
An Answer Set Programming environment for
high-level specification and visualization of FCA

Lucas Bourneuf �

Université de Rennes 1
Campus de Beaulieu, 35042 Rennes cedex, France.

lucas.bourneuf@inria.fr

Abstract. This paper introduces Biseau, a programming environment
dedicated to the exploration of relations through a graphical display. The
use of Answer Set Programming enables the production of small code
modules which are easy to maintain and debug since they are very close
to the specifications. This paper shows how a mathematical framework
such as Formal Concept Analysis can be efficiently described at the level
of its properties, without needing a costly development process. We hope
that it will help to quickly adapt a given code to the peculiarities of a data
set, thereby speeding up the development of prototypes. Besides, it will
also help the integration of the ideas of the FCA community in a readable
and shareable format. From a practical point of view, Biseau provides
an Answer Set Programming to (graphviz) dot compiler and uses the
graphviz software to render in real-time the calculated graphs to user,
for instance to produce concept lattices or aoc posets visualizations. Its
relation with existing tools like LatViz and FCAbundles is also discussed.

1 Introduction

Large scale data production requires availability of high-level visualizations for
their exploration. This is usually performed by building generic visualization
models, that users may later use to explore their data. Thus, software envi-
ronments oriented towards data mining use efficient implementations of data
structures and their visualizations. For instance, in Formal Concept Analysis,
LatViz is a lattice visualization software, allowing end-user to explore the lat-
tice structure efficiently [1]. Lattice Miner builds and visualize Galois lattices
and provides data mining tools to explore data [15]. FCA Tools Bundle con-
sists in a web interface exposing multiple FCA-related tools for contexts and
(ternary) concept lattices exploration [14]. In-Close algorithm reference imple-
mentation provides a concept trees visualization of contexts encoded in standard
formats [3]. All these tools work with a formal model that provides an abstract
view and a fixed search space on the data. Users cannot work on the model
itself, they are expected to use the implemented methods, not to design new
ones. In contrast, this paper introduces Biseau, a software focused on designing
and exploring elements of the data structure, rather than the data itself. In this



L. Bourneuf

approach, data are only a support to the model validity, and the user’s aim is
the proper design of a general model. Biseau is a general purpose model builder
that relies on graphs and logic languages.

Graphs are rendered in multiple ways, using field-specialized softwares like
Cytoscape [21] in biology, graph-specific softwares (like LatViz for lattices), or
more generalist like Tulip [4]. Another generic approach is dot, a graph descrip-
tion language specified by the graphviz software, which provides a gallery of
visualization engines [6]. Dot is the internal graphical language used by Biseau
(see Section 3).

Together with a graph data structure, Biseau offers a logical view of the asso-
ciated exploration methods. A pure declarative language is used for this purpose,
Answer Set Programming (ASP). It allows users to transcript the formal prop-
erties they are looking for in a straightforward way (see Section 2). ASP has
already been applied to FCA to accomplish expressive query languages for for-
mal contexts [12], later extended to n-adic FCA and improved with additional
membership constraints, in order to handle large context exploration [20]. In our
approach, ASP is also used for visualization.

Biseau is supplied with a graphical user interface and a command line inter-
face to write an ASP encoding. Biseau uses this encoding as a script to generate
the dot files and the resulting visualizations. The main interest of Biseau is there-
fore to build graph visualizations directly from formal relations. Biseau is not
only dedicated to lattices, and their (efficient or scalable) exploration. It provides
instead a general purpose programming environment that is able to visualize any
ordered structure. Biseau is therefore suited for rapid design and easy testing
of works or extensions in the framework of FCA. It is freely available under the
GNU/GPL license1.

The structure of this paper is as follows. Sections 2 and 3 quickly present
the ASP and dot languages used by Biseau. Section 4 explains how Biseau takes
advantage of these languages to allow the user to build models. Section 5 proposes
as a case study the reconstruction of the Galois lattice. Section 6 shows how
Biseau can easily handle some of the FCA extensions typically used in FCA
applications as knowledge processing [19]. Finally the paper concludes by some
insights about Biseau interest when used in FCA and in artificial intelligence.

