

88

Hiding Computer Network Proactive Security Tools

Unmasking Features

Roman V. Maximov, Sergey P. Sokolovsky, Alexey L. Gavrilov

Shtemenko Krasnodar Higher Military School

Krasnodar, Russia

rvmaxim@yandex.ru; ssp.vrn@mail.ru; aleks02.94@mail.ru

Abstract—Passive and proactive network security tools, based

on cyber deception technologies, become more and more popular

among classic tools. Using such tools gives an opportunity to

prevent network attacks on the very beginning – at intelligence

gathering stage. In this work we research one of these deceptive

tools – a network tarpit. Based on LaBrea taprit, we investigate

some fingerprints of its algorithms, that may lead to tarpit

detecting and lowering overall security level. We used an open

source detection tool Degreaser to find LaBrea’s unmasking

features, classify them and calculate their influence on the

possibility of tarpit discovering. Our main goal was to provide

methods to improve network tarpit obscuring capabilities, ridding

of revealed unmasking features. These methods were later

implemented as modules and integrated in our network tarpit

called NetHole, that uses LaBrea as prototype and has no revealed

shortcomings. The efficiency of modifications made was then

tested in a set of tests with the same detection tool Degreaser.

Keywords—information security; proactive defence; network

tarpit; network security tools; unmasking features; cyber deception;

network intelligence gathering

I. INTRODUCTION

Large part of modern network attacks is being conducted for

intelligence gathering issues, to reveal the topology of the

network being attacked and security tools being used in this

network [1-3]. Automated scanning tools are used in such

attacks with high possibility.

Among other security tools there is a subclass based on

deception tactics [4-7]. Its main idea is not in increasing the

power or the amount of tools being used but to provide illusions

about network topology, thus slowing automated scanners and

confusing manual attackers. One of such applications is so

called honeypot [8-21]. More complex ways of network

deception include not only topology illusion and false

vulnerable hosts production but proactive defense in addition,

e.g. trapping connections with attacker, exhausting his

resources for maintaining connection state. A large number of

such trapped connections lead to slowdowning of automated

network scanners or even may cause an impossibility of overall

network interaction for the intruder caught by. These tools,

called network tarpits [22, 23], may work as standalone

deception applications or be included in firewall packets, e.g.

Linux Netfilter Tarpit, part of Xtables-addons [24].

II. COMPROMISING FEATURES

One of the main advantages of deceptive network security

tools is their invisibility. Intruders, in their turn, actively create

new and modify existing tools for uncovering honeypots and

network tarpits, making them useless. Deceptive security tools

can be compromised by detecting their unique fingerprints,

which can be also called unmasking features. To achieve this,

attackers may use either common network traffic analyzers as

nmap, zenmap, ethereal, arping, tethreal, etc, or special tools,

developed for discovering proactive security tools [25, 26].

We used one of such special tools, Degreaser [25, 26], for

testing LaBrea and informativity of its fingerprints and figured

out the following two types of unmasking features:

1) Unreliable features, that can’t be a total evidence of

tarpit presence. They are:

a) A hardcoded MAC-address: LaBrea uses

(00:00:0F:FF:FF:FF)16 address regardless of physical address of

network adapter it works on. Network tarpits are often used

against threats outside LAN, where layer-2 address cannot be

seen. Moreover, multiply IP-addresses can be assigned for

single network interface.

b) Opened TCP ports: LaBrea answers to requests to all

TCP-ports of fake host, resulting in all TCP-ports to seem

opened. There are 65536 possible ports on every host and it

takes 216 requests per host to check every port on it. Such

scanning cost is too high.

c) Delayed response: There is a time delay between

ARP-request and response in LaBrea promiscuous mode. It’s

also a secondary fingerprint, because there always can be

interferences causing such delays.

2) Discriminating features, which lead to reliable tarpit

detection. They are:

d) TCP window size: Fundamental feature of tarpit-like

host is manipulation with TCP-window size. Default window

size used by LaBrea is 10 bytes. This value is configurable, but

only once before running the tarpit. Small size of TCP window

is the first sign of tarpit presence.

e) TCP options: TCP options can be used by hosts to
negotiate additional functionality. Typically, these options are
set by operating systems during establishing TCP connection.
LaBrea establishes its own TCP sessions, bypassing system
level, so it has to manage TCP options itself, but it is not

89

implemented. Ignoring TCP options is a second significant
fingerprint of LaBrea presence.

