
The Case for Designing Data-Intensive
Cloud-Based Healthcare Applications

Position Paper

Srini Bhagavan1,2, Khulud Alsultan2, and Praveen Rao2

1 IBM, Leawood, KS 66219
srinib@us.ibm.com,

2 Univ. of Missouri-Kansas City (UMKC), Kansas City, MO 64110
kaq58@mail.umkc.edu,raopr@umkc.edu

Abstract. Cloud computing is one of primary line of business for lead-
ing technology companies like Amazon, Google, IBM and Microsoft.
There is a growing interest among the healthcare community to adopt
cloud services for use cases such as large-scale healthcare data manage-
ment. One may wonder if cloud computing can meet the requirements of
future healthcare applications, which may be data-intensive. In this posi-
tion paper, we present a cloud computing architecture based on microser-
vices and container technologies to support data-intensive healthcare ap-
plications. We propose the use of industry best-practices for managing
storage and compute resources, and non-functional requirements such as
availability, security, recoverability, and capacity planning. We provide
our insights and recommendations for software developers to follow.

1 Introduction

The adoption of cloud computing in healthcare is expected to reach $9.5 billion
by 2020 [1]. Cloud services can be used for population health management, care
management support, diagnostic support, patient services, lab services, clinical
research, and others [5]. Data-intensive healthcare applications are also on the
rise. Researchers at Mount Sinai used Amazon Web Services (AWS) to analyze
100+ TB of genomic data for breast and ovarian cancers [4]. Ecosystems like
Apache Hadoop [6] and Apache Spark [3] can enable large-scale healthcare data
processing. It is possible to rent 100s of (virtual) machines from a cloud provider
to run data-intensive healthcare applications. The healthcare use cases using
cloud services are endless; the pay-as-you-go model of cloud computing is very
appealing to hospitals for lowering IT costs.

Motivated by these trends, in this position paper, we make the case for a
cloud computing architecture based on microservices and container technologies
to deploy and manage data-intensive healthcare applications in the cloud. In to-
day’s cloud computing world, we are dealing with multiplicity of hardware envi-
ronments from various vendors and software stacks that deploy and interact with
them and with each other. The sheer permutation of deploying and managing
them on various platforms is a combinatorial explosion problem at the very least.

2 Srini Bhagavan et al.

Large enterprises also must worry about continuous integration and migrating
between environments with least impact. We posit that in the coming years, crit-
ical healthcare applications will be hosted in cloud environments – microservices
and container technologies are first step in this direction. Unlike prior work that
emphasize on microservices for healthcare [2] and bioinformatics [8], we provide
recommendations based on industry best-practices and practical experiences.

2 Background
2.1 Containers, Container Orchestration and Microservices
A container is a set of processes that are isolated from the rest of the operating
system and can be easily moved to other environments. Containers are very light-
weight and can scale efficiently. Multiple containers can be packed on a single
host, and hence, share the same OS kernel. Containers facilitate efficient use of
resources (e.g., CPU, memory, storage) available on the host machine compared
to virtual machines (VMs) that have multiple guest operating systems. Contain-
ers increase application development efficiency by enabling continuous integra-
tion/continuous delivery (CICD). The same application can be ported across
cloud providers. Moreover, containers can be provisioned very quickly, which
translates to high application availability for deployment and maintenance.

All complex applications require some degree of orchestration. When there
are many machines hosting containers, we need a system to federate multiple
hosts into one target. When an application is composed of many containers
running on several hosts, we will need to have a mechanism to move containers
around when a host is down, for containers on different hosts to communicate
with each other, update the application with zero downtime.

Microservice is the new architecture paradigm for cloud applications. The
main idea is to decompose an application into many smaller components, where
each component has its own responsibilities and by definition, a microservice.
Each microservice is loosely coupled with one another. Microservices commu-
nicate using a light-weight protocol, can be distributed across different host
machines and updated independently of one another. Containers are a natural
deployment topology for microservices. In comparison, a monolithic architec-
ture has all its components deployed together in one processing unit rendering
it difficult to deploy, manage, upgrade and scale parts of the application stack.

2.2 Microservices Available on Cloud Providers
Infrastructure-as-a-Service (IaaS): IaaS refers to the underlying hardware re-
sources such as network, storage and compute resources (usually with some vir-
tualization technology), which cloud providers host and/or manage. (Depending
on the choice of deployment, application developers may be given access to the
machines.) For example, storage can be procured in many ways. Object storage
can be used for low-cost scenarios. Block storage and file storage can be used for
high performance applications with high allocated IOPS (input/output opera-
tions per second) per volume. Cloud providers offer predictable high performance
storage solutions to support high I/O applications. Individual performance stor-
age volumes for block and file storage are allocated specific guaranteed IOPS.

