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Abstract

In the work an approach to optimal synthesis of control actions in the
systems with distributed parameters is investigated. As an example,
we consider the problem of control of heating a bar at the expense of
controlled source of energy, placed near to one of the ends of the bar.
The current temperature of the controlled energy source is calculated
with depend of temperatures on some defined points of the bar. It is
required to define the optimal locations of controls and the controlled
parameters of feedback, for which the value of the functional which
determines the quality of the controlled heating process will be mini-
mum. Are obtained the formulas for the gradient of the functional in
the work, which allows the numerical solution of the problem.

1 Introduction

In the work an approach to optimal synthesis of control actions in the systems with distributed parameters is
investigated. As an example, we consider the problem of control of heating a bar at the expense of controlled
source of energy, placed near to one of the ends of the bar. The current value of temperature of the controlled
source is calculated with depend of the observed values of the states (temperatures) on some defined points of
the bar. It is required to define the optimal locations of controls and the controlled parameters of feedback, for
which the value of the functional which determines the quality of the controlled heating process will be minimum.

Problems of synthesis of the control in the distributed parameter systems described by differential equa-
tions with partial derivatives are investigated significantly less than lumped parameter systems [Utkin, 1981],
[Levine, 1996], [Vasilev, 2002], [Polyak & Sherbakov, 2002], [Ray, 1981], [Butkovskiy, 1984], [Yeqorov, 2004],
[Sergienko, 2005], [Aida-zade, 2005]. Almost, is not studied the optimization problem of placements of the
points of monitoring on the controlled object and optimization of the measurement moments of time, if the
number of measurements is limited and they can be made only in some discrete timepoints.

In this work the problem of optimization with a feedback is solved on the example of synthesis of boundary
control of the process of heating of the bar: 1) placement of the given number of measurement points; 2)
measurement timepoints in discrete feedback in time; 3) parameters of a synthesizable linear relation of control
from the current values of a state in measurement points. The considered problem is reduced to the problem
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of parametrical optimal control of the process described by a differential equation of parabolic type with the
non-local boundary condition including non-separated intermediate states.

2 Problem Statement

Let’s consider a problem of control of sequential heating of identical bars with same lengths of l
[Tikhonov & Samarskii, 1977] on account of the one of their boundaries:

u′t(x, t) = a2u′′xx(x, t)− λ0[u(x, t)− θ], (x, t)∈Ω = [0, l]×[0, T ], (1)

u′x(0, t) = λ1[u(0, t)− ϑ(t)], t ∈ [0, T ], (2)

u′x(l, t) = −λ2[u(l, t)− θ], t ∈ [0, T ]. (3)

Here u(x, t) - is the temperature of the bar at point x on the moment of time t; θ - is the temperature of
the external environment which is supposed a constant; ϑ(t) - is the temperature of controlled source, which is
piecewise continuous function in time and satisfying to technological restrictions:

g(x, ϑ(t)) = d1 − |ϑ̃d0(t)| ≥ 0, t ∈ [0, T ], (4)

ϑ̃d0(t) = d0 − ϑ(t).

the coefficients a, λ0, λ1, λ2 and the parameters d0, d1 - are given.
It is supposed that the initial temperatures of the heated bar are not defined, but the set Φ of its possible

values is defined as follows:
u(x, 0) = φ = const ∈ Φ, x ∈ [0, l], (5)

with the density function ρΦ(φ). The set of possible initial conditions can be finite:

Φ = {φ1, φ2, . . . , φNφ},

with the given values of probabilities:

pφi = P (φ = φi) ∈ [0, 1], i = 1, . . . , Nφ.

Similarly, temperature of the external environment θ = const also may be not defined accurately, and is
determined by a set of possible values Θ:

θ ∈ Θ, t ∈ [0, T ], (6)

with the given density function ρΘ(θ). It is possible that the set of external temperature is finite:

Θ = {θ1, θ2, . . . , θNθ
},

with the given values of probabilities:

pθj = P (θ = θj) ∈ [0, 1], j = 1, . . . , Nθ.

Duration of the heating process can be as given, and defined on a wide interval of time (as, for example, in
problems of constructioning of regulators), or optimized, as in usual problems of optimal control. In this work
we will assume that duration of the process T is given.

