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Abstract

In this paper, one-dimensional k-medians clustering problem is con-
sidered in the context of zero-sum game between players choosing a
sample and partitioning it into clusters, respectively. For any sample
size n and k > 1, an attainable guaranteed value of the clustering accu-
racy 0.5n/(2k — 1) (the low value of an appropriate game) is provided
for samples taken from the segment [0, 1].

1 Introduction

In data analysis, k-medians clustering problem is regarded as one of the famous center-based metric clustering
problems, whose instance can be defined as follows. For a given number k£ > 1 and a finite sample £ = (z1,...,z,)
taken from a metric space (X, p), it is required to find a partition of N,, = {1,...,n} onto k clusters C1,...,Cy
and, for any j-th cluster, to point out an appropriate center c; such that

k n
Z Z p(zi,¢5) :Zmin{p(zi,cl),...,p(xi,ck)} — min. (1)
j=1ieC; i=1

Equation (1) evidently implies that, for any j, the point ¢; € Arg min{ziecj plx;,c):c€ X}, i.e. ¢jis a median

of the subsample §; = (z;: 1 € C}).
As a combinatorial optimization problem, k-medians is shown! to be intractable [Guruswami and Indyk, 2003]
even for the FEuclidean metric and has no PTAS, unless P = NP. For d-dimensional Euclidean spaces there
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are known numerous approximation results. For instance, in [Kumar et al., 2010], for any fixed k, randomized

LTAS with time complexity of 0(2(’“/5)0(1) -dn) is proposed. On the basis of the famous coresets technique,
in [Har-Peled and Mazumdar, 2004], RPTAS with polynomially depending on the number of clusters k time
complexity bound O(n + p(klogn)®M), where p = exp(O((1 — loge)/)*~1) is proposed. For d = 1, k-medians
problem is polynomially (and very efficiently) solvable. To date, the most efficient exact algorithm with time
complexity O(nlogn + kn) is proposed in [Grgnlund et al., 2017].

Among others, the setting, where it is required to obtain a guaranteed accuracy of clustering for a fixed
number of clusters k and an arbitrary sample, is valuable ([Ben-David, 2015, Khachai and Neznakhina, 2017])
for applications in combinatorial optimization and data analysis. In this paper, we study such a setting for the
1d-case of the k-medians clustering problem.

2 Problem Statement and the Main Result

We consider the following two-player zero-sum game induced by k-medians clustering. There are two players
placing points in the unit segment of the real line. Strategies of the first player are samples £ = (x1,...,%,),
x; € [0,1] of some given size n. Strategies of the second one are k-tuples 0 = (c1,...,ck), ¢; € [0,1]. The payoff
function F(&,0) = Y1, min{|z; — c1,. .., |z; — cx|}. Goals of the first and the second players are to find the
lower
ve(n, k) = sup inf F(&0)
¢efo,1] o€[0,1]k
and the higher
v*(n,k) = inf sup F(& 0)
o€[0,1]% ¢efo,1)m
values of the game, respectively.

It is easy to verify that, for any k > 1 and n > 0, the game has no value, i.e. vi(n,k) < v*(n,k). For many
reasons arising from applications in data analysis, combinatorial optimization, and computational geometry, it
is important to have an upper bound for v, (n), which means the guaranteed accuracy of k-medians clustering of
an appropriate n-points sample. Although, v*(n, k) can obviously be taken as an upper bound, for large values
of n it is imprecise and should be replaced with more accurate one.

In this paper, we propose an attainable upper bound B(n, k) for v.(n, k). Actually, to any n > 0, k¥ > 1, and

¢ € 10,1]", we show how to assign an appropriate k-tuple o¢ = (c1,...,¢x), i.e. how to construct a clustering
C1,...,C with medians ¢y, ..., ¢, such that
inf F(¢0)<F(§0¢) <B(n,k).
o€[0,1]F
Theorem.

(i) For any k > 1, n > 0, and sample £ = (x1,...,z,), x; € [0,1], i € N,,, there exists the k-tuple o¢ =
(c1,...,¢ck), ¢; €[0,1], j € Ng, such that

F(f,a’g) < m

(2)

(ii) For any k > 1, there is n = n(k) such that, for alln > n, bound (2) is attained at some sample & = £(k, n).

