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ABSTRACT
The emerging architectures for Processing-in-Memory (PIM)
present new challenges to database systems: one of them is
how to schedule intra-query execution with the x86 proces-
sor to be executed inside the memory. In this paper, we
show that inefficient scheduling for PIM degrades perfor-
mance and increases energy consumption, but the proper
PIM operators can reach significant improvement in more
than one order of magnitude. Therefore, we bring out our
vision of a PIM-aware scheduler for intra-query processing.

1. INTRODUCTION
The new Processing-in-Memory or Processor-in-Memory

(PIM) architectures have emerged as a solution to tackle
the problem of data movement between memory and pro-
cessor, although research in database systems is still prema-
ture to carry them out. An open issue is how to coordinate
intra-query execution between x86 and underlying memory
processor to exploit the potential gain from each device.

The choice of the target architecture for processing im-
pacts directly on query execution because mis-scheduling of
database operators can degrade query performance and in-
crease energy consumption. For example, operators with
high data reuse benefit from caching mechanism, and thus
the x86 processing becomes appealing. On the other hand,
operators with data streaming behavior are more suitable
for PIM [12]. However, recent work focus on boosting data-
base operators in PIM architectures with a single operator
perspective, such as select [12, 13, 14] or join [10, 9]. Such
one-sided approach ignores the benefits of cache data reuse.

Furthermore, current query processing scheduling on emerg-
ing hardware have focused on multi-core architectures to
reduce resource requirements [5], balancing resource utiliza-
tion across sockets [11] and the proper allocation of cores [4].
Other solutions adapt queries in many-core architectures us-
ing fine-grained scheduling of database operators to improve
resources usage on the Intel Xeon Phi processor [3, 2]. Those
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scheduling solutions deal with idiosyncrasies of the multi-
core and many-core architectures to run compute-intensive
applications. But, PIM architectures, such as Hybrid Mem-
ory Cube (HMC) [6], have other peculiarities to accomplish
efficient data-intensive applications.

In this thesis, we focus on investigating how to interleave
intra-query execution between the x86 and processing-in-
memory. As far as we know, this is the first effort in that
direction. Existing solutions usually direct data-intensive
operators for PIM, however, they neglect the potential of
x86 processing using caches for workloads with high tem-
poral and spatial data locality. Thus, our vision is that a
database system requires a PIM-aware scheduler for intra-
query processing. During a Query Execution Plan (QEP)
the database scheduler shall be capable of dispatching op-
erators to suitable devices: PIM and x86. In addition, the
database system needs efficient implementations of opera-
tors for PIM to benefit from the high bandwidth and the
parallelism of the underlying hardware.

2. IMPACT OF DATABASE OPERATORS
Initially, we investigate the set of database operators on

analytic workloads, like TPC-H, because they generate mas-
sive data movement throughout the memory hierarchy [12].
We run the 100 GB TPC-H in the column-oriented database
system MonetDB [7], because of its mature research in data-
base kernels for contemporary memory hierarchy. For each
TPC-H query, we added the TRACE statement modifier of
MonetDB that records broad information of every database
operator, including the execution time. We group the most
time-consuming operators into four categories: project, se-
lect, join, and the remaining ones grouped into the cat-
egory “others”. We perform the experiments on a Intel
quad-core i7-5500U@2.40GHz with RAM of 16 GB (DDR3L
1333/1600) and L3 cache size of 4MB running OpenSuse
Leap 42.3 on Linux kernel version 4.4.76-1-default. Figure 1
shows the execution time split among those operators for
each query and the last bar to the right aggregates the re-
sults of the whole TPC-H. The most time-consuming oper-
ator is the project (around 56%), followed by select (21%)
and join (15%), these operators impact more than 90% in
the execution time of TPC-H because DBMSes push them
down into the QEP to filter massive volume of data for sub-
sequent operators.
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Figure 1: Top time-consuming database operators in Mon-
etDB [7] running the 100 GB TPC-H benchmark.

3. DATABASE OPERATORS INSIDE HMC
In this section, we devise efficient implementations of such

operators inside the HMC evaluating the execution time and
energy consumption. We used the SiNUCA cycle-accurate
in-house simulator [1] to evaluate the execution time with
same parameters used by related work [13]. The energy
estimations consider the DRAM values for HMC [8]. We
evaluate those operators using the 1 G TPC-H because, in
that instance, the input data sets fit into the cache, i.e., the
best scenario for x86 processing. Based on this analyze is
possible to profile the candidate operators for PIM or x86.

3.1 Project Operator
Surprisingly, TPC-H spends around 56% of the execution

time and memory footprint with projections. In a further
analysis, we investigate the TPC-H Query 031 to scrutinize
the reasons for our findings. Figure 2 presents a partial exe-
cution of the TPC-H Query 03 in a top-down view and shows
the interaction among select-project-join operators. The op-
erators select and join generate filters from input columns,
such as an array of matching row-ids and bitmaps, and the
project operator uses these filters to project other columns
in the QEP. Therefore, the impressive impact of projections
on TPC-H with MonetDB is because they take the burden
to materialize intermediate and final results of other opera-
tors. As shown in the diagram of Figure 2, MonetDB per-
forms projections through two primitives: algebra.projection
and algebra.projectionpath. The first projects a column us-
ing as input a set of filtered row-ids (or bitmap) generated
by either a select or join. The latter receives as input two
sets of filtered row-ids (or bitmaps) from the select and join
operators, and combining them to project a column.

