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Abstract. The article deals with algorithms for signal and image pro-
cessing in presence of interference from the underlying surface, flicker
noise, and other types of interference with fractal properties. Models
of fractal interference are considered on the basis of the statistical ap-
proach. Application of the fractal Brownian motion model with fractional
dimension is proved for the statistical description of low-frequency flicker
noise is proved, and, also, for describing the reflection coefficient of the
sensing signal from the background of natural origin under obtaining
the radar images. A maximum likelihood algorithm for detecting signals
and extended objects, as well at the background of additive fractal noise
are developed. The characteristics of detection of extended objects at
the background of fractal noise, as well as a low-frequency signal at the
background of flicker noise are calculated. The statistical modeling of the
object detection algorithm on raster and complex images of the earth’s
surface was carried out and its efficiency was evaluated. It is established
that usage of the fractal models allows improving the efficiency of signal
and image processing at the background of noise in cases where there
are no other differences between them.
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1 Introduction

Contemporary studies have made it possible to establish the self-similarity and
fractional measure properties of signals and images obtained by receiving signals
reflected from various objects [1, 2]. The investigated processes are not consid-
ered as a simple set of individual elements with certain characteristics, but as
some structure that has internal topological connections between the elements
and characterizes the complex object as a whole. A distinctive property of such
processes is the non-integer nature of their dimension. Despite existence of dif-
ferent definitions and the magnitude of dimension for a given signal or image
[3], each of them characterizes the general property of self-similarity. This allows
us to use the dimension value as an indicator in solving problems of detection,
classification, and estimation of parameters [1, 2]. At the same time, the theory
of optimal processing of signals and images based on fractal representations has
not been developed sufficiently.
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Methods and algorithms for optimal processing of signals and images based
on probabilistic models and the theory of optimal statistical solutions are well-
known and widely applied. The most general formulation of the problem and the
model of signals and interference are implemented in the estimation-correlation-
compensation approach [4–6]. The statistical approach is also used in processing
the signals and images with fractal properties, for example, fractal Brownian
motion [7]. Another example of effective application of the statistical methods
is interpretation of the correlation integral as the probability of non-exceeding
the distance between vectors of a given value [8–12]. The aim of the research is
to develop and improve the statistical approach in problems of detecting signals
and objects against a background of fractal noise and increasing the efficiency
of processing algorithms.

2 Correlation dimension of signals and interferences

The most complete statistical approach is applied to processing the fractal signals
and images. For description of signals and images properties, one of the defini-
tions of the fractal measure is used, i.e. the correlation dimension. In [2,13], the
mathematical description uses the notion of a correlation integral, which deter-
mines the probability that two independent observable vectors are at a distance
less than r: Cw(r) = P (‖x − y‖E < r) , where x , y , E dimensional vectors
with the same distribution, w probability measure. When observing samples of
E-dimensional vectors (x 1,x 2, . . . ,xn), correlation dimension is determined [14]
as the double limit

D = lim
r→0

lim
n→∞

logCn(r)

log r
, (1)

where Cn(r) is the correlation integral

Cn(r) =
2

n(n− 1)

n∑
m=1

n∑
j<i

H(r − ‖x − y‖E), (2)

where |...|E is the norm in the E-dimensional space of embeddings, H(x) ={
0, x < 0

1, x > 0
is the Heaviside function. The most plausible estimate of the correla-

tion dimension of the proposition in [8,9] is based on the assumption that the cor-
relation integral is calculated for independent random distances rm = ‖x −y‖E ,
i = 1, . . . , n, j = 1, . . . , n, m = 1, . . . ,M = n(n− 1)/2, distributed by the power
law.

For given value of correlation dimension the correlation integral (2) is C(r) ≈
rD that allows one to represent distances between vectors as random value with
the power law of distribution. In the case of distance norming rm/rmax, the
distribution law is F (r) = rD, and multidimension probability density function
is [9]

w(r , D) =

M∏
m=1

w(rm) =

M∏
m=1

DrD−1m . (3)
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Since the resulting multidimensional density (3) is also a function of unknown
dimension, it can be considered as a likelihood function. The maximum likelihood
estimation of the correlation dimension is obtained as a result of solving the
following extremal problem:

D̂ = argmax
n

w(r , D).