2 Answer Set Programming

The following presentation of ASP is taken from [5]. For an in-depth dive into
the language, the reader is redirected to [8].

ASP is a form of purely declarative programming oriented towards the reso-
lution of combinatorial problems [17]. It has been successfully used for knowledge
representation, problem solving, automated reasoning, and search and optimiza-
tion. Unlike Prolog, ASP handles cross-references of rules, enabling the writing
of code much closer to the specification. In the sequel, we rely on the input lan-
guage of the ASP system Potassco (Potsdam Answer Set Solving Collection [8])
1 https://gitlab.inria.fr/lbourneu/biseau



An ASP environment for high-level specification and visualization of FCA

developed in Potsdam University. An ASP program consists of Prolog-like rules
h :- b1, . . . , bm, not bm+1, . . . , not bn, where each bi and h are literals and not
stands for default negation. Mainly, each literal is a predicate whose arguments
can be constant atoms or variables over a finite domain. Constants start with a
lowercase letter, variables start with an uppercase letter or an underscore (don’t
care variables). The rule states that the head h is proved to be true (h is in an
answer set) if the body of the rule is satisfied, i.e. b1, . . . , bm are true and one
can not prove that bm+1, . . . , bn are true. Note that the result is independent
on the ordering of rules or of the ordering of literals in their body, as it is the
case in Prolog. An ASP solver can compute one, several, or all the answer sets
(stable models) that are solutions of the encoded problem. If the body is empty,
h is a fact while an empty head specifies an integrity constraint. Together with
model minimality, interpreting the program rules this way provides the stable
model semantics (see [11] for details). In the head part, A choice rule of the
form {p(X) : q(X)} will generate p(X) as the powerset of q(X) for all values
of X. In the body part, {p(_)} will count the number of atom p with one pa-
rameter, and N = {h} evaluates N to the cardinal of the set of h. In the body
part, p(X) : q(X) holds if for all X, if q(X) holds, then p(X) holds. Finally,
lines starting by % are comments. In practice, several syntactical extensions to
the language that are not interesting for this paper are available. An example
of ASP encoding is presented in Figure 1, using atoms to reproduce the context
in Table 1 and a rule to build a bipartite graph linking objects and attributes.

1 % Facts.
2 age(john,7). age(eve,71). age(alice,15).
3 male(john). male(bob). female(alice).
4 mother(eve,bob).
5 % Rules.
6 rel(H,child):− age(H,A) ; A<12.
7 rel(H,adult):− age(H,A) ; A>=18.
8 rel(H,male):− male(H).
9 rel(H,female):− female(H).

10 rel(H,man) :− rel(H,male) ; rel(H,adult).
11 rel(H,boy) :− rel(H,male) ; rel(H,child).
12 rel(H,woman):− rel(H,female) ; rel(H,adult).
13 rel(H,girl) :− rel(H,female) ; rel(H,child).
14 rel(H,adult):− rel(H,male) ; not rel(H,boy).
15 rel(H,female):− mother(H,_).
16 % Build the visualization in Figures 2 and 3.
17 link(O,A):− rel(O,A).

Fig. 1: ASP program encoding the context in Table 1, in the form of rel/2 relations
between objects and attributes. The last line yield links/2 atoms that are compiled by
Biseau as edges in the output dot file.



L. Bourneuf

We used the Potassco system [9] that proposes an efficient implementation
of ASP. ASP processing implies two steps, grounding and solving. The grounder
generates a propositional program replacing variables by their possible values.
The solver is in charge of producing the stable models (answer sets) of the propo-
sitional program. Of course, a dedicated algorithm for a specific problem will be
generally more efficient than its equivalent compact ASP encoding. However,
ASP systems are useful for the design of prototypes. It is an attractive alterna-
tive to standard imperative languages that enable fast developments.

adult child female male boy woman man
alice ×
bob × × ×
eve × × ×
john × × ×

Table 1: Formal context of human relations.

