

Lupeikiene A., Matulevičius R., Vasilecas O. (eds.):

Baltic DB&IS 2018 Joint Proceedings of the Conference Forum and Doctoral Consortium.

Copyright © 2018 for this paper by the papers' authors. Copying permitted for private and academic purposes.

Towards a Robust Method of Dataset Generation of
Malicious Activity on a Windows-Based Operating

System for Anomaly-Based HIDS Training

Dainius Čeponis and Nikolaj Goranin

Vilnius Gediminas Technical University,
Saulėtekio al. 11, 10223 Vilnius, Lithuania

dainius.ceponis@vgtu.lt, nikolaj.goranin@vgtu.lt

Abstract. Classical cyber-attack detection methods, based on signatures and
rules demonstrate stagnation and inability to fight the zero-day, advanced-
persistent-threat and similar attacks, while anomaly-based detection methods,
although were exploited for a number of years, are still characterized by huge
numbers of false-positives (valid user or application behavior, that has been
classified as intrusion) and ability to work in relatively stable conditions. The
progress achieved in recent years in the area of deep learning artificial intelli-
gence techniques provide a potential for renewing the research on the topic and
for achieving promising results. Anomaly-based intrusion detection systems
(IDS) utilize the ability to learn from a training set of legal and malicious ac-
tions. In order to train anomaly-based IDS systems enormous amount of data is
required. Majority of available datasets used for IDS training are related to the
network-level based intrusion detection, while datasets for host-based intrusion
detection system (HIDS), which is becoming extremely important, training are
not available or incomplete and lack important features. In this article we pro-
pose a method for automated system-level anomaly dataset generation that is to
be used in further training of artificial intelligence-based HIDS training. Details
for method implementation are also presented and test results discussed.

Keywords: Anomaly detection, HIDS, Windows system calls

1 Introduction

IDS are systems dedicated for monitoring user and application activity on company
networks and computers and alerting on possible attack attempts. More precise defini-
tion of intrusion detection system is provided by [1] and defines IDS as “the process
of monitoring the events occurring in a Computer system or network and analyzing
them for signs of intrusions, defined as attempts to compromise the confidentiality,
integrity, availability, or to bypass the security mechanisms of a computer or net-
work”.

24

IDS can be classified into two types [3]: network-based intrusion detection systems
(NIDS) and HDS. HIDS is located on end-point user machine and monitors user and
host operating system behavior. HIDS can provide the following functions: file integ-
rity checking, registry monitoring, rootkit detection, policy monitoring, log analyzing
and system calls analysis [4]. All that information, in real time, is transferred to the
main server. Main server analyses information from the hosts and decides whether to
notify security staff on suspicious behavior on the host machine. Suspicious activity
can be: abnormal CPU and RAM usage or text editing application attempt to modify
system password file. File integrity is also monitored besides activity on the host ma-
chine i.e. HIDS can be seen as an agent which monitors system and checks if any
other agent violates security policy.

The first intrusion detection model was introduced in 1987 [5]. Three intrusion de-
tection methods have evolved since that time [6]: misuse or signature-based, anoma-
ly-based, and hybrid.

Signature-based detection is designed to detect known attacks and has a small
number of false-positives. It scans for patterns associated with known attacks against
computer system. Those patterns can be: hardware-related parameters collection
(CPU and RAM usage), cryptographic hash value of rootkit or error log generated by
an attack [4]. A regular database update on attack pattern is necessary to have a fully
functional system. This method is not effective against new (zero-day) attacks until
they are added to the database [7].