It is required to define the controlled action ϑ(t), at which the given functional reaches a minimum value,
determining the root mean square deviation of the state of process from some given desirable distribution of
temperature U(x) on the bar on average by all admissible external temperatures θ and initial conditions φ, at
the end of time:

J(ϑ) =

∫
Θ

∫
Φ

I(ϑ;φ, θ)ρΦ(φ)ρΘ(θ)dφdθ, (7)

I(ϑ;φ, θ) =

l∫
0

µ(x)[u(x, T ;ϑ, φ, θ)− U(x)]2dx+ ε||ϑ(t)− ϑ0||2L2[0,T ]. (8)
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Here u(x, T ;ϑ, φ, θ) - is the solution of an initial boundary value problem (1)-(3),(5) at admissible initial condition
of u(x, 0) = φ and temperature of the external environment θ; ε, ϑ0 = ϑ0(t) - are the regularization parameters
of the functional; µ(x) ≥ 0 - is the given weight function.

If the set of initial conditions Φ and the set of external temperatures Θ are finite, then instead of (7) will be
used the functional:

J(ϑ) =

Nφ∑
i=1

Nθ∑
j=1

I(ϑ;φ, θ)pφi p
θ
j .

Let measurements of temperature are in some Lx points ξ1, . . . , ξLx ∈ [0, l] of the bar in the heating process
continuously in time

ui(t) = u(ξi, t), i = 1, . . . , Lx, (9)

or on the given Lt + 1 discrete timepoints τs:

uis = u(ξi, τs), i = 1, . . . , Lx, s = 0, . . . , Lt, τ0 = 0. (10)

In the controlled process we will determine the value of the controlled boundary action of ϑ(t) by the results
of the current measurements in controlled points in form of the linear feedback by the state of process. In case
of the continuous feedback (9) we will determine control by the formula [Aida-zade & Abdullayev, 2012]:

ϑ(t, y) =

Lx∑
i=1

ki[u(ξi, t)− zi], t ∈ [0, T ], (11)

where zi - rated value of temperature in i-th point of measurement from which the deviation of current state in
this point influences value of the control; ki - intensification coefficients, i = 1, . . . , Lx. In (11) and further are
used these designations:

ξ = (ξ1, . . . , ξLx), k = (k1, . . . , kLx), z = (z1, . . . , zLx), y = (ξ, k, z), τ = (τ1, . . . , τLx).

It is clear, that function of control (11) is continuous at t ∈ [0, T ].
Let’s assume that the locations of measurement points ξi ∈ [0, l], i = 1, . . . , Lx are not set, also it is required

to optimize the constant parameters zi, ki, i = 1, . . . , Lx defining synthesizable control (11) with a feedback
taking into account a functional (7).

Substituting (11) in a boundary condition (2) we will obtain the non-local (loaded) boundary condition with
non-separated intermediate conditions:

u′x(0, t) = λ1

[
u(0, t)−

Lx∑
i=1

ki[u(ξi, t)− zi]

]
, t ∈ [0, T ]. (12)

In case (10) of discrete observations in time for the state in controlled points ξi, i = 1, . . . , Lx, taking into
account the feedback the boundary controlled action will be defined as follows:

ϑ(t, y) =

Lx∑
i=1

ki[u(ξi, τs)− zi], t ∈ (τs, τs+1], s = 0, . . . , Lt, τLt = T. (13)

In this case synthesizable control is the step function, and its parameters ki, zi, ξi, i = 1, . . . , Lx, make the
same sense like in (11). The boundary condition (2) in case of control (13) will take a form:

u′x(0, t) = λ1

[
u(0, t)−

Lx∑
i=1

ki[u(ξi, τs)− zi]

]
, t ∈ (τs, τs+1], s = 0, . . . , Lt.

Discrete timepoints τs, s = 1, . . . , Lt, both given, and also can be optimized.
In this case mathematical description of the process (1) as follows:

u′t(x, t) = a2u′′xx(x, t)− λ0[u(x, t)− θ], x ∈ [0, l], t ∈ (τs, τs+1], s = 0, . . . , Lt, (14)
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with a condition of a continuity of its state in timepoints of observations τs:

u(x, τs) = u(x, τ−s ) = u(x, τ+s ), (15)

where

τ−s = τs − 0, τ+s = τs + 0.

