CEUR-WS.org/Vol-2095/paper5.pdf

System Demonstration: The Higher-Order Prover Leo-I11

Alexander Steen! and Christoph Benzmiiller®!

! Freie Universitit Berlin, Institute for Computer Science, Berlin, Germany
2 University of Luxembourg, FSTC, Luxembourg
{a.steen|c.benzmueller}@fu-berlin.de

Abstract

The higher-order ATP system Leo-III is demonstrated. Leo-III supports flexible and
effective reasoning in every common semantical variation of normal modal logics.

Many powerful automated and interactive theorem proving systems for first-order and
higher-order logics have been developed over the past decades. However, with a few notable
exceptions, most available systems focus on classical logics only. In particular for quantified
non-classical logics only a small number of implemented systems is available to date. This is in
contrast to an increasing number of challenging and interesting applications for such systems in
artificial intelligence, computer science, mathematics and philosophy [10, 8, 9, 5, 6, 7]. Meta-
physics, for example, is an area where higher-order modal logics (HOMLSs) play an important
role. The development of ATPs for HOMLs, however, is still in its infancy. The Leo-III prover,
which is presented here, is addressing this gap.

Leo-III [4] is in the first place an automated theorem prover for classical higher-order logic
(HOL) with Henkin semantics and choice [1]. Despite its primary focus on HOL, Leo-III comes
with effective means for reasoning in HOMLs. In fact, reasoning in every normal modal logic
variant is supported in Leo-III. To achieve this, the prover internally implements a shallow
semantical embedding approach [2, 3]. The key idea of this approach is to provide and exploit
faithful mappings for HOML input problems to HOL. This is orthogonal to the direct imple-
mentation of specialised theorem provers, which usually focus on a small subset of modal logic
systems only. The semantical embedding approach realised in Leo-III, in contrast, allows for a
quick adaptation to a broad variety of expressive, non-classical logics.

Leo-III in particular supports (but is not limited to) first-order and higher-order extensions
of the well known modal logic cube for different concrete choices of

Quantification semantics, including cumulative, decreasing, constant and varying domains,
Rigidity, including rigid and world-dependent constant symbols, and
Consequence, including the usual notions of local and global consequence.

When taking all possible parameter combinations into account this amounts to more than
120 supported HOMLs [3, §2.2]. The exact number of logics is in fact much higher, since Leo-III
also supports multi-modal logics and offers fine-grained control over more specific combinations
of the above semantical parameters (e.g. different quantification semantics per type).

Higher-order modal logics. HOMLs as addressed here are extensions of HOL, which has
been proposed by Church, and further studied by Henkin, Andrews and others. HOL provides
lambda-notation as an elegant means to denote unnamed functions, predicates and sets (by
their characteristic functions). HOML, in turn, augments HOL with a set of modal operators
0%, 4 € I, for some index set I, and is equipped with a suitable combination of HOL semantics
and a Kripke-style modal semantics. In our approach an adequate notion of Henkin semantics
for both HOML and HOL is assumed.

ARQNL 2018 79 CEUR-WS.org/Vol-2095

System Demonstration: The Higher-Order Prover Leo-I11 Steen and Benzmiiller

Figure 1: Example modal logic problem input for Leo-III. The first three lines specify the exact
modal logic (here a S5 logic with rigid constants, constant domain quantification and global
consequence) under which the problem is to be analyzed. The conjecture is represented by the
last two lines and encodes the formula VP,_,,VF,, VX,3G,,, (COP(F(X)) = OP(G(X))).

thf (sb_spec, logic, ($modal := [
$constants := $rigid, $quantification := $constant,
$consequence := $global, $modalities := $modal_system_S5]1)).
thf (becker,conjecture, (! [P:$i>$0,F:$i>$i, X:$i]: (7 [G:$i>$i]l:
(($dia @ ($box @ (P @ (F @ X)))) => ($box @ (P @ (G @ X))))))).