The idea of anomaly-based intrusion detection is predicated on a belief that an in-
truder’s behavior is noticeably different from that of a legitimate user and that many
unauthorized actions are detectable. This type of intrusion detection should be effec-
tive against zero-day attacks. Another advantage for this type is that a – detection
algorithm can be tailored for a specific company, network or a user, making it chal-
lenging task for the attacker to select effective and non-detectable intrusion actions.
Numerous machine learning methods of clustering and classification were applied for
anomaly detection [8]. The main disadvantage of this type of intrusion detection are
the high false positives rates. Large sets of training data are required to construct
normal behavior profile [9]. It is also possible that malicious activity is included into
the legitimate activity training data – in that case the intrusive activity will be legit in
later detection process [10]. Due to this reason it is extremely important to ensure
creation of “sterile” datasets that would separate legitimate and malicious actions.

Many IDS systems usually make use of a hybrid method which combines signature
and anomaly-based techniques. Such combination provides small amount of false
positives for unknown attacks and raises detection rate on known intrusions [11].

So far NIDS systems are dominating the field. However, HIDS systems are receiv-
ing more attention due to the fact that they provide more information about intrusion
and can prevent from significant damage as well as offering an additional layer of
security. However, HIDS research lack suitable datasets that can be used for evaluat-
ing new methods. Therefore, we propose a method for training data generation. The
paper contains five main sections: related work of datasets generated to train anoma-
ly-based IDS, the proposed method for new dataset generation description, results
description, and conclusions.

25

2 Related Work

Signature-based intrusion detection is showing better results on detecting known at-
tacks, but it fails to report new and unknown attacks. For that reason anomaly-based
intrusion detection methods are getting more attention [12, 13] – more than 60% re-
search papers are focused on anomaly detection. However, despite of significant pro-
gress in anomaly-based intrusion detection methods, they still show higher false-
positive detection rate than signature-based methods. The progress achieved in recent
years in the sphere of deep-learning artificial intelligence techniques provide a poten-
tial for renewing the research on the topic specified.

A key factor in machine learning, which forms a basis for anomaly detection algo-
rithms, is the quality of data. Most of the recent research on intrusion detection has
been done using DARPA and KDD Cup 99 datasets. So far 42 % KDD cup dataset,
20 % DARPA dataset and 38 % other datasets have been used to verify proposed new
methods for anomaly detection[13]. KDD Cup 99 dataset was collected in 1999 by
processing the tcpdump portions of the 1998 DARPA Intrusion Detection System
(IDS) Evaluation dataset, created by Lincoln Lab under contract to DARPA [14, 15].
Those datasets contain various information collected on simulating attacks against a
network. Four main attack types have been used against a simulated US Air Force
LAN [16]: probing, denial of service attacks, user to root attacks, remote to user at-
tacks.

Therefore, DARPA-related datasets have a data associated to a network and are
perfect to apply in NIDS research [17]. It is necessary to stress that DARPA, which
has been used as a de facto standard for anomaly-based NIDS training, present the
simulated and not the real attack data. Nevertheless, it is still considered by experts as
a valuable dataset.

The research done in the sphere of anomaly dataset generation for HIDS training is
minimal despite the fact of the growing need for anomaly-based HIDS systems.

Some information has been collected during the KDD dataset assembly. At first it
was a UNIX-type host systems information. Later, in January 2000, Windows NT
hosts data was collected on similar circumstances [18]. It contains not only tcpdump
provided data, but also the Windows NT event log audit data. Despite the provided
collections, KDD Cup-related datasets lack host machines-related information and
only NIDS researches use it [19].

Some attempts have been made to generate novel public datasets for the Windows
operating system. Windows audit logs analysis method was introduced and collected
data was prepared for public usage by [20]. Audit logs have been produced by run-
ning malware on a target machines. The proposed audit logs analysis method yields
high detection rate. Still, audit logs have some disadvantages. One of them – it cannot
detect thread injection, which is a main tool in malicious tactics [20].