So, there should be a balance between effectiveness of
network protection tools and possibility of them to be
discovered using their unmasking features. The main goal of
our work is to find that balance, developing methods to decrease
the level of informativity of network tarpits’ unmasking
features.

III. NETHOLE

We investigated Degreaser source code to find out the
fingerprints it searches for and created NetHole, that has no
unmasking features listed above, using LaBrea as prototype.

The first method to lower the possibility of uncovering
network tarpit being used is in the following.

A. Address space

The set of available IP addresses is divided preliminarly into
subsets of authorized and used (connected) addresses of
network devices, authorized and temporarily unused network
addresses, the rest of set is marked as forbidden to be used by
network tarpit (Table I). The main idea of this method is to
increase the functioning realism of protected network.

Dividing all IP addresses in such set will not cause a
situation of a network, where every address is available like a
false host, thus lowering the possibility of used network tarpit
being revealed. In addition, all attempts to establish connection
with hosts with IP addresses from forbidden set can be
identified as network topology scanning or attacks themselves.

TABLE I. DIVIDING ADDRESS SPACE

The set of all available IP-addresses

Authorized IP addresses subset

Forbidden

IP addresses subset
Used IP addresses

subset (real network

devices)

Temporarily unused
IP addresses subset

B. Randomizing MAC address

A hardcoded MAC address used by LaBrea (fig. 1) is a clear

network tarpit fingerprint. MAC address is a unique

6-bytes number used for identification of Ethernet frames

sender and receiver that is set by the manufacturer of network

adapter.

Fig. 1. The only hardcoded MAC address used by LaBrea

To hide this fingerprint, we used random MAC addresses for

every fake host. We suggest 3 different options for a physical

addresses generator:

1) Fully random MAC address: First option supposes
generating completely random MAC address for every fake
host. To start with, we make an array of physical addresses of
currently active local network devices. Then, we generate
random sequence of hexadecimal numbers of size J, where
J is an amount of false hosts needed. To avoid the situation with
duplicate MAC adresses in one network segment, we need to
check whether every generated address is already in use by any
of real network devices. This address must not also be null
(00:00:00:00:00:00)16 or broadcast (ff:ff:ff:ff:ff:ff)16. While at
least one of these conditions is true, address will be regenerated
and then checked again. After that we align every i-th MAC
address with a j-th IP address of false host.

The general algorithm of network tarpit with this
modification is described next. When ARP request to any
i-th IP address from given set is received, and if this IP address
is from temporarily unused addresses subset, response packet is
generated with TCP window size of 10 bytes and the aligned j-
th MAC address in TCP header. This packet is send then to initial
sender on behalf of fake host.

The described method was implemented in NetHole tarpit,

its effectiveness was tested in a series of tests, the main purpose

of which was to compare the discovering rate of LaBrea and

NetHole. To identify the network tarpit, i.e. the unmasking

feature of used security tool, we analyzed the intercepted ARP

packets with Wireshark. Table (II) represents the dump of ARP

protocol. The response on request “What MAC address does the

host with i-th IP address have?” is “The i-th IP address is set to

the host with j-th MAC address”, where j-th MAC address is

randomly generated.

Partially random MAC-address: The second option of

described method suggests using a database with unique vendors

MAC octets (table III). The three upper octets of generating

MAC address are got from this database, the rest remain random,

as described in the first option. In order the imitating network to

seem more realistic, the vendor is chosen randomly every time.

Using this option leads to resulting false network to contain

devices made by real companies.

TABLE II. USING OF GENERATED MAC ADDRESSES

Sender Receiver
Contents of ARP-

request

Router Broadcast
Who has 10.0.0.40?
Tell 10.0.0.100

be:97:a6:1c:2a:ef Router
10.0.0.40 is at

be:97:a6:1c:2a:ef

Router Broadcast
Who has 10.0.0.41? Tell
10.0.0.100

d4:e2:da:95:eb:3f Router
10.0.0.41 is at

d4:e2:da:95:eb:3f

Router Broadcast
Who has 10.0.0.42? Tell
10.0.0.100

3e:8b:0b:d0:dd:ae Router
10.0.0.42 is at

3e:8b:0b:d0:dd:ae

90

TABLE III. THE PART OF UNIQUE VENDORS MAC OCTETS DATABASE

MAC-address Vendor

000142 Cisco Systems, Inc

00037F Atheros Communications, Inc

000393 Apple, Inc.

0004EA Hewlett Packard

0004E9 Infiniswitch Corporation

000585 Juniper

00059E Zinwell Corporation

2) Partially random MAC-address with real percentage

ratio: The third option assumes preliminary ARP-scanning of

protected network in order to identify vendors of the local

devices by their MAC-addresses using the database described

above. It gives us a percentage ratio of used network devices,

using which we can imitate the most true-to-life false network.