Automation of HOML. In order to automate reasoning in HOMLs, Leo-IIT exploits the
semantical embedding approach and internally translates modal logic problems into equivalent
problems formulated within classical higher-order logic. To that end, the de-facto standard
TPTP THF input syntax is augmented to include the modal connectives. Fig. 1 displays an
example modal logic formula that is an instance of a corollary of Becker’s postulate, with $box
and $dia representing the (mono-)modal operators O and <, respectively, and the usual TPTP
text representatives of the remaining logical connectives. This example formula is valid in S5
but not in any weaker system.

The logic specification format displayed in the example from Fig. 1 is stemming from
an ongoing TPTP language extension proposal.! In this logic specification, the identifiers
$constants, $quantification and $consequence specify the exact semantical settings for
the rigidity of constant symbols, the quantification semantics and the consequence relation,
respectively. Finally, $modalities specify the properties of the modal connectives. Valid
values are either pre-defined identifiers representing the usual modal logic systems, as in
$modalities := $modal_system_S5 for the specification of an S5 modal logic, or lists of indi-
vidual modal axiom schemes, as in $modalities := [$modal_axiom_K, $modal_axiom_B].

The reasoning process of Leo-III proceeds as follows:

1. The user inputs a HOML problem in the adapted TPTP syntax from above (Fig. 1).

2. Leo-III analyses the logic specification contained within the input and automatically se-
lects the definitions and axioms to be added to the embedded problem representation.

3. The problem statement itself is translated into its embedded equivalent using the defini-
tions from the previous step.

4. Finally, Leo-III starts reasoning in (meta-logic) HOL and returns SZS compliant result
information and, if successful, also a proof object just as for standard HOL problems.

Summary. At the ARQNL 2018 event we will demonstrate Leo-III, which, in terms of sup-
ported logics, is the most widely applicable automated theorem prover available to date. The
embedding procedure is also available as stand-alone implementation at github.com/leoprover
and can be used in conjunction with every THF-compliant ATP.

I See http://www.cs.miami.edu/~tptp/TPTP/Proposals/LogicSpecification.html for more details.

80

System Demonstration: The Higher-Order Prover Leo-I11 Steen and Benzmiiller

A Installation and Usage of Leo-III

Acquisition and Installation

Leo-IIT is freely available on GitHub (https://github.com/leoprover/Leo-III) under BSD-
3 license. The most current release (version 1.2) is accessible under https://github.com/
leoprover/Leo-III/releases/latest. To get it, simply download the source archive and
extract it so some location.

> wget https://github.com/leoprover/Leo-III/archive/vl.2.tar.gz
> tar -xvzf vi.2.tar.gz

After extraction, Leo-III can be built using Make. Simply cd to the extracted directory and
run make:

> cd Leo-III-1.2/
> make

After building, there should be a directory bin/, relative from the current directory. This
directory contains the binary leo3 of Leo-III.
Leo-III can optionally be installed by invoking

’> make install

which copies the binary to the directory $HOME/bin by default.

Usage

Leo-IIT is invoked via command-line (assuming the leo3 executable is in spath):
For the example of Becker’s postulate of Fig. 1, running

’) leo3 becker.p -p

will invoke Leo-III for proving this conjecture (the -p option enables the output of a proof
certificate). This will produce the following result:

% Axioms used in derivation (1): mrel_meuclidean

% No. of inferences in proof: 22

% No. of processed clauses: 14

% No. of generated clauses: 77

[...]

% SZS status Theorem for becker.p : 4179 ms resp. 1443 ms w/o parsing

% SZS output start CNFRefutation for becker.p

thf (mworld_type, type, mworld: $tType).

thf (mrel_type, type, mrel: (mworld > (mworld > $0))).

thf (meuclidean_type, type, meuclidean: ((mworld > (mworld > $0)) > $0)).

thf (meuclidean_def, definition, (meuclidean = (- [A:(mworld > (mworld > $0))]: ! [B:mworld,C:mworld,D:mworld
J: (((AeB@C) & (A@B@D)) => (A@C@D))).

thf (mvalid_type, type, mvalid: ((mworld > $0) > $0)).

thf (mvalid_def, definition, (mvalid = (’!’ @ mworld))).