3 Graph Drawing With Dot

Dot is a graph description language, allowing one to generate a graph visual-
ization from the definition of its content [6]. Dot enables the control of precise
visual properties, such as node and edge labelling, position, shape, or color. For
instance, the dot line woman [color="blue"] will color in blue the node labelled
woman. The full language is defined by the graphviz graph visualization soft-
ware, which provides multiple engines to interpret and compile dot encoded files
to other formats, including images. Figure 2 shows an example of a working dot
description, which given to a graphviz engine yields the visualization in Figure 3.

1 Digraph biseau_graph {
2 node [penwidth="0.4" width="0.1"];
3 edge [penwidth="0.4" arrowhead="none"];
4 john−>boy; john−>male; john−>child;
5 eve−>female; eve−>woman; eve−>adult;
6 bob−>man; bob−>adult; bob−>male;
7 alice−>female;
8 }

Fig. 2: Dot encoding of the graph in Figure 3.



An ASP environment for high-level specification and visualization of FCA

Fig. 3: Visualization of the relations described by context in Table 1.

4 From ASP to Dot With Biseau

Biseau allows the user to write some ASP encoding and retrieve in real-time the
corresponding graph visualization. To achieve this, it implements an ASP to dot
compiler and a Graphical User Interface that helps writing the ASP encoding
and that performs automatically all necessary compilations.

As explained in Section 2, a given ASP encoding yields stable models consist-
ing of true facts, which can be represented by atoms like link(woman,human).
For each stable models found from the ASP user encoding, Biseau will convert
atoms into dot lines. For instance, the ASP atom link(woman,human) will trans-
late to woman -> human in the dot output. This controlled vocabulary will be
only partially explored in Section 5, but note that it maps the full dot language,
including colors, shapes, and general graph options. A complete documentation
is available online2.

Because of the use of ASP to yield the dot description, the graph is therefore
defined in intension: instead of describing manually all objects and properties,
the user specify their definitions, and let the ASP solver infers all necessary
relations. More generally, Biseau internal process can be seen as a compilation
from ASP models to dot, then from dot to image (the last one being delegated
to graphviz software, as seen in Section 3).

As a matter of example, the ASP encoding in Figure 1 will be compiled to
the dot description in Figure 2, itself compiled to the image in Figure 3. If the
ASP expression color(A,blue):- rel(_,A). was added to the ASP encoding
in Figure 1, the final figure would show in blue all attributes nodes. The reader
familiar with software engineering may recognize the use of ASP as a metamodel,
and dot as the model.

Biseau can be extented with scripts, units of ASP (or Python) code to add to
(or run on) the user encoding. They may expose some options to tune their be-
havior. Moreover, user can implement and add its own scripts to Biseau, allowing
him (and others he shares with) to encapsulate ASP or Python programs that
behave accordingly to their preferences. Biseau is shipped with scripts related
to FCA, for data extraction from standard format like SLF or CXT, concept
mining or lattice visualization (as shown in Section 5).

2 https://gitlab.inria.fr/lbourneu/biseau/blob/master/doc/user-doc.mkd



L. Bourneuf

5 Build and Visualize Galois Lattices With Biseau

This section shows how to build FCA basic mathematical relations in order to
get a visualization of the Galois lattice in Biseau. The context in Table 1 will be
used as case study, encoded in ASP using rel/2 atoms as shown in the first five
lines of Figure 1.