C. Implementing TCP-options

The LaBrea never adds TCP options in headers of generated
response packets. To improve believability of answers being
sent, we decided to add the TCP option support. This feature
reads all options from incoming request packet and copies them
into the response packet, excluding “TCP Timestamp” option.
This option contains two 4-byte fields with timestamps. The
«Timestamp Value» (Tsval) field contains the packet sender’s
current value of timestamp. Firstly, it’s copied to «Timestamp
Echo Reply» (Tsecr) field and then the current system uptime
value is written in it.

We used Degreaser to test this feature. While scanning,
Degreaser, among other tests, checks presence of any TCP
options in response packets. Table (IV) contains the output of
network scanning with LaBrea running in it.

Degreaser identifies scanned hosts as network tarpits. In the
“TCP options” column found options are given. As stated at
table (IV), all hosts which are considered to be the “LaBrea
tarpit” have no TCP-options. Table (V) contains the results of
network testing with NetHole working in it The “TCP options”
column now contains Maximum Segment Size (M), Windows
Scale (W), Selective Acknowledgement (S) and Timestamp (T)
options. Degreaser cannot discover that all these hosts are held
by network tarpit.

D. Random TCP-window size

Network tarpits use TCP flow control to catch attackers by
changing the TCP window size, so it can be attributed to other
uncovering features. LaBrea sets TCP window size to 10 bytes
by default. The Degreaser’s algorithm checks this parameter
after checking TCP options, and if it is less than control value,
the host is considered to be a potential tarpit.

TABLE IV. THE NETWORK WITH LABREA SCANNING RESULTS

IP Address

R
e
sp

o
n

se

T
im

e

W
in

d
o

w
 S

iz
e

T
C

P
 F

la
g

s

T
C

P
 O

p
ti

o
n

s

S
c
a

n
 R

e
su

lt

212.193.1.210 0 0 ─ ─ No response

212.193.1.92 257762 10 SA ─ LaBrea

212.193.1.198 0 0 ─ ─ No response

212.193.1.105 81284 10 SA ─ LaBrea

212.193.1.195 205014 10 SA ─ LaBrea

212.193.1.121 0 0 ─ ─ No response

212.193.1.251 0 0 ─ ─ LaBrea

212.193.1.226 127510 10 SA ─ LaBrea

In NetHole we use a small (up to 255 bytes) but random
TCP window size. It may be a result of additional traffic
received by tarpit, but it hides the unmasking fingerprint at the
same time. On the fragment of TCP dump below the randomly
generated window size of 195 bytes is highlighted.

Source Port: 22

Destination Port: 48414

[Stream index: 5]

[TCP Segment Len: 0]

Sequence number: 0 (relative sequence

number)

Acknowledgment number: 1 (relative ack

number)

Header Length: 20 bytes

Flags: 0x012 (SYN, ACK)

Window size value: 195

[Calculated window size: 195]

[SEQ/ACK analysis]

TABLE V. THE NETWORK WITH NETHOLE SCANNING RESULTS

IP
 A

d
d

r
e
ss

R
e
sp

o
n

se

T
im

e

W
in

d
o

w
 S

iz
e

T
C

P
 F

la
g

s

T
C

P
 O

p
ti

o
n

s

S
c
a

n
 R

e
su

lt

212.193.1.49 136629 10 SA MVST Real host

212.193.1.70 0 0 ─ ─ No response

212.193.1.144 99569 10 SA MVST Real host

212.193.1.125 0 0 ─ ─ No response

212.193.1.196 0 0 ─ ─ No response

212.193.1.233 0 0 ─ ─ No response

212.193.1.88 227956 10 SA MVST Real host

212.193.1.140 0 0 ─ ─ No response

91

Degreaser scanning output is shown in table VI.