thf (mimplies_type, type, mimplies: ((mworld > $o) > ((mworld > $o) > (mworld > $0)))).

thf (mimplies_def, definition, (mimplies = (~ [A:(mworld > $o0),B: (mworld > $0),C:mworld]l: ((A @ C) => (B @ C))
).

thf (mdia_type, type, mdia: ((mworld > $o) > (mworld > $0))).

thf (mdia_def, definition, (mdia = (~ [A:(mworld > $0),B:mworld]: ? [C:mworld]: ((mrel @ B @ C) & (A @ C))))).

thf (mbox_type, type, mbox: ((mworld > $o) > (mworld > $0))).

thf (mbox_def, definition, (mbox = (~ [A:(mworld > $0),B:mworld]: ! [C:mworld]: ((mrel @ B @ C) => (A @ C)))))

thf (mexists_const__o__d_i_t__d_i_c__type, type, mexists_const__o__d_i_t__d_i_c_: ((($i > $i) > (mworld > $0))
> (mworld > $0))).
thf (mexists_const__o__d_i_t__d_i_c__def, definition, (mexists_const__o__d_i_t__d_i_c_ = (° [A:(($i > $i) > (
mworld > $0)),B:mworld]: ? [C:($i > $i)]: (A @ C @ B)))).
thf(mforal1_const__o__d_i_t__o_mworld_t__d_o_c__c__type, type, mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_
: ((($i > (mworld > $0)) > (mworld > $0)) > (mworld > $0))).

81

System Demonstration: The Higher-Order Prover Leo-I11 Steen and Benzmiiller

thf (mforall_const__o__d_i_t__o_mworld_t__d_o_c__c__def, definition, (

mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_ = (° [A:(($i > (mworld > $0)) > (mworld > $0)),B:mworld]:
! [C:($i > (mworld > $0))]: (A @ C @ B)))).

thf (mforall_const__o__d_i_c__type, type, mforall_const__o__d_i_c_: (($i > (mworld > $0)) > (mworld > $0))).

thf (mforall_const__o__d_i_c__def, definition, (mforall_const__o__d_i_c_ = (= [A:($i > (mworld > $0)),B:mworld
J: !t [C:$i]: (A @ C @ B)))).

thf (mforall_const__o__d_i_t__d_i_c__type, type, mforall_const__o__d_i_t__d_i_c_: ((($i > $i) > (mworld > $o))

> (mworld > $0))).

thf (mforall_const__o__d_i_t__d_i_c__def, definition, (mforall_const__o__d_i_t__d_i_c_ = ("~ [A:(($i > $i) > (
mworld > $0)),B:mworld]: ! [C:($i > $i)]: (A @ C @ B)))).

thf (sk1_type, type, skl: mworld).

thf (sk2_type, type, sk2: ($i > (mworld > $0))).

thf (sk3_type, type, sk3: ($i > $i)).

thf (sk4_type, type, sk4: $i).

thf (skb6_type, type, sk5: mworld).

thf (sk6_type, type, sk6: (($i > $i) > mworld)).

thf(1,conjecture, ((mvalid @ (mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_ @ (~ [A:($i > (mworld > $0))1: (
mforall_const__o__d_i_t__d_i_c_ @ (~ [B:($i > $i)]: (mforall_const__o__d_i_c_ @ (- [C:$i]: (
mexists_const__o__d_i_t__d_i_c_ @ (~ [D:($i > $i)]: (mimplies @ (mdia @ (mbox @ (A @ (B @ C)))) @ (mbox
@ (A e (DeC)NIIIII),file(Pbecker.p’,1)).

thf (2,negated_conjecture, ((* (mvalid @ (mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_ @ (~ [A:($i > (mworld
> $0))]: (mforall_const__o__d_i_t__d_i_c_ @ (° [B:($i > $i)]: (mforall_const__o__d_i_c_ @ (~ [C:$il: (
mexists_const__o__d_i_t__d_i_c_ @ (° [D:($i > $i)]: (mimplies @ (mdia @ (mbox @ (A @ (B @ C)))) @ (mbox
@ (A @ (D@C)))IIIIN)),inference(neg_conjecture, [status(cth)], [1])).