One of the latest datasets related to the host-based intrusion detection is the ADFA-
IDS dataset. In an experiment a zero day attack was simulated and system calls in
Windows and Linux operating systems have been collected [19]. Two comprehensive
Windows operating system-based datasets (ADFA-WD and ADFA-WD: SAA) were
introduced for the research community. Prior to the Windows OS datasets, Linux

26

related collection was introduced [21, 22]. Windows OS datasets contains core dy-
namic link library (dll) name and called function address. Linux dataset contains se-
quence of numbers. Those numbers are representing a corresponding system call. All
three ADFA-IDS databases (two for Windows and one for Linux) have one big disad-
vantage - they lack system calls parameters, which could be used to identify specific
relations required to perform successful intrusion detection.

The minimal presence of datasets used for HIDS training, and absence of crucial
data parameters in these datasets, encourages creation of a simple and reliable mali-
cious activity dataset generation method. Such method must be easily implementable
and not dependent on a specific HIDS system.

3 The Proposed Robust Dataset of Malicious Activity
Generation Method

3.1 Method Description

The following nonfunctional requirements were formulated for the malicious activity
dataset generation method: the system has to be flexible (it must allow adapting new
data collection in the future), easy to configure (no special tools must be required to
change system parameters), and based on open-source software only. The target oper-
ating system for malicious activity collection chosen – was Windows, because it is
still the most widely used operating system in the world, although the method can be
adapted for any other OS.

For reasons of simplicity and proof of concept, only openly available malware
samples were used to generate malicious activity samples. The method can be easily
automated: any malware samples can be downloaded, prepared according to the re-
quirements, and used. The proposed method has six following steps:

1. Malware samples preparation. At first, malware must be obtained from available
sources. Later, malware of Windows OS executables type should be extracted and
added to a separate collection for use.

2. Host machine preparation. Hypervisor must be installed and configured on the se-
lected host machine. Malware samples must be copied to the host machine for later
execution.

3. Guest machines preparation. Template for a virtual guest machine must be added
and configured on the host machine. Later, the required number of guest machines
(copies) should be created for malware execution. Execution of malware samples
can be performed in parallel and is dependent on the number of guest machines
available.

4. Data collection server preparation. Server storage for the malware execution log
information (such as anomaly samples in form of logs, network activity, system
calls, etc.) must be prepared.

5. Malware samples execution and data collection. When all machines are prepared –
main execution script is started. The main script will upload a malware sample to
the target guest machine and will start the operating system. Later, a script on the

27

guest machine will execute malware on OS startup. Malware-generated activity log
will be automatically collected and uploaded to the data collection server.

6. Collected data preparation and analysis. When all samples are executed, collected
data can be transformed to the XML format and analyzed.

3.2 Method Implementation

The proposed method implementation (architecture) can be seen in Fig. 1. The virtu-
alization technique, based on a free ProxMox hypervisor, was selected to simulate
quest machines that will be used for running malicious actions. ProxMox VE is a
completely open-source platform for enterprise virtualization, a built-in web interface
that allows management of VMs and containers, software-defined storage and net-
working, high-availability clustering, and multiple out-of-the-box tools in a single
solution [23]. ProxMox is running QEMU - a generic and open source machine emu-
lator and virtualizer and is based on Debian operating system. According to the results
of the latest research, QEMU has a less detectable virtualization through basic detec-
tion techniques [24], which maximizes the malware execution rate.

Fig. 1. Malware execution components scheme

A main bash script is executing all commands required to collect data: a guest ma-
chine is prepared, started and stopped by that script. The main bash script has only
one parameter – a folder that contains prepared malware samples. ProxMox firewall is
enabled on the Host machine to manage network flow and minimize the risk of mal-
ware propagation. Only one-directional flow to the remote HIDS server was allowed
– all other connections were blocked. All data sent to that server was stored on LOG
server for later analysis.

An anomaly data collection was done by three tools: Dr. Memory provided system
call tracer for the Windows OS, OSSEC (open source HIDS [25]) for file integrity

28

monitoring and WinDump for the network-related information. Dr. Memory tool
provides not only system call name, but also passed parameters list and return value.
All that information can be used to detect earlier mentioned thread injection, which is
missing in method provided by [20].

