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Abstract. Classical cyber-attack detection methods, based on signatures and 
rules demonstrate stagnation and inability to fight the zero-day, advanced-
persistent-threat and similar attacks, while anomaly-based detection methods, 
although were exploited for a number of years, are still characterized by huge 
numbers of false-positives (valid user or application behavior, that has been 
classified as intrusion) and ability to work in relatively stable conditions. The 
progress achieved in recent years in the area of deep learning artificial intelli-
gence techniques provide a potential for renewing the research on the topic and 
for achieving promising results. Anomaly-based intrusion detection systems 
(IDS) utilize the ability to learn from a training set of legal and malicious ac-
tions. In order to train anomaly-based IDS systems enormous amount of data is 
required. Majority of available datasets used for IDS training are related to the 
network-level based intrusion detection, while datasets for host-based intrusion 
detection system (HIDS), which is becoming extremely important, training are 
not available or incomplete and lack important features. In this article we pro-
pose a method for automated system-level anomaly dataset generation that is to 
be used in further training of artificial intelligence-based HIDS training. Details 
for method implementation are also presented and test results discussed. 
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1 Introduction 

IDS are systems dedicated for monitoring user and application activity on company 
networks and computers and alerting on possible attack attempts. More precise defini-
tion of intrusion detection system is provided by [1] and defines IDS as “the process 
of monitoring the events occurring in a Computer system or network and analyzing 
them for signs of intrusions, defined as attempts to compromise the confidentiality, 
integrity, availability, or to bypass the security mechanisms of a computer or net-
work”. 
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IDS can be classified into two types [3]: network-based intrusion detection systems 
(NIDS) and HDS. HIDS is located on end-point user machine and monitors user and 
host operating system behavior. HIDS can provide the following functions: file integ-
rity checking, registry monitoring, rootkit detection, policy monitoring, log analyzing 
and system calls analysis [4]. All that information, in real time, is transferred to the 
main server. Main server analyses information from the hosts and decides whether to 
notify security staff on suspicious behavior on the host machine. Suspicious activity 
can be: abnormal CPU and RAM usage or text editing application attempt to modify 
system password file. File integrity is also monitored besides activity on the host ma-
chine i.e. HIDS can be seen as an agent which monitors system and checks if any 
other agent violates security policy. 

The first intrusion detection model was introduced in 1987 [5]. Three intrusion de-
tection methods have evolved since that time [6]: misuse or signature-based, anoma-
ly-based, and hybrid. 

Signature-based detection is designed to detect known attacks and has a small 
number of false-positives. It scans for patterns associated with known attacks against 
computer system. Those patterns can be: hardware-related parameters collection 
(CPU and RAM usage), cryptographic hash value of rootkit or error log generated by 
an attack [4]. A regular database update on attack pattern is necessary to have a fully 
functional system. This method is not effective against new (zero-day) attacks until 
they are added to the database [7]. 

The idea of anomaly-based intrusion detection is predicated on a belief that an in-
truder’s behavior is noticeably different from that of a legitimate user and that many 
unauthorized actions are detectable. This type of intrusion detection should be effec-
tive against zero-day attacks. Another advantage for this type is that a – detection 
algorithm can be tailored for a specific company, network or a user, making it chal-
lenging task for the attacker to select effective and non-detectable intrusion actions. 
Numerous machine learning methods of clustering and classification were applied for 
anomaly detection [8]. The main disadvantage of this type of intrusion detection are 
the high false positives rates. Large sets of training data are required to construct 
normal behavior profile [9]. It is also possible that malicious activity is included into 
the legitimate activity training data – in that case the intrusive activity will be legit in 
later detection process [10]. Due to this reason it is extremely important to ensure 
creation of “sterile” datasets that would separate legitimate and malicious actions. 

Many IDS systems usually make use of a hybrid method which combines signature 
and anomaly-based techniques. Such combination provides small amount of false 
positives for unknown attacks and raises detection rate on known intrusions [11]. 