thf (5,plain, ((* (! [A:mworld,B:($i > (mworld > $0)),C:($i > $i),D:$il: ? [E:($i > $i)]: ((? [F:mworld]: ((
mrel @ A @ F) & ! [G:mworld]: ((mrel @ F @ G) => (B @ (C @D) @ G)))) => (! [F:mworld]: ((mrel @ A @ F)
=> (B @ (E@D) @F))))))),inference(defexp_and_simp_and_etaexpand, [status(thm)1,[2]1)).

thf (6,plain, ((* (! [A:mworld,B:($i > (mworld > $0)),C:($i > $i),D:$il: ((? [E:mworld]: ((mrel @ A @ E) & ! [F
:mworld]: ((mrel @ E@F) => (B@ (C@D) @F)))) => (7 [E:($i > $i)]: ! [F:mworld]: ((mrel @ A @ F) =>
(B @ (E@D) @F))))))),inference(miniscope, [status(thm)], [61)).

thf (10,plain, ((mrel @ skl @ sk5)),inference(cnf, [status(esa)]l, [6]1)).

thf (4,axiom, ((meuclidean @ mrel)),file(’becker.p’,mrel_meuclidean)).

thf (15,plain, ((! [A:mworld,B:mworld,C:mworld]: (((mrel @ A @ B) & (mrel @ A @ C)) => (mrel @ B @ C)))),
inference(defexp_and_simp_and_etaexpand, [status(thm)], [4])).

thf (16,plain, (! [C:mworld,B:mworld,A:mworld] : ((° (mrel @ A @ B)) | (* (mrel @ A @ C)) | (mrel @ B @ C))),
inference(cnf, [status(esa)], [15])).

thf (17,plain, (! [C:mworld,B:mworld,A:mworld] : ((~ (mrel @ A @ C)) | (mrel @ B @ C) | ((mrel @ skl @ sk5) !=
(mrel @ A @ B)))),inference(paramod_ordered, [status(thm)], [10,16])).

thf (18,plain, (! [A:mworld] : ((~ (mrel @ ski @ A)) | (mrel @ sk5 @ A))),inference(pattern_uni, [status(thm)
1,[17: [bind(A, $thf(sk1)),bind(B, $thf(sk5))]11)).

thf (40,plain, (! [A:mworld] : ((~ (mrel @ skl @ A)) | (mrel @ sk5 @ A))),inference(simp, [status(thm)], [18])).

thf (9,plain, (! [A:mworld] : ((~ (mrel @ sk5 @ A)) | (sk2 @ (sk3 @ sk4) @ A))),inference(cnf, [status(esa)
1,061)).

thf (7,plain, (! [A:($1 > $i)] : ((~ (sk2 @ (A @ sk4) @ (sk6 @ (A)))))),inference(cnf, [status(esa)],[6])).

thf(11,plain, (! [A:($1 > $i)] : ((~ (sk2 @ (A @ sk4) @ (sk6 @ (A)))))),inference(simp, [status(thm)], [7]1)).

thf (206,plain, (! [B:($i > $i),A:mworld] : ((~ (mrel @ sk5 @ A)) | ((sk2 @ (sk3 @ sk4) @ A) != (sk2 @ (B @ sk4
) @ (sk6 @ (B)))))),inference(paramod_ordered, [status(thm)], [9,11])).

thf (212,plain, ((* (mrel @ sk5 @ (sk6 @ (= [A:$i]: (sk3 @ sk4)))))),inference(pre_uni, [status(thm)], [206: [bind
(A, $thf(sk6é @ (~ [C:$i]l: (sk3 @ sk4)))),bind(B, $thf("~ [C:$i]l: (sk3 @ sk4)))11)).

thf (2569,plain, (! [A:mworld] : ((~ (mrel @ skl @ A)) | ((mrel @ sk5 @ A) != (mrel @ sk5 @ (sk6 @ (= [B:$il: (
sk3 @ sk4))))))),inference(paramod_ordered, [status(thm)], [40,212])).