Postponing the rigorous proof to the forthcoming paper, we restrict ourselves to some suggestive thoughts.
To put it simple, we consider the case of k = 2.

3 Proof Sketch for k =2
We start with the following simple upper bound

3.1 Naive Upper Bound

It can be assumed that the second player always adheres to the following strategy. He splits the segment [0, 1]
onto two equal parts and put ¢; and co at the centers of each part as it is shown in Fig. 1

Obviously, in this case, for any x € [0,1], min{|z — ¢;|, | — c2|} < 1/4. Therefore, regardless of the choice
& = (z1,...,2y,) of the first player, >""" , min{|z; — 1|, |z; — 2|} < n/4, i.e. B(n,2) < n/4. Since, to complete
the first point of the proof (for the considered case k = 2), we need to show that B(n,2) < n/6, we need further
improvements.
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Figure 1: Simple upper bound
3.2 Reducing to Linear Program

Hereinafter, without loss of generality, we assume that any sample £ = (z1, ..., z,) contains points ; in ascending
order. Moreover, we assume that any cluster C' = {i1,...,4n} C N, inherites this property, i.e. z;; <...<uwz; .
Then, for the median c¢ of the cluster C' we have

m |m/2] m lm/2] m
Z ‘xil - C| - Z (C - xil) + Z (xil - C) - - Z Ty + Z Liy - (3)
=1 =1 1=[m/2]+1 =1 1=[m/2]+1

Therefore, for a given sample &, ®(&§) = inf,_(, .,) F(§,0) depends on choice of partitions C; U Cy = N,
ultimately and obeys the equation

@(f):min{z |z — | + Z |$¢—62|301U02=Nn}

€Cy 1€Cy

[m1/2] my [m2/2] mo

=min< — E T, + E T; — E Titm, + E Tifm,: M1 +M2=n
i=1 =1

i=[mq/2]+1 i=[ma/2]+1
Thus, v.(n,2) = supgcjo17» P(€) is an optimum value of linear program (4)

vx(n,2) = maxu

s.t.
[m1/2] my [m2/2] ma
- > T+ > Ti— Y, Tigm, + > Tigm, 2 U, (M1 +mg=n),
i=1 i=[my1/2]+1 i=1 i=[mg/2]+1
0<z; <... <2, < 1.

(4)
Further, guided by the symmetry argument, we can reduce the number of variables (and also, the number of
constraints) in problem (4) by half. Indeed, suppose, &' = (2,...,},) is an optimal solution of (4). Then, by
symmetry, & = (1 —a/,,...,1 — ) is an optimal solution of (4) as well. Convexity of the optimal set? of (4)
implies that £ = (&' + £”)/2, each whose entry is defined by the formula x; = (1 + z} — 2], ,;_;)/2 is also an
optimal solution. Since x; + x,4+1—; = 1, hereinafter, we reduce the number of variables to |n/2]. Moreover, for
odd n, x(n/ﬂ = 1/2.
To show that B(n,2) < n/6, we study all cases for (n mod 6).

Case n = 6t:
Consider the constraint of (4) defined by m; = 2t and mgy = 4t.

t 2t 3t 3t 2t
D IETD ST DT DYETORD WIEPAET
i=1 i=t+1 1=2t+1 i=2t+1 i=1

which is equivalent to u + 2 22:1 x; <t. Since all z; > 0, u <t =n/6, and we are done.

Case n = 6t + 1:

Here, we consider two constraints of (4), defined by m; = 2t, mg = 4t+1 and m; = 2t+ 1, mg = 4t, respectively.
They are

t 2t 3t 1 3t 2t
_sz+2 LL'Z'—‘Z !.Ci—g—‘Z(l—iL'i)-i-Z(l—l'i)Zu
=1 1=t+1 1=2t+1 1=2t+2 =1

2The set of optimal solutions
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and

t 2t+1 3t 1 3t 2t
—infz xi—AZ xi—ﬁ—AZ (1—xi)+Z(1—xi)2u.
=1 1=t+2 1=2t+2 1=2t+1 =1