TABLE VI. SCANNING RESULTS WITH RANDOMLY GENERATED TCP

WINDOW SIZE

IP
 A

d
d

r
e
ss

R
e
sp

o
n

se

T
im

e

W
in

d
o

w
 S

iz
e

T
C

P
 F

la
g

s

T
C

P
 O

p
ti

o
n

s

S
c
a

n
 R

e
su

lt

212.193.1.144 174390 178 SA ─ Real host

212.193.1.195 149446 230 SA ─ Real host

212.193.1.122 107480 201 SA ─ Real host

212.193.1.141 128513 52 SA ─ Real host

212.193.1.226 0 0 ─ ─ No response

212.193.1.146 127476 126 SA ─ Real host

212.193.1.230 2295501 196 SA ─ Real host

212.193.1.73 0 0 ─ ─ No response

E. Application level responses

The main purpose of network tarpits is to hang the network
session with attacker as long as possible. LaBrea ignores all
data packets after TCP session is established, compromising
itself. Degreaser exploits this feature, sending a TCP packet
with random data, which size is “TCP window size – 1”, and
waits for response. If there is no response, currently scanned
host is considered to be a tarpit. In order to hide this feature, we
implemented a module for sending confirmation tickets after
receiving any packet with data. The idea is to send a TCP-ACK
packet with adjusted window size in response to TCP packet
with PUSH flag.

The example of network interaction between Degreaser
(with IP address 212.193.1.10) and NetHole (with IP address
212.193.1.28) could be seen in Table (VII). There are five TCP
packets, three of them were used for connection establishing,
the 4th is a 9-bytes data packet and the 5th is a TCP-ACK packet
sent as a confirmation ticket.

TABLE VII. IMITATION OF APPLICATION LEVEL RESPONSE

Source Destination Protocol Contents

212.193.1.10 212.193.1.10 TCP
32622 – 80 [SYN]

Seq=0 Win=5840 Len=0

212.193.1.28 212.193.1.10 TCP
80 - 32622 [SYN, ACK]
Seq=0 Ack=1 Win=10

Len=0

212.193.1.10 212.193.1.10 TCP
32622 – 80 [ACK]
Seq=1 Ack=1 Win=5840

Len=0

212.193.1.10 212.193.1.10 TCP

32622 – 80 [ACK]

Seq=1 Ack=1 Win=5840
Len=9

212.193.1.28 212.193.1.10 TCP

80 - 32622 [ACK]

Seq=1 Ack=1 Win=30
Len=0

TABLE VIII. SCANNING RESULTS WITH APPLICATION LEVEL RESPONSES

IMPLEMENTED

IP
 A

d
d

r
e
ss

R
e
sp

o
n

se

T
im

e

W
in

d
o

w
 S

iz
e

T
C

P
 F

la
g

s

T
C

P
 O

p
ti

o
n

s

S
c
a

n
 R

e
su

lt

212.193.1.193 103529 10 SA ─ Real host

212.193.1.73 0 0 ─ ─ No response

212.193.1.47 0 0 ─ ─ No response

212.193.1.67 0 0 ─ ─ No response

212.193.1.87 207563 10 SA ─ Real host

212.193.1.106 199462 10 SA ─ Real host

212.193.1.105 0 0 ─ ─ No response

212.193.1.172 0 0 ─ ─ No response

As listed in table (VIII), there are no TCP options in all

responses, TCP window size is 10 bytes, that is less than default

minimal value for Degreaser, but all these hosts are not

considered to be real hosts, neither common network tarpit, nor

LaBrea tarpit especially, because of send TCP-ACK

confirmation packets.

IV. CONCLUSION

Using the tests described above we confirmed that using

the developed modules leads to increasing the effectiveness

of network tarpit and its stealthiness level through decreasing

the possibility of its uncovering and identification by

intruders.

REFERENCES

[1] Hayatle O., Youssef A., Otrok H. Dempster-Shafer Evidence Combining
for Anti-Honeypot Technologies. Inf. Sec. J.: A Global Perspective 21, 6
(January 2012), 2012, pp. 306-316. DOI:
10.1080/19393555.2012.738375.

