
MAD-IOS: dynamic app vulnerability analysis
in non-jailbroken devices

Alfonso Solimeo1, Luca Capacci2, Stefano Taino2, Rebecca Montanari1
1: University of Bologna, Italy, alfonso.solimeo@studio.unibo.it, rebecca.montanari@unibo.it

2: CryptonetLabs, Italy, luca.capacci@cryptonetlabs.it, stefano.taino@cryptonetlabs.it

Abstract
Mobile apps are pervasive in our life supporting us from simple actions, such as photo
sharing, to more important ones, such as banking transactions. Security around these
operations and data is crucial, making app vulnerability analysis and code review
fundamental. Android and iOS split the mobile market share each other. However,
while the first can rely on many analysis tools, for iOS it is not the same. Not only there
is erroneously the idea about the immunity of iOS from malware and bad coding, but
also it is challenging to jailbreak iOS devices. In this paper, we present MAD-IOS, a
novel framework for dynamic iOS app vulnerability analysis that does not rely on
jailbreaking techniques, making it possible to work also for non-jailbroken devices.
Exploiting dynamic analysis and without breaking iOS security model, it is possible to
embrace iOS-based devices audience as wide as possible and to provide a security
assessment through a normal use of the app.

1 Introduction
In recent years, the adoption of mobile devices has exponentially increased. By 2021 estimated
devices per capita are expected to be 1.5 and mobile data traffic will reach the amount of 49 exabytes
[1]. Within this context the applications (app), running on major mobile operating systems (Android
and iOS), are playing a crucial role in leveraging the widespread use of smartphones. App
development is gradually becoming easier and the number of developers is growing substantially with
2.7 million and 2.2 million apps, respectively in the Play Store [2] and in the App Store [3] published
at the beginning of 2017.

Unfortunately, developers’ security expertise has not grown equally. Increased popularity of
Android/iOS devices along with the capability of apps of manipulating and working on various
personal and sensitive data and associated monetary benefits have attracted a great number of
malware developers to target mobile platforms. Kaspersky Lab, in 2016, detected more than 8 million
malicious installation packages and almost four hundred thousand among mobile banking trojans and
ransomware [4].

Given the threats posed by the increasing number of malicious apps, academia and industry
researchers have proposed methodologies and techniques for automated analysis of app vetting and
for malware detection. In particular, methodologies for malware detection can be based on either
static or dynamic analysis. Static analysis consists of inspecting the entire code without executing the

app, in a non-runtime environment. This inspection can take place on the source code, when it is
available, or on bytecode/binaries, making use of techniques, such as reverse engineering, control
flow analysis and permission checking. On the other hand, analyzing the actions performed by an app
code while it is being executed is called dynamic analysis.	 App code inspection can take place by
modifying the executable or using a specific environment.	Although static analysis is an optimal first
step during a code review process and is useful for resource constrained devices, it does not evaluate
execution context and all its related aspects: multiple entry points, asynchronously running app
components, callbacks [5], data dynamically downloaded, objects created during runtime [6], etc.
Moreover, in many cases the binaries may be obfuscated or the source code may be not available.	

Because of the widespread adoption of Android and its high degree of openness compared to iOS,
the Google’s platform is the most attacked [7] and therefore, great research efforts have been directed
toward the design/development of tools/techniques for supporting Android malware analysis. In the
field of static analysis many tools are available, such as RiskRanker, FlowDroid, AmanDroid, whereas
in the field of dynamic analysis we have AppsPlayground, VetDroid, KBTA IDS, Crowdroid [5].

Unfortunately, the same attention has not been directed toward iOS devices [8] because of both
the market share and of the wrong idea that iOS less susceptible by malware infection. On the
contrary, malware on iOS devices continues to increase [9]. Few analysis tools are available and the
iOS world also witnesses the lack of auditing tools and techniques, which would be fundamental to
perform accurate penetration tests and to mitigate the unsecure programming methods that can be
present also in apps that have passed the Apple checks. Some remarkable works on iOS side are: iRET
[10], SnoopIt [11] and Introspy-iOS [12]. iRET provides static analysis features, such as binary
analysis, keychain analysis and Theos tweaks management. SnoopIt and Introspy-iOS provide
dynamic analysis support, tracing iOS sensitive calls and collecting various kinds of data. All of these
solutions share a common characteristic, they work only on jailbroken devices. Jailbreaking allows to
remove sandbox restrictions via privilege escalation by modifying the iOS system kernel in order to
permit reading/writing access to file system. The privilege escalation allows custom software
installation and device behavior modification. Jailbroken devices can bypass, disable or patch the
code-signing mechanism that otherwise would allow to load only Apple-approved applications.