Using logarithm of the likelihood function and extremum condition
D

dD
lnw(r , D) =

0, it is possible to calculate the maximum likelihood estimate [10]

D = − M
M∑

m=1
ln rm

. (4)

The above estimate is effective and asymptotically unbiased. Analysis of the dis-
placement and variance of the estimation error was carried out in [15]. Presence
of the fractal noise alters the properties of the observed signals and images, that
is reflected in their correlation dimension. Consider the situation when a fractal
signal with the dimension DS is observed against the background of additive
fractal noise with the dimension DJ . Since in the general case this analysis is
extremely complicated, let us consider the case when the intensity of the inter-
ference is much greater than the intensity of the useful signal. Considering the
signal and interference in the pseudo-phase space and using the Taken’s tower, it
can be assumed that the presence of a weak signal slightly changes the distances
between the vectors of the observed process by a value δrm << rm. Under these
assumptions, the asymptotic expression for estimating the correlation dimension
of the sum of the signal and the interference has the form

D̂1 = − M
M∑

m=1
ln rm

1− M
M∑

m=1
ln rm

M∑
m=1

δrm
rm

 = D̂J

(
1 +

D̂J

M

M∑
m=1

δrm
rm

)
,

where the second term describes the signal presence. The factor δD =
1

M

M∑
m=1

δrm
rm

is a random variable with the asymptotically Gaussian probability distribution
when M >> 1. The signal optimal processing against a noise background reduces
calculation of a sufficient statistics to calculation the logarithm of the likelihood
ratio.

3 Fractal Brownian motion as a model of fractal signals
and interferences

Fractal Brownian motion is used as a model of fractal interference. Samples of
FBM are formed by one of famous methods [7] and characterized by intensity
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σ2 and Hurst exponent H. Dimension of FBM is determined by D = 2−H for
one-dimensional FBM and D = 3−H for two-dimensional FBM. If determined
signals are observed at the background of additive fractal interference in the
form of FBM, then detection and identification are complicated. Therefore, one
of the actual problem is synthesis of optimal detection algorithms for signals
at the background of additive fractal interference in the form of FBM. Let the
signal sn is observed at the background of FBM interference xn

yn = sn + xn, n = 1, . . . , N,

where N is the amount of samples of observed process, xn are the independent
samples of FBM interference. The fractal Brownian motion is a Gaussian ran-
dom process; therefore, its properties are completely determined by correlation
matrices for one-dimensional signal [7]

M {(X(t2)−X(t1)) (X(t4)−X(t3))} =

= 0.5σ2
[
−(t2 − t1)2H + (t2 − t3)2H + (t1 − t4)2H − (t1 − t3)2H

]
, (5)

and for two-dimensional image

Rij = M {xixj} =
1

2
σ2
[
(i− j − 1)2H − 2(i− j)2H + (i− j − 1)2H

]
.

Therefore, the matrix R, which contains correlations of all possible increments
M = = 0.5 × N(N − 1), has the size of M × M and is formed by given N
samples: ∆xm = x(ti)−x(tj), i = 1, . . . , N, j = 1, . . . , i,m = 1, . . . ,M. Vector of

increments ∆X = {∆X1, . . . ,∆XM}T, given by this way, has multidimensional
probability density function:

w(∆X ) =
1

(2π)M/2
√

detR
exp

[
−1

2
∆XTR−1∆X

]
, (6)

where correlation matrix R depends on Hurst exponent H, and probability den-
sity function can be considered as likelihood function

w(∆X /H) =
1

(2π)M/2
√

detR(H)
exp

[
−1

2
∆XTR−1(H)∆X

]
. (7)

Likelihood ratio of increments of FBM interference and observing determined
signal at the background of interference is

Λ(H) =

√
detR(H)

det(R(H) + Ry)
×

× exp

[
−1

2
∆XT(R(H) + Ry)−1∆X +

1

2
∆XTR−1(H)∆X

]
. (8)