The Case for Designing Data-Intensive Cloud-Based Healthcare Applications 3

For example, applications can expect to provision storage from 20 GB to 12 TB
with IOPS ranging between 100-6000.

Platform-as-a-Service (PaaS): PaaS is a cloud offering that provides to a user
a complete stack to develop and deploy software to the cloud in addition to
IaaS services. The primary benefit is that the consumer is abstracted from man-
aging the underlying cloud infrastructure including network, servers, operating
systems, and storage. Scalability and security are also fully managed by PaaS.
This allows the developers to fully focus on what they are really good at, i.e.,
rapid development and deployment. Over the past few years, several vendors
have come up with their PaaS offerings (that also deploy Kubernetes3 clusters
as part of machine provisioning). Kubernetes allows storage to be detached from
compute to facilitate faster recovery and storage expansion.

Software-as-a-Service (SaaS): SaaS refers to the software used on-demand by
application developers typically as a subscription-based model. Database-as-a-
Service (DBaaS) refers to the model where access to the database is provided
to the end user through SaaS. Typically, the database software, database con-
figuration, all the physical (or virtual) machines, and storage are managed by
the cloud provider. The degree of control over the database (and its host) de-
pends on the cloud provider and the type of DBaaS. The performance and other
non-functional requirements (e.g., security, availability) of the database are guar-
anteed by the cloud provider as per Service Level Agreement (SLA).

3 Our Position
A software developer building healthcare applications that store, manage, and
analyze massive amounts of data is always left with the critical decision of choos-
ing the right application stack, the total cost of procurement, and maintenance of
the applications. With the entrenchment of cloud providers in the industry and
the advent of microservices, architecting healthcare applications and deploying
them demands rethinking the traditional development process. We advocate the
developer identify/develop the required microservices by following the 12-factor
methodology [7]. For example, the developer should containerize the web server
and scale it for load balancing and high availability, containerize the data ingest,
containerize machine learning, etc., and deploy them on a mature cloud provider
runtime of choice.

To orchestrate the microservices, the developer can use Kubernetes, which
is a natural fit. However, instead of manually setting up everything ranging
from acquiring machines and installing Kubernetes, which is time consuming
and requires Kubernetes administration skills, he/she can provision a container
service from the cloud provider.

Next the stateful application developer must think about managing storage
space and databases. In a typical on-premise environment, the IT team is re-
sponsible for taking care of these logistics. However, in a cloud environment, the

3 https://kubernetes.io

4 Srini Bhagavan et al.

Fig. 1. An architecture for designing healthcare applications in the cloud

developer can take advantage of Storage-as-a-Service and Database-as-a-Service
from the cloud provider. The caveat, however, is to pick the correct SaaS plan
for these services.

Figure 1 shows the main components of our proposed cloud architecture. As
shown in the figure, the developer should leverage cloud providers and their IaaS,
PaaS, and SaaS instead of having a monolithic, on-premise architecture, wherein
all the software and infrastructure are purchased, installed, and managed locally.

This architecture has many critical components which typically come from
the cloud providers, and therefore allows the developer to focus on writing their
data-intensive health-care application, instead of spending the effort in physically
acquiring and administer this infrastructure.

In the Kubernetes HA cluster, there are many worker nodes for each re-
gion in the customer account. The worker nodes are where the microservice
containers are deployed. We are proposing to architect any health-care applica-
tion as a collection of microservices which are functionally independent entities.
So web server, data ingestion service, infectious-disease-transmission analytics,
pathogens-semantic-engine, etc., can all be independently deployed as microser-
vices. To support high availability, disaster recovery, and faster response time
for the end-user, the cluster is federated across regions with synchronized data
and using a global load balancer.

Data needs to be persisted an IaaS-storage resource outside the Kubernetes
cluster to separate storage from compute. The cloud provider provides many
different types of storage, at different costs. In this diagram, we are showing
block storage, file storage and object storage as examples. Block storage has
higher performance than object storage but is more expensive. Data-intensive
health-care application developers need to make a critical choice of the type
of storage which suits their data needs. For example, electronic medical record
data, which is accessed infrequently, can reside in object storage, and more recent

The Case for Designing Data-Intensive Cloud-Based Healthcare Applications 5

data can reside in block storage for faster retrieval time. By using IaaS-storage
resources, developers don’t have to worry about setting up storage; they are
provided, maintained, backed up by the cloud providers per SLA. All that is
required is to create blocks of Persistent Volumes (PVs) and claim them for use.

Beyond compute and storage, the diagram shows other services from the
cloud providers that would help with many other non-functional requirements.
Monitoring service can notify the Operation teams if there are issues with the
applications. Identity Access Management, Logging, Auditing services can help
with the health-care applications achieving the required certifications regarding
sensitive data like HIPPA, SOC 2, etc. Audit logs track authorized and unau-
thorized access to records which can trigger alerts for prompt action. Developers
can focus on only their application to adhere to desired compliance standards
and piggy-back on the cloud provider certifications for the deployed stack.