So far NIDS systems are dominating the field. However, HIDS systems are receiv-
ing more attention due to the fact that they provide more information about intrusion 
and can prevent from significant damage as well as offering an additional layer of 
security. However, HIDS research lack suitable datasets that can be used for evaluat-
ing new methods. Therefore, we propose a method for training data generation. The 
paper contains five main sections: related work of datasets generated to train anoma-
ly-based IDS, the proposed method for new dataset generation description, results 
description, and conclusions. 
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2 Related Work 

Signature-based intrusion detection is showing better results on detecting known at-
tacks, but it fails to report new and unknown attacks. For that reason anomaly-based 
intrusion detection methods are getting more attention [12, 13] – more than 60% re-
search papers are focused on anomaly detection. However, despite of significant pro-
gress in anomaly-based intrusion detection methods, they still show higher false-
positive detection rate than signature-based methods. The progress achieved in recent 
years in the sphere of deep-learning artificial intelligence techniques provide a poten-
tial for renewing the research on the topic specified. 

A key factor in machine learning, which forms a basis for anomaly detection algo-
rithms, is the quality of data. Most of the recent research on intrusion detection has 
been done using DARPA and KDD Cup 99 datasets. So far 42 % KDD cup dataset, 
20 % DARPA dataset and 38 % other datasets have been used to verify proposed new 
methods for anomaly detection[13]. KDD Cup 99 dataset was collected in 1999 by 
processing the tcpdump portions of the 1998 DARPA Intrusion Detection System 
(IDS) Evaluation dataset, created by Lincoln Lab under contract to DARPA [14, 15]. 
Those datasets contain various information collected on simulating attacks against a 
network. Four main attack types have been used against a simulated US Air Force 
LAN [16]: probing, denial of service attacks, user to root attacks, remote to user at-
tacks. 

Therefore, DARPA-related datasets have a data associated to a network and are 
perfect to apply in NIDS research [17]. It is necessary to stress that DARPA, which 
has been used as a de facto standard for anomaly-based NIDS training, present the 
simulated and not the real attack data. Nevertheless, it is still considered by experts as 
a valuable dataset. 

The research done in the sphere of anomaly dataset generation for HIDS training is 
minimal despite the fact of the growing need for anomaly-based HIDS systems.  

Some information has been collected during the KDD dataset assembly. At first it 
was a UNIX-type host systems information. Later, in January 2000, Windows NT 
hosts data was collected on similar circumstances [18]. It contains not only tcpdump 
provided data, but also the Windows NT event log audit data. Despite the provided 
collections, KDD Cup-related datasets lack host machines-related information and 
only NIDS researches use it [19].  

Some attempts have been made to generate novel public datasets for the Windows 
operating system. Windows audit logs analysis method was introduced and collected 
data was prepared for public usage by [20]. Audit logs have been produced by run-
ning malware on a target machines. The proposed audit logs analysis method yields 
high detection rate. Still, audit logs have some disadvantages. One of them – it cannot 
detect thread injection, which is a main tool in malicious tactics [20]. 

One of the latest datasets related to the host-based intrusion detection is the ADFA-
IDS dataset. In an experiment a zero day attack was simulated and system calls in 
Windows and Linux operating systems have been collected [19]. Two comprehensive 
Windows operating system-based datasets (ADFA-WD and ADFA-WD: SAA) were 
introduced for the research community. Prior to the Windows OS datasets, Linux 
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related collection was introduced [21, 22]. Windows OS datasets contains core dy-
namic link library (dll) name and called function address. Linux dataset contains se-
quence of numbers. Those numbers are representing a corresponding system call. All 
three ADFA-IDS databases (two for Windows and one for Linux) have one big disad-
vantage - they lack system calls parameters, which could be used to identify specific 
relations required to perform successful intrusion detection. 

The minimal presence of datasets used for HIDS training, and absence of crucial 
data parameters in these datasets, encourages creation of a simple and reliable mali-
cious activity dataset generation method. Such method must be easily implementable 
and not dependent on a specific HIDS system. 

3 The Proposed Robust Dataset of Malicious Activity 
Generation Method 

3.1 Method Description 

The following nonfunctional requirements were formulated for the malicious activity 
dataset generation method: the system has to be flexible (it must allow adapting new 
data collection in the future), easy to configure (no special tools must be required to 
change system parameters), and based on open-source software only. The target oper-
ating system for malicious activity collection chosen – was Windows, because it is 
still the most widely used operating system in the world, although the method can be 
adapted for any other OS. 

For reasons of simplicity and proof of concept, only openly available malware 
samples were used to generate malicious activity samples. The method can be easily 
automated: any malware samples can be downloaded, prepared according to the re-
quirements, and used. The proposed method has six following steps: 

1. Malware samples preparation. At first, malware must be obtained from available 
sources. Later, malware of Windows OS executables type should be extracted and 
added to a separate collection for use. 