However, jailbreaking techniques are becoming increasingly difficult day by day. On the one
hand, the current iOS release is 11.2 and there are no jailbreaks available for iOS 11.2. We have to go
back in time to version 10.2, thirteen versions before, to find the latest jailbreak which is, by the way,
only a semi-untethered* jailbreak. On the other hand, we have to consider also penetration tests in
corporate environment that can have more complications or bans in performing the jailbreak. There is
now a common agreement that jailbreaking cannot be considered a reliable procedure to rely on for
app analysis.

In this demo paper, we present a novel dynamic app vulnerability analysis framework, called
MAD-IOS (Mobile App Driller for iOS), that, unlike state-of-the-art solutions, does not rely on
jailbreaking techniques to profile app secure assessment, thus avoiding the breakage of the iOS
Security Model. MAD-IOS provides also a non-invasive technique to trace sensitive calls: the entire
analysis work can be performed during the normal use of the app, without any particular actions from
end-user side. In this way, MAD-IOS execution is independent from possible jailbreak releases and
all analysis operations can be conducted on pure iOS devices, reproducing the natural use, avoiding
any contaminations due to the breakage of iOS Security Model.

* With a semi-untethered jailbreak, on every device reboot, you have to repeat the jailbreak procedure, usually via a

specific app.

2 MAD-IOS Architecture
MAD-IOS is a dynamic app vulnerability analysis framework, developed to work with every kind of
device powered by iOS. Essential feature is the capability to work with non-jailbroken devices. It is
composed of some existing tools and by specific hooks†, built on top of Theos [13], Theos Jailed [14]
and Fastlane [15]. The basic idea is to provide a tool able to instrument a decrypted iOS application
Archive (IPA) to intercept and collect data from sensitive calls, during its normal use, such as hashing
functions, cryptographic key generation, keychain items storing, URLs creation, database calls. The
IPA can be installed only on iOS devices and contains all the iOS application components: binaries,
images, meta-data, etc.

Figure 1 shows MAD-IOS architecture composed of several modules.

IPA Patcher module comprises several bash-scripts, that automate the patching and making of
instrumented IPAs. Its task is to make the tweak and inject it into the IPA. Usually tweaks refer to
extensions for jailbroken devices, provided individually or as additional code injected into existing
apps, that modify the normal behavior. Our MAD-IOS tweaks are, instead, designed for non-
jailbroken devices and without any impact on the app. We consider the use of bash-scripts a good
choice not only because all the involved tools are command-line tools but also because they provide
good performances and quick and easy configuration.

IPA Patcher uses two additional modules: Hooks and OTA. The Hooks module is composed of
many theos-based hooks. They leverage both fishhook [16] and Logos [17], that provide method
hooking mechanisms, and they compose the code to inject, aka the tweak. OTA module, instead,
permits to generate what it is necessary to implement an Over The Air Installation of patched IPA, to
make a remote installation via www possible: a plist file and a related web-page. They need to use the
itms-services protocol, which is the official Apple way for OTA distribution of iOS apps [18] since
iOS 7 to the latest iOS 11 release.

MAD-IOS Core takes advantage of Theos, Theos Jailed and Fastlane. Theos is “a cross-platform
suite of tools for building and deploying software for iOS and other platforms” [13] widely used to
build tweaks for jailbroken devices. Theos Jailed is a module to develop tweaks in a jailed
environment, which meets our main goal. Fastlane helps developers to automate the building of iOS
apps: we are using it to manage all issues related to the provisioning profile, an Apple certificate that
is essential to implement the code-signing mechanism in iOS.

† In this context, we intend for hook a code block designed to intercept a specific function.

Figure 1 - MAD-IOS Architecture

3 MAD-IOS at work
MAD-IOS operates on a decrypted IPA and makes use of an Apple Developer Profile. Let us recall
that Apple encrypts any app released on the App Store, and Theos-based code injection is possible
only on decrypted IPAs. The Apple Developer Profile is, instead, needed to sign and install the app
correctly. Since this tool is conceived for the target app’s developer and for pentesters authorized by
the app’s developer, gaining access to a non-encrypted IPA of the target app is not an issue.