[2] Laurén S., Leppänen V., Rauti S., Uitto J. A Survey on Anti-honeypot and
Anti-introspection Methods. Recent Advances in Information Systems
and Technologies - Volume 2, WorldCIST'17, Porto Santo Island,
Madeira, Portugal, April 11-13, 2017, pp. 125-134. DOI: 10.1007/978-3-
319-56538-5_13.

[3] Markov A.S., Tsirlov V.L. Guidelines for Cybersecurity in the Context of
ISO 27032, Voprosy kiberbezopasnosti [Cybersecurity issues], 2014, No
1 (2). P. 28-35. DOI: 10.21681/2311-3456-2014-1-28-35.

[4] Achleitner S., La Porta T., McDaniel P., Sugrim S., Krishnamurthy S.V.,
Chadha R. Cyber Deception: Virtual Networks to Defend Insider
Reconnaissance. In Proceedings of the 8th ACM CCS International
Workshop on Managing Insider Security Threats (MIST '16). ACM, New
York, NY, USA, 2016, pp. 57-68. DOI: 10.1145/2995959.2995962.

[5] De Gaspari F., Jajodia S., Mancini L.V., Panico A. AHEAD: A New
Architecture for Active Defense. In Proceedings of the 2016 ACM
Workshop on Automated Decision Making for Active Cyber Defense
(SafeConfig '16). ACM, New York, NY, USA, 2016, pp. 11-16. DOI:
10.1145/2994475.2994481.

[6] Shaw T., Arrowood J., Kvasnicka M., Taylor S., Cook K., Hale J.
POSTER: Evaluating Reflective Deception as a Malware Mitigation
Strategy. In Proceedings of the 2017 ACM SIGSAC Conference on

https://doi.org/10.1145/2995959.2995962
https://doi.org/10.1145/2995959.2995962
https://doi.org/10.1145/2994475.2994481
https://doi.org/10.1145/2994475.2994481
https://doi.org/10.1145/2994475.2994481

92

Computer and Communications Security (CCS '17). ACM, New York,
NY, USA, 2017, pp. 2575-2577. DOI: 10.1145/3133956.3138833.

[7] Almeshekah M.H., Spafford E.H. Planning and Integrating Deception into
Computer Security Defenses. In Proceedings of the 2014 New Security
Paradigms Workshop (NSPW '14). ACM, New York, NY, USA, 2014,
pp. 127-138. DOI: 10.1145/2683467.2683482.

[8] Du Z., Fan W., Fernández D., Villagrá V.A. Enabling an Anatomic View
to Investigate Honeypot Systems: A Survey. November 2017. IEEE
Systems Journal 11/2017, pp (99):1-14. DOI:
10.1109/JSYST.2017.2762161.

[9] Keil, C., Nawrocki, M., Schmidt, T.C., Schönfelder, J., Wählisch, M.: A
Survey on Honeypot Software and Data Analysis. arXiv.org, 2016, vol.
10, pp. 63-75.

[10] Sokol P., Míšek J., Husák M. Honeypots and honeynets: issues of privacy.
EURASIP Journal on Information Security.2017, 1, Article 57 (December
2017), 9 pages. DOI: 10.1186/s13635-017-0057-4.

[11] Nawrocki M., Wahlisch M., Schmidt T., Keil C., Schonfelder J. A Survey
on Honeypot Software and Data Analysis. 2016. CoRR, abs/1608.06249.

[12] Olagunju A.O., Samu F. In Search of Effective Honeypot and Honeynet
Systems for Real-Time Intrusion Detection and Prevention. In
Proceedings of the 5th Annual Conference on Research in Information
Technology (RIIT '16). ACM, New York, NY, USA, 2016, pp. 41-46.
DOI: 10.1145/2978178.2978184.

[13] Han W., Zhao Z., Doupé A., Ahn G. HoneyMix: Toward SDN-based
Intelligent Honeynet. In Proceedings of the 2016 ACM International
Workshop on Security in Software Defined Networks & Network
Function Virtualization (SDN-NFV Security '16). ACM, New York, NY,
USA, 2016, pp. 1-6. DOI: 10.1145/2876019.2876022.

[14] Guarnizo J.D., Tambe A., Bhunia S.S., Ochoa M., Tippenhauer N.O.,
Shabtai A., Elovici Y. SIPHON: Towards Scalable High-Interaction
Physical Honeypots. In Proceedings of the 3rd ACM Workshop on Cyber-
Physical System Security (CPSS '17). ACM, New York, NY, USA, 2017,
pp 57-68. DOI: 10.1145/3055186.3055192.