2. Host machine preparation. Hypervisor must be installed and configured on the se-
lected host machine. Malware samples must be copied to the host machine for later 
execution. 

3. Guest machines preparation. Template for a virtual guest machine must be added 
and configured on the host machine. Later, the required number of guest machines 
(copies) should be created for malware execution. Execution of malware samples 
can be performed in parallel and is dependent on the number of guest machines 
available. 

4. Data collection server preparation. Server storage for the malware execution log 
information (such as anomaly samples in form of logs, network activity, system 
calls, etc.) must be prepared. 

5. Malware samples execution and data collection. When all machines are prepared – 
main execution script is started. The main script will upload a malware sample to 
the target guest machine and will start the operating system. Later, a script on the 
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guest machine will execute malware on OS startup. Malware-generated activity log 
will be automatically collected and uploaded to the data collection server. 

6. Collected data preparation and analysis. When all samples are executed, collected 
data can be transformed to the XML format and analyzed. 

3.2 Method Implementation 

The proposed method implementation (architecture) can be seen in Fig. 1. The virtu-
alization technique, based on a free ProxMox hypervisor, was selected to simulate 
quest machines that will be used for running malicious actions. ProxMox VE is a 
completely open-source platform for enterprise virtualization, a built-in web interface 
that allows management of VMs and containers, software-defined storage and net-
working, high-availability clustering, and multiple out-of-the-box tools in a single 
solution [23]. ProxMox is running QEMU - a generic and open source machine emu-
lator and virtualizer and is based on Debian operating system. According to the results 
of the latest research, QEMU has a less detectable virtualization through basic detec-
tion techniques [24], which maximizes the malware execution rate. 

 

Fig. 1. Malware execution components scheme 

A main bash script is executing all commands required to collect data: a guest ma-
chine is prepared, started and stopped by that script. The main bash script has only 
one parameter – a folder that contains prepared malware samples. ProxMox firewall is 
enabled on the Host machine to manage network flow and minimize the risk of mal-
ware propagation. Only one-directional flow to the remote HIDS server was allowed 
– all other connections were blocked. All data sent to that server was stored on LOG 
server for later analysis. 

An anomaly data collection was done by three tools: Dr. Memory provided system 
call tracer for the Windows OS, OSSEC (open source HIDS [25]) for file integrity 
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monitoring and WinDump for the network-related information. Dr. Memory tool 
provides not only system call name, but also passed parameters list and return value. 
All that information can be used to detect earlier mentioned thread injection, which is 
missing in method provided by [20]. 

Open malware collections were used to generate malignant activity on guest ma-
chines. Malware execution was conducted on a Windows operating system. For sim-
plicity reasons, during the first step, only malware of executable type was used, in 
order to minimize dependence on third party applications (e.g. office suites, utilities, 
viewers or any other). Malware samples were taken from the freely available database 
provided by VirusShare [26] (For this paper, VirusShare_00289.zip package, created 
on 2017-05-07, was used) and theZoo [27]. VirusShare provides malware packages in 
a form of password-protected zip. Every package can contain various types of mali-
cious files that can target different operating systems: Linux, Windows, Mac, Android 
and iOS. For that reason, each package must be analyzed and only Windows OS-
executable malicious samples have been selected in our case. VirusShare samples 
were combined with theZoo malware collection, that holds most popular and contro-
versial malware samples. theZoo database already contains password protected ar-
chives with executable files. Malware sample preparation is presented in Fig 2. 

 

Fig. 2. Malware file preparation 

Usually the first byte of a file is holding information about the file type. If that is 
already a Windows-executable file – corresponding file extension is added to it and 
the file is packed to the archive with a password “infected”. If the analyzed file is an 
archive – it is extracted for further analysis and, if executable files are found, they are 
added to the password protected archive. All other files are skipped.  

Malware transfer to the guest machine was implemented with the help of ProxMox 
VE, which provided the capability to attach an additional virtual drive and copy the 
file straight to it. It is not dependent on any other third-party software and firewall 
configuration has no impact on file transfer.  

The number of malware samples that can be executed in parallel, thus influencing 
the dataset generation speed, depends on the number of running guest machines, that 



 

29 
 

is directly related to the available hardware resources. For our experiments tests were 
performed on the HP ProLiant DL 380 G6 server with the following specifications: 2x 
Xeon E5520 CPU, 8 GB of RAM and 4x146 GB HDD’s connected to RAID 5. Six 
guest machines were running in parallel. 