The operating principle underlying MAD-IOS is quite simple. Once obtained a decrypted app we
first need to setup env_var.sh, an environment variable file, that contains some information such as
Apple Developer Username, App Group ID, Theos working path, Device UDID and project name.
Then, by running init.sh we produce a patched IPA, correctly signed and ready to be installed on the
selected device. The patched app will be the same as the original one, with only a different Bundle ID
which we chose to call it.cryptonetlabs.<Project Name>.

When running, MAD-IOS intercepts a big variety of sensitive calls on the device. Data collected
are stored in a SQLite Database linked to the single app. The information is stored following the
schema Library – Function – Args – dataOut – Stacktrace – timestamp. Library and Function will be
respectively the name of the class or library (e.g. NSURLRequest, in case of Apple API call, SQLite in
case of an external library) and the name of the method or function intercepted (e.g. initWithURL for
NSURLRequest, sqlite3_open_v2 for SQLite). Args will be the arguments related and dataOut will be
the return value, if present. The Stacktrace and timestamp fields save calls chain that pointed to the
intercepted function and the timing of the call. Figure 2 shows some database entry examples.

The hooks cover many calls that are relevant for security: cryptography (MD5, Sha, RNG, …),
networking (NSURL, CFNetwork, …), storage (Keychain, SQLite, …), logging (NSLog, …), IPC (URL
Scheme, UIPasteboard, …). Every app call to a target function is intercepted by MAD-IOS. After
saving the call-related data MAD-IOS returns the control without significantly decreasing the app
performance, as a key characteristic. In order to share this database, without breaking the Apple
Security Model, we used the App Group capability thus enabling data sharing. Another app developed
by the same developer can retrieve the database. This second app sends the result to the MAD backend
to review it. The backend consists of a web server, which automatically parses the collected data and
shows the results in a human-readable format. Collected data is structured in such a way as to be
easily analyzed by automatic tools, thus allowing the analyst to easily develop scripts to display the
results of the analysis in any format (e.g. html, docx ...). For instance, in our environment, we
developed a python-based application on the backend, which analyzes the data collected and
generates an HTML-based report. The results are classified according to the OWASP Top Ten Mobile
Risks [19] using four severity levels: High, Medium, Low and Information.

Furthermore, injected hooks can intercept any function/method in the app’s sandbox so false
positives/negatives and the overall result of the analysis are not influenced by the limits imposed by
iOS security model. The only downside in working on jailed devices consists of an incomplete
filesystem visibility, which is limited to the very same paths accessible to the target app, but, once
again, this does not influence the results, since during the analysis we are only interested in files read
and written by the target app. Figure 3 exhibits some details about the generated report. MAD-IOS
enables users to detect, for example, if there are HTTP calls that are not using SSL. Figure 4
highlights the advantage of relying on a dynamic approach, by showing the interception of the

Figure 2 - Database Entries

UIPasteboard:addItems method as an example. As it stems from Figure 4 the analyzed app shares
sensitive data, such as passwords. With a static approach, we would have not been able to obtain this
information (Items in the Figure 4), because it is generated only at runtime.

Figure 5 shows another feature of MAD-IOS: with the help of Hopper [20] and the stack trace
previously saved, we are able to detect in most cases the caller, addressing the symbolicating issue,
which consists in retrieving the function/method names from iOS stack traces, that mostly contains
only memory addresses. We are able to obtain the desired information by comparing the data
contained inside the stack traces with data extracted from the disassembled binary.

Figure 5 - Symbolicating the Stack trace

As outlined in Figure 6, we correctly retrieved the class and the method that called SecItemAdd.

4 Conclusion
MAD-IOS is a complete dynamic analysis tool to assess possible threats caused by wrong coding,
exploiting the power of dynamic analysis, in the iOS ecosystem. In particular, as key distinctive
feature, MAD-IOS makes possible to execute all the pentest process steps, without having to depend
on third party procedures and jailbreaking. In addition, our app vulnerability analysis approach does
not break the iOS Security Model. We believe that MAD-IOS can provide a contribution in the iOS
Security field that, as showed, is still lacking this kind of solution. The encouraging results we
obtained are pushing our efforts to further refine MAD-IOS and to expand its features, with the main
focus on Swift-based method interceptions.

Figure 3 - NSURLRequest detail

Figure 4 - UIPasteboard detail

Figure 6 - SecItemAdd detail

References
	

[1] CISCO, "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021," 7 February 2017.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/mobile-white-paper-c11-520862.pdf.