In case (9) of the continuous observation of heating process the minimized functional (7), (8) will be written
in this form:

J(y) =

∫
Θ

∫
Φ

I(y;φ, θ)ρΦ(φ)ρΘ(θ)dφdθ, (16)

I(y;φ, θ) =

l∫
0

µ(x)[u(x, T ; y;φ, θ)− U(x)]2dx+ ε||y − y0||2R3Lx . (17)

Here u(x, T ; y, φ, θ) - is the solution of an initial boundary value problem (1),(12),(3),(5) at randomly preset
admissible values of parameters of the feedback y = (ξ, k, z), initial condition φ = φ(x) and temperature of the
external environment θ; ε > 0, y0 ∈ R3Lx - are the regularization parameters of functional.

Restriction (4) for the controlled actions ϑ(t) obviously will be replaced with the following restrictions for
synthesizable parameters of feedback control:

0 ≤ ξi ≤ l, i = 1, . . . , Lx, (18)

g(t, y) = d1 − |ϑ̃d0(t, y)| ≥ 0, t ∈ [0, T ], (19)

ϑ̃d0(t, y) = d0 −
Lx∑
i=1

ki[u(ξi, τs)− zi],

in case of the continuous observations, and in case of discrete observations instead of (19) restrictions will take
place:

0 ≤ τs ≤ τs+1 ≤ T, s = 0, . . . , Lt − 1,

g(τs, y) = d1 − |ϑ̃d0(τs; y)| ≥ 0, s = 0, . . . , Lt.

So, synthesis of boundary control of heating process (attemperation) of the bar described by an initial
boundary value problem with not precisely given initial condition and external temperature with the contin-
uous in time, optimized the locations of points of the control (feedback) on the bar, is reduced to the problem
(1),(12),(3),(5),(6),(16)-(19).

3 Formulas for the Numerical Solution of the Problem

For the solution of the problem (1),(12),(3),(16)-(19) syntheses of a finite-dimensional vector of the y ∈ R3Lx

parameters of control like (11) at the continuous observation (9) for the accounting of restriction (19) will be used
the method of penalty functions and the method of gradient projection for restriction (18) for minimization of
penalty function. For concreteness will be used the method of an external penalty, and in this case the functional
(17) will have the form:

Ĩ(y;φ, θ) = I(y;φ, θ) + rIpnt(y),

Ipnt(y) =

T∫
0

{
min(0, g(t, y))

}2

dt,

where r - the penalty coefficient approaches +∞ [Vasilev, 2002].
It will allow to build the iterative sequence

yn+1 = P(18)[y
n − αngradJ(y

n)], n = 0, 1, . . . , (20)
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minimizing the functional J(y) at the preset value of coefficient of the penalty. In (20) the following designations
are used: 3Lx - dimensional vector of the gradient of the target functional (16):

gradJ(y) =

(
∂J(y)

∂ξ
,
∂J(y)

∂k
,
∂J(y)

∂z

)
. (21)

P(18) - the operator of projection on restriction (18) having a prime appearance concerning each of parameters
ξ = (ξ1, . . . , ξLx):

P(18)[ξi] =


0, ξi < 0,

ξi, 0 ≤ ξi ≤ l, i = 1, . . . , Lx,

l, ξi > l,

αn ≥ 0 - the step in the direction of the projected anti-gradient determined in any known way, in particular, by
methods of one-dimensional minimization, providing a monotonicity criterion of iterative process [Vasilev, 2002]:

J(yn+1) ≤ J(yn), n = 0, 1, . . . .

Further, using the method of an increment of arguments [Vasilev, 2002],[Butkovskiy, 1984],[Yeqorov, 2004],
the following formulas are received for the components of gradient (21) of the functional J(y).