A bash script on the host machine was used to control guest machine’s state 
(startup and shutdown) and malicious file transfer to the corresponding virtual drive. 
Virtual drive preparation for the guest machine also was implemented via bash script: 
it can be mounted on a hypervisor system and updated with required malware file. 
Main actions performed by the bash script on the host machine are: 

1. Copying guest machines disks from prepared templates. 
2. Mounting virtual disk for every guest machine, copying prepared malware, un-

mounting disk. 
3. Starting the guest machine.  
4. Pausing script for defined time to provide the malware the possibility to reveal all 

functionality and features. The default pause time in tests was equal to 30 minutes. 
5. Stopping the guest machines. The Stop command will halt the machine immediate-

ly. Shutdown process is not initiated. 

 

Fig. 3. Activity diagram of single malware sample batch execution 

Guest machine images were also prepared. Each guest machine was running Win-
dows 7 OS and Dr. Memory, OSSEC agent and WinDump. A malware execution 
script was added to the Windows task scheduler. Task scheduler provides all required 
privileges for an unimpeded application/malware startup. Then defined archive file is 
extracted, malware is executed by a run command for every executable in the extract-
ed folder. The anomaly data gathered (list of modified/accessed files, system calls 
with related information and network data) was sent to the LOG server for analysis. 

All actions required for implementing malware samples execution are presented in 
Fig. 3. Malware samples are executed in a batch manner. Every batch has a number of 
files identical to the number of available guest machines. It can be seen, that host 
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machine waits for the predefined time while a script on guest machine is executing 
the provided malware sample. This pause is needed to collect anomaly activities in 
case malware manifests itself after some delay after infecting the machine. 

4 Results And Discussion 

A total of 12226 executable malware samples in the form of password protected ar-
chives were prepared from theZoo and VirusShare provided packages and used for 
tests. All samples were tested over the period of two months (2017.07-2017.08). No 
interruptions or errors related to the malware execution were noticed which is an ad-
vantage against well-known tool for such task - Cuckoo sandbox. According to Miller 
et al. – it has stability issues that cause Cuckoo samples results to be inconsistent 
between runs [24].  

 

Fig. 4. Most frequently requested system calls 

112.56 million system calls traces generated by malware samples were recorded to 
the database. That amount of data had a massive impact on the database size – gener-
ated SQLite file consumes 39.1 GB of storage space. The database contains not only 
extended system calls information (parameters list, return values) but also metadata 
about the malware. All that information was imported with the help of Academic API 
provided by Virus Total. Information for every malware record has included: infor-
mation of detected malware, positive scan results value, web page to malware de-
scription page, malware behavior information (file system action, network communi-
cation, loaded modules (dll files)). In our tests that were performed on the basis of 
Windows 7 OS 645 distinct system calls were captured. The most commonly used 
system calls are presented on Fig. 4. The dominating part of calls generated by mal-
ware were related to registry querying. The next dominating group of calls was im-
plementing the file processing functions (reading and writing). 

The collected data has new valuable attributes that can be used to train anomaly-
based HIDS system properly. It is necessary to stress that as with any ML methods, 
the anomaly-based IDS trained under dataset generated, will be able to detect mal-
ware possessing features that were presented in the dataset. 
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5 Conclusions 

The performed analysis has shown that there is an increasing requirement for the de-
velopment and training of anomaly-based HIDS solutions, which is currently being 
slowed down due to the lack of available and suitable host-level anomaly datasets. 

The method for host-level anomaly dataset generation was proposed. The proposed 
method is based on malware execution in a sterile, isolated virtual machine environ-
ment with further anomaly activity collection and data representation in SQLite data-
base format.  

The method was implemented and tested only with free or open-source tools and 
freely available malware samples. The tests performed have proved the method stabil-
ity and method suitability for host-level anomaly dataset generation. Automated 
anomaly generation allows flexible training data-set expansion, response to the new 
attack types and generation of specific on-demand datasets. 

Anomaly database of system call traces and other anomaly data was generated for 
12226 malware samples. The dataset generated using the method proposed has an 
advantage against existing datasets because of additional parameters (system call 
arguments list and return value) that allow more in-depth HIDS training. 

An expansion of the generated dataset is being planned for creating a more com-
prehensive host-level anomalies dataset for HIDS training. The expansion is planned 
via inclusion of non-executive type malware samples, non-malware attacks and opti-
mizing the pause interval for better feature assembly of delayed malware activities. 
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