[15] Tiwari R. Jain A. Improving network security and design using
honeypots. In Proceedings of the CUBE International Information
Technology Conference (CUBE '12). ACM, New York, NY, USA, 2012,
pp. 847-852. DOI: 10.1145/2381716.2381875.

[16] Andrew D., Chi H. An empirical study of botnets on university networks
using low-interaction honeypots. In Proceedings of the 51st ACM

Southeast Conference (ACMSE '13). ACM, New York, NY, USA, 2013,
Article 44, 2 pages. DOI: 10.1145/2498328.2500094.

[17] Pisarčík P., Sokol P. Framework for distributed virtual honeynets. In
Proceedings of the 7th International Conference on Security of
Information and Networks (SIN '14). ACM, New York, NY, USA, 2014,
Pages 324, 6 pages. DOI: 10.1145/2659651.2659685.

[18] Laurén S., Rauti S., Leppänen V. An interface diversified honeypot for
malware analysis. In Proccedings of the 10th European Conference on
Software Architecture Workshops (ECSAW '16). ACM, New York, NY,
USA, 2016, Article 29, 6 pages. DOI: 10.1145/2993412.2993417.

[19] Saud Z., Islam M.H. Towards proactive detection of advanced persistent
threat (APT) attacks using honeypots. In Proceedings of the 8th
International Conference on Security of Information and Networks (SIN
'15). ACM, New York, NY, USA, 2015, pp. 154-157. DOI:
10.1145/2799979.2800042.

[20] Borkar A., Salunke A., Barabde A., Karlekar N. P. Honeypot: a survey of
technologies, tools and deployment. In Proceedings of the International
Conference & Workshop on Emerging Trends in Technology (ICWET
'11). ACM, New York, NY, USA, 2011, pp. 1357-1357. DOI:
10.1145/1980022.1980327.

[21] Shmatova E. The Choice of Strategy for the Spurious Information System
on the Basis of the Game Theory Model. Voprosy kiberbezopasnosti
[Cybersecurity issues], 2015. No 5 (13). P. 36-40. DOI: 10.21681/2311-
3456-2015-5-36-40.

[22] Liston T. LaBrea: «sticky» Honeypot and IDS. [Online]. Available:
http://labrea.sourceforge.net/labrea-info.html.

[23] Liston T. «LaBrea». [Online]. Available:
http://labrea.sourceforge.net/labrea.1.txt.

[24] Hopkins A. TARPIT-iptables TARPIT target. [Online]. Available: http:
//www.netfilter.org/projects/patch-o-matic/pom-external.html.

[25] Alt. L. Degreaser git respository. 2014.
https://github.com/lancealt/degreaser.

[26] Alt L., Beverly R., Dainotti A. Uncovering network tarpits with degreaser.
In Proceedings of the 30th Annual Computer Security Applications
Conference (ACSAC '14). ACM, New York, NY, USA, 2014, pp. 156-
165. DOI: 10.1145/2664243.2664285.

https://doi.org/10.1186/s13635-017-0057-4
https://doi.org/10.1186/s13635-017-0057-4
https://doi.org/10.1145/2978178.2978184
https://doi.org/10.1145/2978178.2978184
https://doi.org/10.1145/2876019.2876022
https://doi.org/10.1145/2876019.2876022
https://doi.org/10.1145/3055186.3055192
https://doi.org/10.1145/3055186.3055192
http://dx.doi.org/10.1145/2381716.2381875
http://dx.doi.org/10.1145/2381716.2381875
https://doi.org/10.1145/2498328.2500094
https://doi.org/10.1145/2498328.2500094
http://dx.doi.org/10.1145/2659651.2659685
http://dx.doi.org/10.1145/2659651.2659685
https://doi.org/10.1145/2993412.2993417
https://doi.org/10.1145/2993412.2993417
http://dx.doi.org/10.1145/2799979.2800042
http://dx.doi.org/10.1145/2799979.2800042
http://dx.doi.org/10.1145/2799979.2800042
http://dx.doi.org/10.1145/1980022.1980327
http://dx.doi.org/10.1145/1980022.1980327
http://dx.doi.org/10.1145/1980022.1980327

