → Prop :=
...
|stepEq5: forall X t c1 c2 l1 l2 res,

c2 = l1 ++ [Var X == t] ++ l2 →
¬(occurCheck X t) →
((setTerm t)∨ ¬(isSetInC X c1) ∨ ¬(isSetInC X c2))→
res = applySubst [(X,t)] (l1 ++ l2) →
stepEq (c1, c2) ((Var X == t)::(applySubst [(X,t)] c1), res)

...

Inductive stepMem : problem→ problem→ Prop :=
|stepMem1: forall t c1 c2 l1 l2,

c2 = l1 ++ [t :s EmptySet] ++ l2 →
stepMem (c1, c2) (c1, [FalseC])

|stepMem2_1: forall r s t c1 c2 l1 l2 res,
c2 = l1 ++ [r :s {{ s | t }}] ++ l2 → res = (r == s)::(l1++l2) →
stepMem (c1, c2) (c1, res)

|stepMem2_2: forall r s t c1 c2 l1 l2 res,
c2 = l1 ++ [r :s {{ s | t }}] ++ l2 → res = (r :s t)::(l1++l2) →
stepMem (c1, c2) (c1, res)

|stepMem3: forall t X N c1 c2 l1 l2 res,
c2 = l1 ++ [t :s (Var X)] ++ l2 →
isFreshC N c1→ isFreshC N c2→ isFreshT N t → N<>X →
res = (l1 ++ l2) ++ [Var X == {{ t | Var N}} ; IsSet (Var N)] →
stepMem (c1, c2) (c1, res).

Listing 1.1. Coq encoding of some rewriting rules

These rewriting predicates are packed in one single, named step, specifying
that a step in the resolution is achieved by one of the 5 previous predicates:
Inductive step : problem→ problem→ Prop:=
| step1 : forall pb pb’, stepEq pb pb’ → step pb pb’
| step2 : forall pb pb’, stepMem pb pb’ → step pb pb’
| step3 : forall pb pb’, stepNeq pb pb’ → step pb pb’
| step4 : forall pb pb’, stepNmem pb pb’ → step pb pb’
| step5 : forall pb pb’, stepSC pb pb’ → step pb pb’.

We define the transitive reflexive closure of each predicate, so that these closures
allow us to achieve a complete transformation. The Coq standard library provides
the predicate clos_refl_trans that defines the transitive reflexive closure of a
binary relation:

Definition stepSCStar := clos_refl_trans _ stepSC.
Definition stepStar := clos_refl_trans _ step.

Using this formalisation, we can prove examples 2-4 of the reference paper
with all their solutions. It is quite painful because we need to apply manually
each rule. However the proof script is readable and allows us to follow precisely
the different steps.

3 Towards More Automation

As said previously, the rewriting procedures are not deterministic, but actually
some are. This is the case of stepNmem and stepSC. It is useful to define a functional
version of these two ones, since the predicate versions we defined only allow us
to make one step at once, whereas such a functional version would allow us to
apply these steps iteratively, until we cannot anymore.

So we define the function stepsSCheck that iteratively applies the different
rules of the rewriting predicate stepSC. This function implements a general re-
cursive scheme: some cases do add some primitive constraints in the problem.
Proof of termination in that case is not automatic in Coq. We easily prove the
termination by introducing a dedicated measure on the constraint argument.

We prove the soundness of the function stepsSCheck with respect to the cor-
responding rewriting rules. Precisely, we prove, in Lemma stepsSCheck_sound
below, that the result obtained by stepsSCheck is indeed in the reflexive transi-
tive closure of the relation stepSC. However we do not use stepSCStar previously
defined but an adaptation of it, stepSCRd which is defined as stepSCStar ex-
tended with a rule that allows us to pass over any constraint different from
a SC constraint. We also prove the completeness of the function in Lemma
stepSC_complete: if we can not rewrite a problem anymore with the stepSC rules,
then stepsSCheck acts as the identity function. Again we use a variant of the
rewriting relation stepSC to deal with FalseC that stops any computation in the
function.

Lemma stepsSCheck_sound: forall c c1, stepSCRd (c1,c) (stepsSCheck (c1,c)).

Lemma stepsSCheck_complete: forall pb pb’,
(forall pb’, ¬ stepSCOnly (c1,l) pb’) → stepsSCheck (c1,l) = (c1,l).

We can follow the same approach on stepNmem, resulting in a function correct
with respect to the reflexive transitive closure of stepNmen. This is future work.

4 Conclusion

This paper presents the initial work done for formalising in Coq the set con-
straints resolution of {log}. We mainly define the term and constraint algebra
and the different rewriting procedures, being as close as possible to the refer-
ence paper. All the examples presented in [5] are re-played in Coq, which brings

some relative confidence in our formalisation. The difficulties we encountered
come from the fact that the rewriting procedures are not deterministic. So the
definition of a resolution procedure cannot be done using functions (as done for
first-order unification [2]). However for each deterministic rewriting relation, we
can define a function that applies its rules until a solved form is achieved.

We propose several directions for future work. First, we want to formalise in
Coq the main propositions and theorems of [5], such as termination and correct-
ness of the resolution process. The second direction concerns the definition of a
Coq function that implements the resolution process as it is proposed in [5] and
its formal correctness proof. We have already achieved a first step, as explained
in Section 3. The next step is a large one because it requires to implement back-
tracking in Coq, considered as implicit in the reference paper. An alternative
to implementing backtracking could be to formalise an all solutions semantics,
where the computed result represents the disjunction of the results of all the
possible computations. This is another direction for future work.

Acknowledgements We thank M. Cristia and G. Rossi for the discussions
which initiate this work. We thank G. Rossi for his help when we started the Coq
formalisation. Thanks also to the anonymous reviewers for their suggestions.

References

1. A. B. Avelar, A. L. Galdino, F. L. C. de Moura, and M. Ayala-Rincón. First-order
unification in the pvs proof assistant. Logic Journal of the IGPL, 22(5):758–789,
2014.

2. F. Blanqui and A. Koprowski. Color: a coq library on well-founded rewrite rela-
tions and its application to the automated verification of termination certificates.
Mathematical Structures in Computer Science, 21(4):827–859, 2011.

3. E. Contejean. Coccinelle, a Coq library for rewriting. In Types, Torino, Italy, 2008.
4. M. Cristiá, G. Rossi, and C. S. Frydman. Adding partial functions to constraint

logic programming with sets. TPLP, 15(4-5):651–665, 2015.
5. A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic program-

ming. ACM Trans. Program. Lang. Syst., 22(5):861–931, 2000.
6. S. Kothari and J. Caldwell. A machine checked model of idempotent MGU axioms

for lists of equational constraints. In M. Fernández, editor, Proc. 24th Int. Work-
shop on Unification, UNIF 2010, Edinburgh, United Kingdom, 14th July 2010.,
volume 42 of EPTCS, pages 24–38, 2010.

7. C. McBride. First-order unification by structural recursion. Journal of Functional
Programming, 13(6):1061–1075, 2003.

8. L. C. Paulson. Verifying the unification algorithm in lcf. Sci. Comput. Program.,
5(2):143–169, June 1985.

9. J. Rouyer. Développement de l’algorithme d’unification dans le calcul des con-
structions. technical report 1795, 1992.

10. The Coq Development Team. Coq, version 8.7. Inria, Aug. 2017. http://coq.
inria.fr/.

11. C. Urban, A. M. Pitts, and M. Gabbay. Nominal unification. Theor. Comput. Sci.,
323(1-3):473–497, 2004.