Open malware collections were used to generate malignant activity on guest ma-
chines. Malware execution was conducted on a Windows operating system. For sim-
plicity reasons, during the first step, only malware of executable type was used, in
order to minimize dependence on third party applications (e.g. office suites, utilities,
viewers or any other). Malware samples were taken from the freely available database
provided by VirusShare [26] (For this paper, VirusShare_00289.zip package, created
on 2017-05-07, was used) and theZoo [27]. VirusShare provides malware packages in
a form of password-protected zip. Every package can contain various types of mali-
cious files that can target different operating systems: Linux, Windows, Mac, Android
and iOS. For that reason, each package must be analyzed and only Windows OS-
executable malicious samples have been selected in our case. VirusShare samples
were combined with theZoo malware collection, that holds most popular and contro-
versial malware samples. theZoo database already contains password protected ar-
chives with executable files. Malware sample preparation is presented in Fig 2.

Fig. 2. Malware file preparation

Usually the first byte of a file is holding information about the file type. If that is
already a Windows-executable file – corresponding file extension is added to it and
the file is packed to the archive with a password “infected”. If the analyzed file is an
archive – it is extracted for further analysis and, if executable files are found, they are
added to the password protected archive. All other files are skipped.

Malware transfer to the guest machine was implemented with the help of ProxMox
VE, which provided the capability to attach an additional virtual drive and copy the
file straight to it. It is not dependent on any other third-party software and firewall
configuration has no impact on file transfer.

The number of malware samples that can be executed in parallel, thus influencing
the dataset generation speed, depends on the number of running guest machines, that

29

is directly related to the available hardware resources. For our experiments tests were
performed on the HP ProLiant DL 380 G6 server with the following specifications: 2x
Xeon E5520 CPU, 8 GB of RAM and 4x146 GB HDD’s connected to RAID 5. Six
guest machines were running in parallel.

A bash script on the host machine was used to control guest machine’s state
(startup and shutdown) and malicious file transfer to the corresponding virtual drive.
Virtual drive preparation for the guest machine also was implemented via bash script:
it can be mounted on a hypervisor system and updated with required malware file.
Main actions performed by the bash script on the host machine are:

1. Copying guest machines disks from prepared templates.
2. Mounting virtual disk for every guest machine, copying prepared malware, un-

mounting disk.
3. Starting the guest machine.
4. Pausing script for defined time to provide the malware the possibility to reveal all

functionality and features. The default pause time in tests was equal to 30 minutes.
5. Stopping the guest machines. The Stop command will halt the machine immediate-

ly. Shutdown process is not initiated.

Fig. 3. Activity diagram of single malware sample batch execution

Guest machine images were also prepared. Each guest machine was running Win-
dows 7 OS and Dr. Memory, OSSEC agent and WinDump. A malware execution
script was added to the Windows task scheduler. Task scheduler provides all required
privileges for an unimpeded application/malware startup. Then defined archive file is
extracted, malware is executed by a run command for every executable in the extract-
ed folder. The anomaly data gathered (list of modified/accessed files, system calls
with related information and network data) was sent to the LOG server for analysis.

All actions required for implementing malware samples execution are presented in
Fig. 3. Malware samples are executed in a batch manner. Every batch has a number of
files identical to the number of available guest machines. It can be seen, that host

30

machine waits for the predefined time while a script on guest machine is executing
the provided malware sample. This pause is needed to collect anomaly activities in
case malware manifests itself after some delay after infecting the machine.

4 Results And Discussion

A total of 12226 executable malware samples in the form of password protected ar-
chives were prepared from theZoo and VirusShare provided packages and used for
tests. All samples were tested over the period of two months (2017.07-2017.08). No
interruptions or errors related to the malware execution were noticed which is an ad-
vantage against well-known tool for such task - Cuckoo sandbox. According to Miller
et al. – it has stability issues that cause Cuckoo samples results to be inconsistent
between runs [24].