5.1 Mining the Formal Concepts

In a formal context defined by objects O, attributes A, and the binary relation
R ⊆ O ×A, a formal concept is a pair (X,Y ), such as:

X = {y ∈ Y |(x, y) ∈ R ∀x ∈ X} (1)
Y = {x ∈ X |(x, y) ∈ R ∀y ∈ Y } (2)

Where X ⊆ O and Y ⊆ A. The search for formal concepts in ASP can be
expressed like in the above definition:

1 ext(X):− rel(X,_) ; rel(X,Y): int(Y).
2 int(Y):− rel(_,Y) ; rel(X,Y): ext(X).

rel(X,_) fixes variable X as the first term of a relation, i.e. an object. No-
tation rel(X,Y): int(Y) ensure that there is a relation between X and all at-
tributes of the intent. As a consequence, ext(X), the extent, holds for all objects
in relation with all attributes of the intent. The second rule is a symmetric def-
inition for the concept’s intent. For those familiar to Prolog, note that such a
program would lead to an infinite loop. The treatment of loops is a nice feature
of ASP that gives access to a fixed-point semantics. ASP search comes with
the guarantee that all minimal fixed points will be enumerated. Therefore, each
answer set is a different concept, or the supremum or infimum (where extent
or intent are empty sets). To avoid the yield of supremum (infimum), one may
include a constraint specifying that extent (intent) must include at least one
element.

These models/concepts can be aggregated in order to produce an encoding
containing ext/2 (and int/2) atoms, where ext(N,A) (int(N,A)) gives an ele-
ment of N-th concept’s extent (intent). This numbering is arbitrary and serves
no other purpose than identifying the different concepts.

5.2 Galois lattice

A Galois lattice is defined by the partial order on the concepts, i.e. a graph
with concepts as nodes, and an edge between a concept and its successors in the
ordering:

1 % Shortcut to infimum, supremum and concepts identifiers.
2 c(N):− ext(N,_).
3 c(N):− int(N,_).
4 % Ordering of two concepts: the first has all objects of the second.



An ASP environment for high-level specification and visualization of FCA

5 contains(C1,C2):− c(C1) ; c(C2) ; C1!=C2 ; ext(C1,X): ext(C2,X).
6 % Concepts linked to another in the Galois Lattice .
7 link(C1,C3):− contains(C1,C3) ; not link(C1,C2): contains(C2,C3).
8 % Annotate nodes with extent and intent.
9 annot(upper,X,A):− ext(X,A).

10 annot(lower,X,B):− int(X,B).

These lines yield the visualization shown in Figure 4. Line 2 and 3 are here
to enable the access to the infinum, supremum and concepts with one atom.
Line 5 yields pairs of concepts that are included, based on their extent. Line 7
ensure that a link exists in the lattice between a concept C1 containing another
concept C3 if there no link between C1 and a concept C2 smaller than C3.
Finally, the annot/3 atoms are a Biseau convention (just as link/2 that define
an edge in the dot output), allowing us to print the extent and intent of each
concept, respectively above and below the node.

5.3 Reduced Labelling

The reduced labelling of a lattice is computed as the set of specific objects and
attributes for each concept. This is easily defined as specext/1 and specint/1
atoms in ASP, using the following lines along the search for formal concepts in
section 5.1:

1 % An outsider is any object or attribute linked to an attribute or object not in
the concept.

2 outsider(X):− ext(X) ; rel(X,Z) ; not int(Z).
3 outsider(Y):− int(Y) ; rel(Z,Y) ; not ext(Z).
4 % The specific part of each concept contains no outsider.
5 specext(X):− ext(X) ; not outsider(X).
6 specint(Y):− int(Y) ; not outsider(Y).

With these lines and the collapsing into one model described in section 5.1,
we obtain specext/2 and specint/2 atoms, describing the AOC poset elements,
attached to each concept. We can then compute the reduced labelling of the lat-
tice with the following lines, replacing the previously defined annot/3 definitions
in section 5.2:

1 % Minimalist annotation of nodes with their extent/intent :
2 annot(upper,X,A):− specext(X,A).
3 annot(lower,X,B):− specint(X,B).

Using these definitions, Biseau produces the visualization shown in Figure 5.

6 Pulling Constraints On The Model

This section exposes the implementation in ASP and Biseau of some FCA vari-
ants and extensions often used in knowledge processing [19].