We avail the projection operator in the HMC [6] to ana-
lyze the processing-in-memory performance. The HMC 2.0
is a 3D die-stacked device comprised of four or eight DRAM
dies and one logic die. Internally, the HMC is organized
as 32 independent vaults. With the support of HIPE [13], a
PIM processor with predicated instructions under the HMC,
we run HIPE-Projection in the flagged projections of Fig-
ure 2. Figure 3 depicts both projection primitives in C and
assembly-like codes (HIPE-Projection).

Both primitives traverse bitmap vector(s) to filter a pro-
jection column. Inside the HMC, HIPE-Projection performs
one load of 256-bytes of the input bitmap(s) and, in case of

1We chose Query 03 as it gathers the operators that we are
interested in: project, select, join and group-by/aggregation.
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Figure 2: Top-down diagram of a partial execution of the
TPC-H Query 03.

algebra.projectionpath
(with predication)

algebra.projection
(with predication)

algebra.projection(bitmap_sel[], column[])

algebra.projectionpath(bitmap_join[],
                                            bitmap_sel[],
                                            column[])

LOOP:
    ...
    HIPE_LD      H1            bitmap_sel[i]
    HIPE_SET    pH1          H1, $1
    HIPE_LD      H2            column[i]   (pH1)
    HIPE_ST       H2            result[j]      (pH1)
    HIPE_ADD   H3            j++               (pH1)
   ...
J LOOP

for (int i, j = 0; i <  tableSize; i++)
    if (bitmap_join[i] && bitmap_sel[i]) {
        result[j] = column[i];
        j++;
    }

for (int i, j = 0; i <  tableSize; i++)
    if (bitmap_sel[i]) {
        result[j] = column[i];
        j++;
    }

C Language

C Language HIPE-Projection Assembly Like

LOOP:
    ...
    HIPE_LD       H1             bitmap_join[i]
    HIPE_LD       H2             bitmap_sel[i]
    HIPE_AND   H3             H1, H2
    HIPE_SET     pH3          H3, $1
    HIPE_LD       H4            column[i]   (pH3)
    HIPE_ST       H4            result[j]      (pH3)
    HIPE_ADD   H5             j++              (pH3) 
...
J LOOP

HIPE-Projection Assembly Like

Figure 3: C and HIPE-Projection codes for the two projec-
tion primitives.

matched entries, it executes up to 32 parallel loads of 256-
bytes of the projection column and stores the values into the
result vector. Those HIPE-load and HIPE-store instructions
are on-chip memory operations, i.e., the load gets data from
DRAM dies to HIPE registers within the HMC, while the
store does the inverse. Therefore, the HIPE-Projection ben-
efits from the low on-chip memory latency and it uses the
maximum degree of parallelism of the HMC vaults.

Figure 4 shows that HIPE-Projection reduced the execu-
tion time by more than one order of magnitude with the
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(a) Projection: execution time and energy consumption.
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(b) Projectionpath: execution time and energy consumption.

Figure 4: Evaluating of execution time and energy consump-
tion of the HIPE-Projection varying loop unrolling depth in
the column-at-a-time engine.

loop unrolling technique of 32x against the best case of the
x86 processor with the unroll depth of 8x2. The energy con-
sumption of the total DRAM accesses normalized by the
x86 execution with unroll depth of 1x is present on figure 4.
We observe that the HIPE-Projection reduces the energy
consumption around 55% and 20% on average for both pro-
jection primitives, respectively. Those results are due to the
streaming behavior of projections that causes low data reuse
and less amount of off-chip data transfers during the copy
of data (materialization). Hence, the results endorse the
feasibility of the projection operator for PIM.

3.2 Select Operator
Considering that select scan is the second most time-

consuming operator (see Figure 1) responsible for almost
21% of the TPC-H execution time. Traditionally it moves
data around the memory hierarchy up to the processor to
validate filter conditions on database columns. Similar to
the projection operator, we avail the select inside HMC with
the implementation of the HIPE-Selection, as depicted in
Figure 5. HIPE-Selection traverses a database column test-
ing each value against a constant, which causes compulsory
loads of 32x 256-bytes of the select column and, in case
of matched entries, it executes parallel stores in the result
bitmap vector. These memory accesses are on-chip opera-
tions. Therefore, HIPE-Selection reaches the maximum de-
gree of parallelism of the HMC and also exploits the low
on-chip memory latency.