Fig. 4. Most frequently requested system calls

112.56 million system calls traces generated by malware samples were recorded to
the database. That amount of data had a massive impact on the database size – gener-
ated SQLite file consumes 39.1 GB of storage space. The database contains not only
extended system calls information (parameters list, return values) but also metadata
about the malware. All that information was imported with the help of Academic API
provided by Virus Total. Information for every malware record has included: infor-
mation of detected malware, positive scan results value, web page to malware de-
scription page, malware behavior information (file system action, network communi-
cation, loaded modules (dll files)). In our tests that were performed on the basis of
Windows 7 OS 645 distinct system calls were captured. The most commonly used
system calls are presented on Fig. 4. The dominating part of calls generated by mal-
ware were related to registry querying. The next dominating group of calls was im-
plementing the file processing functions (reading and writing).

The collected data has new valuable attributes that can be used to train anomaly-
based HIDS system properly. It is necessary to stress that as with any ML methods,
the anomaly-based IDS trained under dataset generated, will be able to detect mal-
ware possessing features that were presented in the dataset.

31

5 Conclusions

The performed analysis has shown that there is an increasing requirement for the de-
velopment and training of anomaly-based HIDS solutions, which is currently being
slowed down due to the lack of available and suitable host-level anomaly datasets.

The method for host-level anomaly dataset generation was proposed. The proposed
method is based on malware execution in a sterile, isolated virtual machine environ-
ment with further anomaly activity collection and data representation in SQLite data-
base format.

The method was implemented and tested only with free or open-source tools and
freely available malware samples. The tests performed have proved the method stabil-
ity and method suitability for host-level anomaly dataset generation. Automated
anomaly generation allows flexible training data-set expansion, response to the new
attack types and generation of specific on-demand datasets.

Anomaly database of system call traces and other anomaly data was generated for
12226 malware samples. The dataset generated using the method proposed has an
advantage against existing datasets because of additional parameters (system call
arguments list and return value) that allow more in-depth HIDS training.

An expansion of the generated dataset is being planned for creating a more com-
prehensive host-level anomalies dataset for HIDS training. The expansion is planned
via inclusion of non-executive type malware samples, non-malware attacks and opti-
mizing the pause interval for better feature assembly of delayed malware activities.

References

1. Bace, R., Mell, P.: NIST Special Publication on Intrusion Detection Systems (2001)
2. Bhattacharyya, D.K., Kalita, J.K.: Network Anomaly Detection: A Machine Learning Per-

spective. Chapman and Hall/CRC (2013)
3. Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G., Vazquez, E.: Network anoma-

ly detection: methods, systems and tools. Comput. Secur. 28, 18-28 (2009).
doi:http://dx.doi.org/10.1016/j.cose.2008.08.003

4. Hay, A., Cid, D., Bary, R., Northcutt, S.: OSSEC Host-Based Intrusion Detection Guide
(2008)

5. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13, 222-232
(1987). doi:10.1109/TSE.1987.232894

6. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber
security intrusion detection. IEEE Commun. Surv. TUTORIALS 18 (2016).
doi:10.1109/COMST.2015.2494502

7. Xie, M., Hu, J.: Evaluating host-based anomaly detection systems: A preliminary analysis
of ADFA-LD. In: Proc. 2013 6th Int. Congr. Image Signal Process. CISP 2013, 3, pp.
1711-1716 (2013). doi:10.1109/CISP.2013.6743952

8. Agrawal, S., Agrawal, J.: Survey on anomaly detection using data mining techniques. In:
Procedia Computer Science (2015)

9. Aydin, M.A., Zaim, A.H., Ceylan, K.G.: A hybrid intrusion detection system design for
computer network security. Comput. Electr. Eng. 35, 517-526 (2009).
doi:10.1016/j.compeleceng.2008.12.005

32

10. Tan, K.M.C., Killourhy, K.S., Maxion, R.A.: Undermining an anomaly-based intrusion de-
tection system using common exploits. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
pp. 54-73 (2002)