L. Bourneuf

Fig. 4: Visualization of the Galois Lat-
tice of context in Table 1 using Biseau,
with extent and intent shown for each
node/concept.

Fig. 5: Visualization of the Galois Lat-
tice of context in Table 1 using Biseau,
with reduced labelling.

6.1 Object and Property Oriented Concept Lattices

Following definitions from [23], it is also possible to encode the mining of object
oriented concepts (X,Y ) defined by X = Y ♦ and Y = X�, such as:

Y ♦ =
⋃
y∈Y

Ry X� = {y ∈ A|Ry ⊆ X}

With Ry = {x ∈ O|(x, y) ∈ R}.
1 % Any object linked to an attribute in the intent is in the extent .
2 ext(X):− rel(X,Y) ; int(Y).
3 % Objects in the complementary set of the extent.
4 not_ext(Nx):− rel(Nx,_) ; not ext(Nx).
5 % The intent is made of attributes exclusively linked to objects of the extent .
6 int(Y):− rel(_,Y) ; not rel(Nx,Y): not_ext(Nx).

The code for property-oriented concepts is similar, and both replace the
encoding in section 5.1.

6.2 Iceberg Lattices

The iceberg lattice, loosely defined as the Galois lattice stripped of all concepts
with a too small support (i.e. number of objects in their extents) [22], can be built
by discarding any model containing too few objects in his extent. For instance,
the Figure 3 of [22], reproduced in this paper in Figure 6, shows the iceberg
lattice of the running example MUSHROOMS database of nbobj objects with
a minimal support of minsupp%. It can be reproduced by discarding models
using a constraint:

1 % The number of ext/1 atoms must not fall behind the minimal.
2 :− {ext(_)} < nbobj∗minsupp/100.



An ASP environment for high-level specification and visualization of FCA

This constraint can be generated by Biseau knowing the number of objects
and the minimal support.

Fig. 6: Iceberg lattice with a minimal support of 85% of the MUSHROOMS database.
Figure extracted from [22].

6.3 n-adic FCA

n-adic FCA [16] can be encoded the same way as regular FCA, by extending the
number of parameters for rel atoms. For instance, in triadic FCA, conditions
are given as the third argument of rel/3 atoms, such as rel(O,A,C) is true
when the relation between object O, attribute A and condition C holds. Triadic
concepts can thus be generated using the following encoding:

1 ext(X):− rel(X,_,_) ; rel(X,A,C): int(A), cnd(C).
2 int(X):− rel(_,X,_) ; rel(O,X,C): ext(O), cnd(C).
3 cnd(X):− rel(_,_,X) ; rel(O,A,X): ext(O), int(A).

6.4 Pattern Structures

As introduced in [7], a pattern structure is a generalization of FCA applied on
attributes structured in semi-lattices. Pattern concepts are pairs of objects and
lattices, producing the expected pattern lattice. This technics have been applied
to gene expression data [13]. Here, we reproduce the pattern lattice construction
for an example of non-binary data from the same publication:

1 rel (1,1,5) . rel (1,2,7) . rel (1,3,6) . % 5 objects
2 rel (2,1,6) . rel (2,2,8) . rel (2,3,4) . % 3 situations
3 rel (3,1,4) . rel (3,2,8) . rel (3,3,5) . % one value from 4 to 9
4 rel (4,1,4) . rel (4,2,9) . rel (4,3,8) .
5 rel (5,1,5) . rel (5,2,8) . rel (5,3,5) .

Note that data are encoded in rel/3 atoms over 5 objects, 3 conditions, and
expression values in the interval [4; 9] associated with a given gene and condition,



L. Bourneuf

such as rel(O,S,V) holds when object O in situation S has an expression value
of V. Similarly to section 5.1, we can enumerate the pattern concepts:

1 % Choose a subset of objects as the extent .
2 { ext(O): rel(O,_,_) }.
3 % The intervals of extent .
4 interval(C,Min,Max):− rel(_,C,_) ; Min=#min{V,O: rel(O,C,V), ext(O)} ;
5 Max=#max{V,O: rel(O,C,V), ext(O)}.
6 % Object is valid on Condition.
7 valid_on(O,C):− rel(O,C,V) ; interval(C,Min,Max) ; Min<=V ; V<=Max.
8 % Object is valid for all Conditions.
9 valid(O):− rel(O,_,_) ; valid_on(O,C): rel(_,C,_).