[2] AppBrain, "Google Play Stats," January 2017. [Online]. Available: http://www.appbrain.com/stats.
[3] Apple Inc., "App Store shatters records on New Year’s Day," [Online]. Available:

https://www.apple.com/newsroom/2017/01/app-store-shatters-records-on-new-years-day.html.
[4] Kaspersky Lab, "Mobile Malware Evolution 2016," 2016. [Online]. Available:

https://securelist.com/files/2017/02/Mobile_report_2016.pdf.
[5] Sufatrio, D. J. J. Tan, T.-W. Chua and V. L. L. Thing, "Securing Android: A Survey, Taxonomy, and Challenges.," ACM

Computing Surveys, vol. 47, no. 4, p. 45, May 2015.
[6] S. Hao, B. Liu, S. Nath, W. G. Halfond and R. Govindan, "PUMA: Programmable UI-automation for Large-scale Dynamic

Analysis of Mobile Apps," Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and
Services, pp. 204-217, 2014.

[7] F-Secure, "MOBILE THREAT REPORT," 2014. [Online]. Available: https://www.f-
secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf?_ga=2.228340765.1471073704.1506532054-
664434203.1506532054.

[8] L. García and R. J. Rodríguez, "A Peek under the Hood of iOS Malware," Availability, Reliability and Security (ARES),
2016 11th International Conference on, 2016.

[9] Skycure, "Mobile Threat Intelligence Report," 2017. [Online]. Available: https://cg9j53d64gz46qncx41jvxq16p-
wpengine.netdna-ssl.com/wp-content/uploads/2017/07/Skycure-10YrsofiOS-MobileThreatIntelligenceReport_2017Q1.pdf.

[10] S. Jensen. [Online]. Available: https://github.com/S3Jensen/iRET.
[11] A. Kurtz. [Online]. Available: https://code.google.com/archive/p/snoop-it/.
[12] T. Daniels and D. Alban. [Online]. Available: https://github.com/iSECPartners/Introspy-iOS.
[13] [Online]. Available: https://github.com/theos/theos.
[14] K. Oberai. [Online]. Available: https://github.com/kabiroberai/theos-jailed.
[15] Fabric, [Online]. Available: https://github.com/fastlane/fastlane.
[16] Facebook, [Online]. Available: https://github.com/facebook/fishhook.
[17] [Online]. Available: http://iphonedevwiki.net/index.php/Logos.
[18] Apple inc., "Install in-house apps wirelessly," [Online]. Available: https://help.apple.com/deployment/ios/#/apda0e3426d7.
[19] OWASP Foundation, 2016. [Online]. Available:

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks.
[20] Cryptic Apps SARL, [Online]. Available: https://www.hopperapp.com.
[21] International Data Corporation, "Smartphone OS Market Share, 2017 Q1," 2017. [Online]. Available:

https://www.idc.com/promo/smartphone-market-share/os.
[22] Gartner, "Gartner Says Worldwide Sales of Smartphones Grew 7 Percent in the Fourth Quarter of 2016," 2016. [Online].

Available: http://www.gartner.com/newsroom/id/3609817.

A. MAD-IOS walk-through
In this appendix, we show a simple walk-through for MAD-IOS.

The main idea is to show the inner workings of modules composing the framework via the usual
steps of a typical use case scenario.

First of all, we will show the preliminary operations, to be performed only once before the first
usage:

• Retrieve Device UDID;

• Install on the device the Agent-App to manage the process device-side;

• Make a server side setup modifing env_var file with the following content:

o Theos bin path;

o Apple Developer Profile username;

o App Group ID.

After that, every time the security analyst wants to analyze an app, has to perform the following
steps:

1) Upload a decrypted IPA to the MAD-IOS backend:

• MAD-IOS backend instruments the IPA and makes the download available via
OTA.

2) Download via OTA the patched IPA on the device, using the Agent-App;
3) Use and deeply explore the patched IPA, focusing on sensitive actions. The analysis

coverage strongly depends on how much the security analyst browses the app’s GUI;
4) Via the Agent-App, upload to the MAD-IOS backend the collected data:

• MAD-IOS backend evaluates this data and provides a security assessment of it;

• MAD-IOS backend symbolicates the collected stack traces, leveraging Hopper.

5) Connect to the MAD-IOS backend’s web GUI to examine the security report.