Evaluation of determinant and conversion of matrix of increments R are
very difficult computational problem in case of randomly given moments of



87

time. Therefore, in several cases, it is useful to consider only non-correlated
increments within non-crossing time intervals. In such cases the correlation
equals M {∆Xi, ∆Xj} = δijDX∆t

2H
i , where δij is the Kronecker delta, i =

1, . . . , N − 1. In this case, the matrix R is diagonal and its determinant equals
detR = DN

X

∏N−1
n=1 ∆t

2H
n . Multidimensional probability density function (PDF)

of the FBM increments is

w(∆X ) =
1

(2π)(N−1)/2

√
σ2H

N−1∏
n=1

∆t2Hn

exp

[
− 1

2σ2

N−1∑
n=1

∆X2
n

∆t2Hn

]
, (9)

where we can obtain the likelihood ratio of Gaussian signal at the background
of fBm interference

Λ =

√
σ2N

N−1∏
n=1

∆t2Hn

(2Dv)(N−1)/2
exp

[
−1

2

N−1∑
n=1

(
1

2Dv
− ∆x2n
σ2∆t2Hn

)
∆x2n

]
.

This algorithm is quasioptimal, because it does not consider the increments
correlation at the overlapping intervals. But it has significant computational
advantages, since of absence of matrix inversion operations of high computational
cost.

Getting the non-correlated samples of FBM is possible as a result of tran-
sition in the spectral field. It is well-known [7], that the spectral power density
of signal in the form of FBM equals G(f) = 1

f2H+1 . Fractional Brownian sur-

face (FBS) model may also be given in the spectral area as assembly of har-
monics S = {S(k, n)} , k = 1, . . . , Nx, n = 1, . . . , Ny, represented by discrete
Fourier transform of FBS samples {s1, . . . , sN}. All harmonics are independent
complex Gaussian values, variances of which equal M

{
|Sm|2

}
= GX

m2H+1 ,m =
1, . . . , NG, where NG is the number of harmonics. If the white Gaussian noise
is observed with fractal interference, then spectrum of additive interference is
|Xm|2 = G0

m2H+1 +N0,m = 1, . . . ,M = N/2.
Multidimensional probability density function of the FBM spectral compo-

nents is

w(X ) =
1

πM
M∏

m=1

(
G0

m2H+1 +N0

)exp
[
−

M∑
m=1

|Xm|2
1

G0

m2H+1 +N0

]
, (10)

.
Using spectral representation of the observing data Y m and determined signal

Sm, logarithm of the likelihood ratio is

Λ =

M∑
m=1

SH
mY m + Y H

mSm − S
H
mSm

G0

m2H+1 +N0

, (11)
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.
Thus, in spectral area, the algorithm of likelihood ratio evaluation turnouts

simpler because an operation of matrix inversion is excluded. The FBM detec-
tion in spectral area against the background of Gaussian noise is made as a
result of calculation of statistic (9) and comparing it with a threshold. If a spec-

trum of signal is of low frequency with harmonics |Sm|2 =
G0

m2
, then asymptotic

interference immunity of signal processing exists against the background of frac-
tal interference and depends on the Hurst factor: if H < 1/2, then interference
immunity is nondecreasing function on signal frequency; if H > 1/2, then the
interference decreases with decreasing the signal frequency.

4 Conclusion

It is shown that methods of the theory of optimal statistical solutions can be
successfully applied also to processing of the fractal signals and images against
the background of additive fractal noise. The basis for the effectiveness of sta-
tistical methods is the irregular character, as well as the relatively large amount
of observable data. Under these conditions, the statistical description of fractal
signals and images is produced by various methods: the use of a one-dimensional
and two-dimensional fractal Brownian motion model, and a statistical descrip-
tion of distances between vectors in a pseudo-phase space. This approach allows
us to obtain processing algorithms based on the theory of optimal statistical
solutions for solving various problems: detection, discrimination, delineation of
boundaries, estimation of parameters, and analysis of the processing efficiency.
At the same time, the statistical description is not obtained for all fractal signals
and images and their characteristics, and this makes it important to continue
research in this direction.
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