10 % Avoid any model that do not include maximal number of objects.
11 :− not ext(O) ; valid(O).

The use of the meta-programming directives #min and #max allows us to
retrieve the minimal and maximal value associated to the extent. Therefore,
interval(C,Min,Max) stands for the minimal and maximal values on condition
C, e.g. 5 and 6 for condition 1 when extent is {1, 2, 5}. Unlike the concept model
seen in Section 5.1, this model relies on an explicit choice rule for the extent with
subsequent constraints to ensure its maximality. Line 2 generates an answer set
for each element of the power set of the object set. Following lines will discard
answer sets that are not infinum, supremum or concept. Line 4 associate for
each condition the minimal and maximal values over the extent. Line 7 selects
an object and a condition such as they are associated to a value in the interval.
Line 9 selects all objects that are valid for all conditions, and line 11 ensure that
they belong to the extent.

The code in section 5.2 can be reused without modifications to produce and
show the resulting pattern lattice.

7 Discussion & Conclusion

Using the ASP language in the Biseau environment, some well-known FCA struc-
tures (Galois, object-oriented, iceberg, integer pattern lattices) have been recon-
structed. The main contribution of Biseau lies into the straightforward use of
the structure specifications to produce a simple code and a proper visualization.
To achieve that feat, Biseau is compiling a controlled subset of ASP atoms to
dot lines, effectively building a dot formatted file that is compiled to an image
by graphviz software. By letting the user manipulate the visualization with the
full power of ASP, Biseau enables definition of graphs in intension. This gives an
abstract access to dot expressions and lets the user focus on the fast prototyping
of data exploration and the elaboration of mathematical properties. In other
words, Biseau allows user to work on the model in which data are processed, in-
stead of providing an implementation of a single model to be used on particular
data, as usually performed in field-specialized softwares.

ASP limits lies into the absence of float numbers handling, and scaling prob-
lems inherited from the total grounding of data before solving. However, Potassco



An ASP environment for high-level specification and visualization of FCA

system users may benefit from several extensions of the language like linear pro-
gramming [18] or propagators [10], allowing one to take advantage of other pro-
gramming paradigms, or improving performances by an iterative replacement of
bottlenecks by dedicated algorithms. For instance, the standard concept mining
can be replaced by an implementation of the in-close algorithm [2].

Biseau current state is a very simple proof of concept, and therefore miss
a lot of features typically found in Integrated Development Environments, that
could help user to write, understand and debug produced ASP code.

Future work will focus on the Biseau generalization : other languages like
GML allow to describe graphs, some are field-specific, and some enable outsourc-
ing of the visualization to other (field-)specialized softwares. Future development
of Biseau could provide support for ASP advanced features, and embedding of
more scripts for FCA and its extensions.

References

1. M. Alam, T. N. N. Le, and A. Napoli. Steps towards interactive formal concept
analysis with latviz. In FCA4AI@ECAI, 2016.

2. S. Andrews. In-close, a fast algorithm for computing formal concepts. 2009.
3. S. Andrews and L. Hirsch. A tool for creating and visualising formal concept trees.

In CEUR Workshop Proceedings, volume 1637, pages 1–9. Tilburg University, 2016.
4. D. Auber, D. Archambault, R. Bourqui, M. Delest, J. Dubois, A. Lambert, P. Mary,

M. Mathiaut, G. Mélançon, B. Pinaud, B. Renoust, and J. Vallet. TULIP 5. pages
1–28, Aug. 2017.

5. L. Bourneuf and J. Nicolas. FCA in a Logical Programming Setting for
Visualization-Oriented Graph Compression, pages 89–105. Springer International
Publishing, Cham, 2017.