After the equivalent transformation, we obtain the subsystem

t
u+22xi+x2t+1§t+%
=1

1=

t
U+ 23 T+ T — 2@ S E— 1,
=1

7

which implies
t

Bu+6Y i+ <3t+1/2 andu<t+1/6=n/6.
=1

In case n = 6t + 2
we take constraints defined by m; = 2t + 1, mo = 4t + 1 and my = 2t,my = 4t + 2:

t 2t+1 3t+1 3t+1 2t
TS YR DD Y (ERIES Y SR
i=1 i=t+2 i=2t+2 i=2t+2 i=1
t 2t 3t+1 3t+1 241
T S M D Y (ERORD S T
i=1 i=t+1 i=2t+1 i=2t+2 i=1
Transformed .
U+2_Z$i—932t+1 <t
1?1
’U,+2Z£Ei+2$2t+1 <t+1,
i=1
they imply

t
Bu+6) x; <3t+1 ie u<t+1/3=n/6.
=1
Case n = 6t + 3

is similar to the case n = 6t. Here, to obtain the desired bound, it is enough to consider the single constraint
defined by my = 2t + 1 and mo = 4t + 2

t 2t+1 3t+1 1 3t+1 2t+1
_le+z xi—lz xl—E—Z(l—xz)—i—Z(l—xl)Zu (5)
=1 1=t+2 1=2t+2 1=2t+2 =1

Being transformed, (5) becomes
¢

u—i—QZmi—l—xH_l <t+1/2,
i=1
which implies u <t+41/2 =n/6.
In case n =6t +4

we convolve again two appropriate constraints defined by my = 2t + 1, me = 4t 4+ 3 and my = 2t + 2, me = 4t 4 2

t 2t+1 3642 3t+42 241

—in—FZJci— Z T — Z(l—xi)—l—Z(l—xi)zu
i=1 i=t+2 i=2142 i=2t+3 i=1
t+1 2642 3642 3t+42 241

—in—Fin— Z x; — Z(l—xi)—FZ(l—xi)zu,
i=1 i=1+2 i=2t43 i=2t+2 i=1
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which, after the equivalent transformation give the subsystem

t
u+22xi+x2t+2§t+1
i=1
t+1
u+22xi72x2t+2§t
i=1

implying
t
Bu+6Y i+2w1 <3t+2 ie u<t+2/3=n/6
i=1
Finally, in case n = 6t + 5
transforming the constraints defined by my =2t +2,ms =4t +3 and my =2t + 1,mg =4t + 4

t+1 2642 3t+2 1 3t+2 2t+1
_in—i—‘in—‘Z xi—§—lz(1—mi)+2(l—wi)2u

=1 1=t+2 1=2t+3 1=2t+3 1=1

t 2+1 3642 1 3642 2642
_in—l—‘in—‘Z xi_i_,z(l_xi)+z(l_$i)2u

i=1 i=t+2 1=2t+2 1=2t+3 i=1

we obtain the subsystem
t+1
U+ 2w — T2 St4

=1

t
U423 i+ Ty + Togo SEF S,
i=1

?

which, being convolved, gives us
t
Bu+6> mi+5z1 <3t+5/2 = u<t+5/6=n/6.
i=1

Thus, we completely proved point (i) of Theorem for the case of k = 2.

3.3 Attainability

Now, we show that for any n > 12 inequality (2) is tight. Consider the following configuration given by locations
P1,---3D5

b1 P2 Pp3 P4 b5

[ el E e R R ) *

0 1 1 2 1
3 2 3

Figure 2: The configuration

Place n = 4| % | + {%} points at the locations pi, ..., ps with multiplicities presented at Fig. 3

R oL 4
L4) il {3 L1l L%

Figure 3: Placing the points

Since n > 12, the multiplicities of points located at pi,po, ps, and ps are at least 3 and at most 3 points
are located at p3. By the symmetry of the sample obtained, there are two best options to partition it into two
clusters C; = {1,...,|n/4]}, Co ={|n/4| +1,...,n} and C; = {1,...,2|n/4]}, C2 = {2|n/4| +1,...,n} (see
Fig.4).
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Figure 4: Two ways of possible clustering
Let us calculate the cost F'(¢, o) for each option. In the first case
F(gao') = Z |$l - 62|7
1€Co

where ¢3 = py (since n > 12). Therefore,

L R R L L R A TR s L]

F(&,0)

Consider the second case. Here, again c; = p4. Therefore,

n|l ny 1 n
o) =|7)3+{3t5+ 3]
i.e. Theorem is completely proved so as point (ii).
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