thf (260,plain, ((* (mrel @ skl @ (sk6 @ (- [A:$i]: (sk3 @ sk4)))))),inference(pattern_uni, [status(thm)], [259: [
bind (A, $thf(ské @ (~ [B:$il: (sk3 @ sk4))))11)).

thf (8,plain, (! [A:($i > $i)] : ((mrel @ skil @ (sk6 @ (A))))),inference(cnf, [status(esa)],[6])).

thf (12,plain, (! [A:($1 > $i)] : ((mrel @ skl @ (sk6 @ (A))))),inference(simp, [status(thm)],[8]1)).

thf (269,plain, (* ($true)),inference(rewrite, [status(thm)], [260,12])).

thf (270,plain, ($false) ,inference(simp, [status(thm)], [269])).

% SZS output end CNFRefutation for becker.p

The line starting with ”% SZS status Theorem” confirms that the conjecture is indeed a theo-
rem and the contents between ”% SZS output start” and ”% SZS output end” are the proof
certificate for this claim.

82

System Demonstration: The Higher-Order Prover Leo-I11 Steen and Benzmiiller

Becker’s Postulate Embedded

The semantically embedded variant of becker.p that is used internally by Leo-III is as follows
(this can also be generated using the stand-alone embedding tool available at https://github.
com/leoprover/embed_modal):

% declare type for possible worlds
thf (mworld_type,type, (
mworld: $tType)).

% declare accessibility relations
thf (mrel_type,type, (
mrel: mworld > mworld > $o)).

% define accessibility relation properties
thf (mreflexive_type,type, (
mreflexive: (mworld > mworld > $o) > $o)).

thf (mreflexive_def ,definition,
(mreflexive
= (~ [R: mworld > mworld > $o]
! [A: mworld]
(R@A@A)).

thf (meuclidean_type,type, (
meuclidean: (mworld > mworld > $o0) > $o)).

thf (meuclidean_def ,definition,
(meuclidean
= (~ [R: mworld > mworld > $o]
! [A: mworld,B: mworld,C: mworld]

).
% assign properties to accessibility relations
thf (mrel_mreflexive,axiom, (

mreflexive @ mrel)).

thf (mrel_meuclidean,axiom, (
meuclidean @ mrel)).

% define valid operator
thf (mvalid_type,type, (
mvalid: (mworld > $o) > $o)).

thf (mvalid_def,definition,

(mvalid
= (~ [S: mworld > $o]
! [W: mworld] :
(sew)) .

% define nullary, unary and binary connectives which are no quantifiers
thf (mimplies_type,type, (
mimplies: (mworld > $o) > (mworld > $o) > mworld > $o)).

thf (mimplies,definition,
(mimplies
= (~ [A: mworld > $0,B: mworld > $o,W: mworld]
(Caew)
= (BeW)))N.

thf (mdia_type,type, (
mdia: (mworld > $o0) > mworld > $o)).

thf (mdia_def,definition,
(mdia
= (~ [A: mworld > $o,W: mworld]
? [V: mworld]
((mrel @ W@V)
& (AQV)))).

83

Steen and Benzmiiller

System Demonstration: The Higher-Order Prover Leo-I11

thf (mbox_type, type, (
mbox: (mworld > $o) > mworld > $o)).

thf (mbox_def ,definition,
(mbox
[A: mworld > $o0,W: mworld]

= (-
! [V: mworld]
((mrel @WQV)

= (AQV)))MN.

% define exists quantifiers
(($i > $i) > mworld > $0) > mworld > $o))

thf (mexists_const_type__o__d_i_t__d_i_c_,type,(
_o_dit__dic_:

mexists_const__o
thf (mexists_const__o__d_i_t__d_i_c_,definition,
(mexists_const__o__d_i_t__d_i_c_
= ("~ [A: ($i > $i) > mworld > $o,W: mworld]
7 [X: $i > $i]

(A@X@W).)))-
(($i > mworld > $o) > mworld > $o) > mworld > $o)).