Besides the core components of the applications and the NFRs, there are
data analytics SaaS such Machine Learning, Streams, Health Cognitive which
can help researchers gain insights from their proprietary data to improve patient
care, disease management, discover new cures, etc. These expertise-intensive data
analytics services are provided and managed by cloud providers. Furthermore,
many of these SaaS services can also be scaled independently (as they are mi-
croservices) to better process the big data on demand. So if there is an outbreak
of cholera in a region, epidemiologists can run analytics on patient data and de-
termine hot-spots and determine the course of action to mitigate further spread
of the disease. In order to support the sudden influx of intensive analytics needs,
perhaps we could scale the number of pathogens-semantic-engine microservice
instances (replica pods) independently or add more computing resources to the
existing microservice instances. It can be argued that this type of scaling would
be time/cost prohibitive in a monolithic architecture. Finally, healthcare ap-
plications that deploy in such environments can also take advantage of future
inventions at record pace as they are made available by the cloud provider.

Below are the recommendations for key NFRs along with our rationale.

Availability: The developer should use container orchestration, which can avoid
single point of failures. Kubernetes container orchestration also supports multi-
node clusters with cross data center federation capability. Application workload
pods immediately re-provisioned on other available nodes on failure. A container
automatically restarts when any of the services components goes down. Kuber-
netes supports horizontal scaling, so when the load on an application increases,
it automatically starts a number of containers to support the load. Several tools
are available to monitor container services like Prometheus and New Relic. These
tools provide alert mechanism when services go down. Many of the persistence
storage support snapshot backup and restore functionality, which are very effi-
cient to restore service data in case system recovery is required.

Security: Docker containers are, by default, very secure; especially when pro-
cesses are run as non-privileged users inside the container. An extra layer of safety
can be achieved by enabling tools like SELinux. By enabling data encryption on
the disk, data cannot be read with out knowing the key (e.g., Linux Unified Key

6 Srini Bhagavan et al.

Setup (LUKS) encryption). All cloud providers and databases support data en-
cryption on storage using encrypted keys or a Vault scheme for secrets especially
as we are in the age of massive data processing, auditing, protecting customer
sensitive data from cloud providers, etc. Cloud providers support Vault store to
store the encrypted keys/secrets and provide APIs to access them.
Scalability: Kubernetes container orchestration provides auto scaling feature that
adds/deletes nodes when required automatically. It also provides horizontal scal-
ing of the containers when required. This translates to the ability for applications
to scale and shrink on demand automatically without/minimal human interven-
tion or downtime.
Capacity Planning: Forecasting capacity requirement for data-intensive health-
care applications can be characterized “chaotic” at best. Baseline assumptions
for compute, storage, IPs, memory, etc., are quickly invalidated given that the
volume of data is unpredictable. Kubernetes orchestration coupled with cloud
provider capabilities, efficiently accounts for hardware failure, rollover upgrades,
and node/storage expansion scenarios. For example, an impacted node is quar-
antined and workload pods are drained and redeployed on a healthy available
node. Latency is in milliseconds given a cloud provider maintains several classes
of managed hardware pools, which are bootstrapped to the Kubernetes clus-
ter. Furthermore, some cloud providers have support for multiple AZs in a re-
gion/data center. Applications may be federated on multiple AZs/regions to
increase availability and perhaps load balance.

Concluding Remarks: We believe microservices and container orchestration are
two synergistic technologies that will organically solve majority of cloud-based
health-care application development challenges around scalability, availability,
security, isolation, and performance in a cost-effective manner. We hope this
paper will inspire the healthcare community to use industry best-practices for
designing next-generation health-care applications.

Acknowledgments: The first author was supported by UMKC Provost’s Strategic
Funding and School of Graduate Studies Travel Grant.

References

1. http://www.healthcareitnews.com/news/hospitals-triple-use-cloud-services.
2. https://www.cio.com/article/3159071/innovation/microservice-ecosystems-for-

healthcare.html.
3. Apache Spark. http://spark.apache.org.
4. Icahn School of Medicine at Mount Sinai Case Study.

https://aws.amazon.com/solutions/case-studies/mt-sinai.
5. Impact of Cloud Computing on Healthcare. http://www.cloud-

council.org/deliverables/CSCC-Impact-of-Cloud-Computing-on-Healthcare.pdf.
6. The Hadoop Project. http://hadoop.apache.org.
7. The Twelve-Factor App. https://12factor.net/.
8. C. L. Williams, J. C. Sica, R. T. Killen, and U. G. J. Balis. The growing need for

microservices in bioinformatics. Journal of Pathology Informatics, 7:45, 2016.