2The 8x is the deepest unroll generally implemented by com-
pilers due to the reduced number of general purpose regis-
ters.

algebra.select
(with predication)

algebra.select (column[], filter) LOOP:
    ...
    HIPE_LD      H1              column[i]
    HIPE_CMP  H3              H1, H2
    HIPE_SET    pH3            H3, $1
    HIPE_ST      H1               result[j]    (pH3)
    HIPE_ADD  H4               j++             (pH3)
    ...
J LOOP

for (int i, j = 0; i <  tableSize; i++)
    if (column[i] < filter) {
        result[j] = column[i];
        j++;
    }

C Language HIPE-Selection Assembly Like

Figure 5: C and HIPE-Selection codes for select operator.
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(b) Energy consumption.

Figure 6: Evaluating of execution time and energy consump-
tion of the HIPE-Selection varying loop unrolling depth in
the column-at-a-time engine.

We run HIPE-Selection in the flagged selection of Figure 2
for performance and energy consumption analysis. Figure 6a
shows that HIPE-Selection unrolled 32x reduces the execu-
tion time by 76x compared to the best x86 scenario with the
unroll depth of 8x. Figure 6b brings the total DRAM energy
consumption normalized by the x86 execution with unroll
depth of 8x. HIPE-Selection reduces the energy consump-
tion by around 98% of any unroll version. In HIPE-Selection
most data transfers take place on-chip, but the selection in
the x86 causes off-chip data transfers for the entire column
and the result vector (i.e., data movement throughout the
cache memory hierarchy). These results corroborate for the
feasibility of the select operator for PIM.

3.3 Join Operator
The join operator has been studied for years, with dif-

ferent algorithms to exploit the potential of the x86 pro-
cessor. Most of the algorithms belong to the classes of hash
join and sort-merge join. However, such algorithms generate
random memory accesses that inhibit the potential of HMC
(high bandwidth and parallelism over contiguous data), and
indeed the HMC is better exploited for streaming applica-
tions [12]. Thus, we implemented the Nested Loop Join
(NLJ) due to its streaming behavior that benefits from the
HMC parallelism. The NLJ traverses the join columns in
two loops: the outer and the inner. In HIPE-Join3, the
inner loop is unrolled up to 32x to exploit the data access
parallelism of the HMC. But, different from other PIM op-
erators, the HIPE-Join reaches poor performance for the
execution time in the flagged join of Figure 2, as shown in
Figure 7a. Even the energy consumption is worst in the best
HIPE-Join: 3% with the unroll depth of 32x shown in Fig-
ure 7b, compared to any version of the x86. Although the

3We suppressed the HIPE-Join codes due to space restric-
tion.
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NLJ streams the join columns, it enforces data reuse when
repeatedly traversing the inner loop. Furthermore, the join
columns fit into the cache hierarchy and thus only the first
compulsory misses occur when loading the columns in the
cache. Thereafter, there is no LLC cache misses until the end
of the execution while the inner column is reused N times.
By contrast, in the HIPE-Join every inner loop iteration
cause compulsory LOAD and STORE (in case of matched
join values) instructions. The loop unrolling technique re-
duces such impact due to the high internal bandwidth of the
HMC, as depicted in Figure 7. However, it is not enough to
improve performance nor energy consumption when using
PIM.
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Figure 7: Evaluating of execution time and energy consump-
tion of the HIPE-Join varying loop unrolling depth in the
column-at-a-time engine.

4. PIM-AWARE SCHEDULER
Database system environments with PIM demand careful

decision by the QEP to interleave intra-query execution with
the x86 processor, but the choice of the best target architec-
ture depends on intra-operator data reuse, which fluctuates
according to the operator behavior, the cache settings, and
data characteristics. This motivates the design of a PIM-
aware scheduler: our future work on dynamic database op-
erator scheduling for emerging PIM architectures.

The scheduler is a critical performance component of a
DBMS: it orchestrates the execution of physical primitives
of a QEP. Thus, we envision two scheduling strategies for a
PIM-aware scheduler: static scheduling and dynamic schedul-
ing. These strategies receive as input the optimal plan gen-
erated by the query optimizer, coordinating intra-query ex-
ecution between PIM and the x86.

Static scheduling: before query execution, using a clas-
sification model based on operator profile to decide in which
architecture to process each operator.

Dynamic scheduling: during query execution, begin-
ning with the static scheduling and modifying on-the-fly the
operator implementation as the scheduler detects abnormal
data reuse.

5. CONCLUSIONS AND FUTURE WORK
Although PIM architectures feature as high performance

memory by delivering unprecedented bandwidth, data ac-
cess parallelism and computational power, not every appli-
cation benefits from PIM capabilities. Thus, database sys-
tems must accurately interleave intra-query processing be-
tween PIM and x86. In this direction, we introduce our
vision of a PIM-aware scheduler for intra-query processing.

We first investigate the most impacting database operators
in analytic workloads and develop adjusted PIM operators:
HIPE-[Projection, Selection and Join]. The first two proved
efficient for the execution time and energy consumption.
However, the latter presented another perspective that is the
intra-operator data reuse is a heavy factor for scheduling de-
cisions. Our ongoing work is the static scheduling strategy
based on operator profiles. Our future work is the dynamic
scheduling strategy to reschedule operators on-the-fly.
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