% define for all quantifiers

thf (mforall_const_type__o__d_i_t__o_mworld_t__d_o_c__c_,type, (
mforall_const__o__d_i_t__o_mworld_t__d_o_c__

thf (mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_,definition,

(mforall_const__o__d_i_t__o_mworld_t__d_o_c__c_

= ("~ [A: ($i > mworld > $o0) > mworld > $o,W: mworld]

! [X: $i > mworld > $o]

(A@X@W)).

thf (mforall_const_type__o__d_i_c_,type, (
mforall_const__o__d_i_c_: ($i > mworld > $o) > mworld > $o)).

thf (mforall_const__o__d_i_c_,definition,

(mforall_const__o__d_i_c_

= (~ [A: $i > mworld > $o0,W: mworld]

!X $i]

(Aexew))).
(($i> $i) > mworld > $o) > mworld > $o)).

thf (mforall_const_type__o__d_i_t__d_i_c_,type,(
mforall_const__o__d_i_t__d_i_c_:
o__d_i_t__d_i_c_,definition,

thf (mforall_const__o__
(mforall_const__o__d_i_t__d_i_c_
= ("~ [A: ($i > $i) > mworld > $o,W: mworld]
!OIX: 81> $i]

(A@XQW))).

% transformed problem
thf (1,conjecture,

(mvalid

@ (mforall_const__o__d_i_t__o_mworld_t__d_o_c__c

[P: $i > mworld > $o]
d_i_t__d_i_c

e -
(mforall_const__o

@ ~ [F: $i > $il
(mforall_const__o__d_i_c_
@ - [X: $il
(mexists_const__o__d_i_t__d_i_c_
Q@ "~ [Q: $i > $i] :
(mimplies @ (mdia @ (mbox @ (P Q@ (F@X))))@ (mbox@ (P@(CQ@X))))))
))).

84

System Demonstration: The Higher-Order Prover Leo-I11 Steen and Benzmiiller

References

(1]
2]
8]
(4]

[5]

(6]

[7]

(8]

[9]

Peter Andrews. Church’s type theory. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, spring 2014 edition, 2014.

Christoph Benzmiiller and Lawrence Paulson. Quantified Multimodal Logics in Simple Type The-
ory. Logica Universalis (Special Issue on Multimodal Logics), 7(1):7-20, 2013.

Tobias Gleifiner, Alexander Steen, and Christoph Benzmiiller. Theorem provers for every normal
modal logic. In LPAR-21, volume 46 of EPiC Series in Computing, pages 14-30. EasyChair, 2017.
Alexander Steen and Christoph Benzmiiller. The higher-order prover Leo-III. In IJCAR 2018,
LNCS. Springer, 2018. forthcoming.

Daniel Kirchner and Christoph Benzmiiller and Edward N. Zalta. Mechanizing Principia Logico-
Metaphysica in Functional Type Theory (Extended Abstract). In 3rd Conference on Artificial
Intelligence and Theorem Proving (AITP 2018), Book of Abstracts, 2018.

Christoph Benzmiiller, Xavier Parent, and Leendert van der Torre. A Deontic Logic Reasoning
Infrastructure. In 14th Conference on Computability in Europe, CiE 2018, Kiel, Germany, July
30-August, 2018, Proceedings, LNAI Vol. 10505, pages 114-127, Springer, 2018.

David Fuenmayor and Christoph Benzmiiller. A Case Study on Computational Hermeneutics:
E. J. Lowe’s Modal Ontological Argument. PhilPapers, https://philpapers.org/rec/FUEACS,
2017.

David Fuenmayor and Christoph Benzmiiller. Types, Tableaus and Gédel’s God in Isabelle/HOL.
Archive of Formal Proofs, 2017.

Christoph Benzmiiller and Bruno Woltzenlogel Paleo. The Inconsistency in Gddel’s Ontological
Argument: A Success Story for Al in Metaphysics. In IJCAI 2916, pages 936-942, AAAI Press,
2016.

[10] Christoph Benzmiiller, Leon Weber, and Bruno Woltzenlogel Paleo. Computer-Assisted Analysis

of the Anderson-H4jek Controversy. Logica Universalis, 11(1):139-151, 2017.

85