6. E. R. Gansner and S. C. North. An open graph visualization system and its
applications to software engineering. Softw. Pract. Exper., 30(11):1203–1233, Sept.
2000.

7. B. Ganter and S. O. Kuznetsov. Pattern structures and their projections. In
International Conference on Conceptual Structures, pages 129–142. Springer, 2001.

8. M. Gebser, R. Kaminski, B. Kaufmann, , M. Lindauer, M. Ostrowski, J. Romero,
T. Schaub, and S. Thiele. Potassco User Guide, 2015.

9. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schnei-
der. Potassco: The Potsdam answer set solving collection. AI Communications,
24(2):107–124, 2011.

10. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko.
Theory Solving Made Easy with Clingo 5. In M. Carro, A. King, N. Saeedloei,
and M. D. Vos, editors, Technical Communications of the 32nd International Con-
ference on Logic Programming (ICLP 2016), volume 52 of OpenAccess Series in
Informatics (OASIcs), pages 2:1–2:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

11. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proc. of
the 7th International Conf. on Logic Programming (ICLP), pages 579–97, 1990.

12. P. Hitzler and M. Krötzsch. Querying formal contexts with answer set programs. In
Proc. of the 14th Int. Conf. on Conceptual Structures: Inspiration and Application,
ICCS’06, pages 260–273. Springer-Verlag, 2006.



L. Bourneuf

13. M. Kaytoue, S. O. Kuznetsov, A. Napoli, and S. Duplessis. Mining gene expression
data with pattern structures in formal concept analysis. Information Sciences,
181(10):1989 – 2001, 2011. Special Issue on Information Engineering Applications
Based on Lattices.

14. L. L. Kis, C. Sacarea, and D. Troanca. Fca tools bundle-a tool that enables dyadic
and triadic conceptual navigation. Proc. of FCA4AI, 2015.

15. B. Lahcen and L. Kwuida. Lattice miner: a tool for concept lattice construction and
exploration. In Suplementary Proceeding of International Conference on Formal
concept analysis (ICFCA’10), 2010.

16. F. Lehmann and R. Wille. A triadic approach to formal concept analysis. In
G. Ellis, R. Levinson, W. Rich, and J. F. Sowa, editors, Conceptual structures:
applications, implementation and theory, number 954 in Lecture Notes in Artificial
Intelligence, pages 32–43, Berlin–Heidelberg–New York, 1995. Springer–Verlag.

17. V. Lifschitz. What is answer set programming? In Proc. of the 23rd National Conf.
on Artificial Intelligence - Vol. 3, AAAI’08, pages 1594–97. AAAI Press, 2008.

18. G. Liu, T. Janhunen, and I. Niemelä. Answer set programming via mixed integer
programming. In KR, pages 32–42, 2012.

19. J. Poelmans, D. I. Ignatov, S. O. Kuznetsov, and G. Dedene. Formal concept
analysis in knowledge processing: A survey on applications. Expert Systems with
Applications, 40(16):6538 – 6560, 2013.

20. S. Rudolph, C. Săcărea, and D. Troancă. Membership constraints in formal concept
analysis. In Proc.of the 24th Int. Conf. on Artificial Intelligence, IJCAI’15, pages
3186–3192. AAAI Press, 2015.

21. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, and D. e. a. Ra-
mage. Cytoscape: A software environment for integrated models of biomolecular
interaction networks. Genome Research, 13(11):2498–2504, 2003.

22. G. Stumme, R. Taouil, Y. Bastide, and L. Lakhal. Conceptual clustering with
iceberg concept lattices. In In: Proc. of GI-Fachgruppentreffen Maschinelles Ler-
nen’01, Universität Dortmund, 2001.

23. Y. Yao. Concept lattices in rough set theory. In Fuzzy Information, 2004. Pro-
cessing NAFIPS’04. IEEE Annual Meeting of the, volume 2, pages 796–801. IEEE,
2004.