11. Depren, O., Topallar, M., Anarim, E., Ciliz, M.K.: An intelligent intrusion detection sys-
tem (IDS) for anomaly and misuse detection in computer networks. Expert Syst. Appl. 29,
713-722 (2005). doi:10.1016/j.eswa.2005.05.002

12. Hu, J.: Host-based anomaly intrusion detection. Handb. Inf. Commun. Secur., 235-255
(2010)

13. Azad, C., Jha, V.K.: Data mining in intrusion detection: a comparative study of methods,
types and data sets. Int. J. Inf. Technol. Comput. Sci. 5, 75-90 (2013).
doi:10.5815/ijitcs.2013.08.08

14. Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D., Weber,
D., Webster, S.E., Wyschogrod, D., Cunningham, R.K., Zissman, M. A.: Evaluating intru-
sion detection systems without attacking your friends: The 1998 DARPA intrusion detec-
tion evaluation. In: DARPA Inf. Surviv. Conf. Expo. 2000. DISCEX ’00. Proc., pp. 12-26,
vol.2 (1999). doi:10.1109/DISCEX.2000.821506

15. Brugger, T.: KDD Cup’99 dataset (Network Intrusion) considered harmful. KDnuggets
Newsl. 7, 15 (2007)

16. Mukkamala, S., Sung, A.H., Abraham, A.: Intrusion detection using an ensemble of intel-
ligent paradigms. J. Netw. Comput. Appl. 28, 167-182 (2005).
doi:10.1016/j.jnca.2004.01.003

17. Sahu, S.K., Sarangi, S., Jena, S.K.: A detail analysis on intrusion detection datasets. In:
Souvenir 2014 IEEE Int. Adv. Comput. Conf. IACC 2014, pp. 1348-1353 (2014).
doi:10.1109/IAdCC.2014.6779523

18. Korba, J.: Windows NT Attacks for the Evaluation of Intrusion Detection Systems* Win-
dows NT Attacks for the Evaluation of Intrusion Detection Systems (2000)

19. Haider, W., Creech, G., Xie, Y., Hu, J.: Windows based data sets for evaluation of robust-
ness of host based Intrusion Detection Systems (IDS) to zero-day and stealth attacks.
Futur. Internet., 8, (2016). doi:10.3390/fi8030029

20. Berlin, K., Slater, D., Saxe, J.: Malicious behavior detection using windows audit logs. In:
Proc. 8th ACM Work. Artif. Intell. Secur. - AISec ’15, 35-44 (2015).
doi:10.1145/2808769.2808773

21. Creech, G.: Developing a high-accuracy cross platform Host-Based Intrusion Detection
System capable of reliably detecting zero-day attacks. 215 (2014)

22. Creech, G., Hu, J.: Generation of a new IDS test dataset: Time to retire the KDD collec-
tion. In: IEEE Wirel. Commun. Netw. Conf. WCNC, pp. 4487-4492 (2013).
doi:10.1109/WCNC.2013.6555301

23. Kovari, A., Dukan, P.: KVM & OpenVZ virtualization based IaaS open source cloud vir-
tualization platforms: OpenNode, Proxmox VE. In: IEEE 10th Jubil. Int. Symp. Intell.
Syst. Informatics, SISY 2012, pp. 335–339 (2012). doi:10.1109/SISY.2012.6339540

24. Miller, C., Glendowne, D., Cook, H., Thomas, D., Lanclos, C., Pape, P.: Insights gained
from constructing a large scale dynamic analysis platform. Digit. Investig. 22, 48-56
(2017). doi:10.1016/j.diin.2017.06.007

25. Timofte, J.: Intrusion Detection using Open Source Tools. Architecture. 2, 75–79 (2008)
26. VirusShare.com: VirusShare.com, https://virusshare.com/, last accessed 2018/04/05.
27. thezoo.morirt.com: theZoo aka Malware DB by ytisf, http://thezoo.morirt.com/, last ac-

cessed 2018/04/05.