∂J(y)

∂ξi
=

∫
Θ

∫
Φ

{
− λ1a

2

T∫
0

ψ(0, t)kiu
′
x(ξi, t)dt+ 2ε(ξi − ξ0i )

}
ρΦ(φ)ρΘ(θ)dφdθ+ (22)

+ 2r

∫
Θ

∫
Φ

{ T∫
0

kiu
′
x(ξi, t)sgn

(
ϑ̃d0(t, y)

)
min

(
0, g(t, y)

)
dt

}
ρΦ(φ)ρΘ(θ)dφdθ, i = 1, . . . , Lx,

∂J(y)

∂ki
=

∫
Θ

∫
Φ

{
− λ1a

2

T∫
0

ψ(0, t)[u(ξi, t)− zi]dt+ 2ε(ki − k0i )

}
ρΦ(φ)ρΘ(θ)dφdθ+ (23)

+ 2r

∫
Θ

∫
Φ

{ T∫
0

[u(ξi, t)− zi]sgn
(
ϑ̃d0(t, y)

)
min

(
0, g(t, y)

)
dt

}
ρΦ(φ)ρΘ(θ)dφdθ, i = 1, . . . , Lx,

∂J(y)

∂zi
=

∫
Θ

∫
Φ

{
λ1a

2

T∫
0

ψ(0, t)kidt+ 2ε(zi − z0i )

}
ρΦ(φ)ρΘ(θ)dφdθ+ (24)

− 2r

∫
Θ

∫
Φ

{ T∫
0

kisgn
(
ϑ̃d0(t, y)

)
min

(
0, g(t, y)

)
dt

}
ρΦ(φ)ρΘ(θ)dφdθ, i = 1, . . . , Lx,

Here the function ψ(x, t) = ψ(x, t; y, φ, θ) is the solution of the following conjugate initial boundary value problem:

ψ′
t(x, t) = −a2ψ′′

xx(x, t) + λ0ψ(x, t), x ∈ (ξi, ξi+1), i = 0, . . . , Lx, t ∈ [0, T ], (25)

ψ(x, T ) = −2µ(x)[u(x, T )− U(x)], x ∈ [0, l], (26)

ψ′
x(0, t) = λ1ψ(0, t), t ∈ [0, T ], (27)

ψ′
x(l, t) = −λ2ψ(l, t), t ∈ [0, T ], (28)

and satisfies following conditions in measurement points ξi ∈ [0, l], i = 1, . . . , Lx

ψ′
x(ξ

+
i , t) = ψ′

x(ξ
−
i , t)− λ1ψ(0, t)ki +

2rki
a2

{
sgn

(
ϑ̃d0(t, y)

)
min

(
0, g(t, y)

)}
, i = 1, . . . , Lx, (29)
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ψ(ξ+i , t) = ψ(ξ−i , t), i = 1, . . . , Lx. (30)

Conjugate equation (25), having included in it a condition (29) with use of a δ-function of Dirac, it is possible
to consider on all length of the bar and to write in the following form:

ψ′
t(x, t) = −a2ψ′′

xx(x, t) + λ0ψ(x, t)− a2λ1ψ(0, t)

Lx∑
i=1

kiδ(x− ξi)+

+2r

{
sgn

(
ϑ̃d0(t, y)

)
min

(
0, g(t, y)

)} Lx∑
i=1

kiδ(x− ξi), (x, t) ∈ Ω.

An approach for numerical solution of the loaded initial boundary value problem (25)-
(30) was offered and investigated in works [Aida-zade, 2004], [Abdullayev & Aida-zade, 2006],
[Aida-zade & Abdullayev, 2014],[Abdullayev & Aida-zade, 2016], [Samarskii, 1989],
[Aida-zade & Bagirov, 2006], [Aida-zade & Abdullayev, 2016].

It is simple to carry out similar calculations concerning the problem of synthesis of control of heating process
(14),(15) of the bar at the discrete time feedback and the corresponding piecewise continuous control action like
(13). In this case the integration by parts needs to be carried out with preliminary splitting an integration on x
on a piece [0, l] on pieces [ξi, ξi+1], i = 0, . . . , Lx and an integration on t on a piece [0, T ] into pieces [τs, τs+1],
s = 0, . . . , Lt. As a result we receive the following formulas for components of a gradient of the functional of
J(y) at the current values of the synthesizable parameters y ∈ R3Lx and for the optimized values of timepoints
of measurements τs, s = 1, . . . , Lt:

∂J(y)

∂ξi
=

∫
Θ

∫
Φ

{
− λ1a

2
Lt∑
s=0

τ−
s+1∫

τ+
s

ψ(0, t)kiu
′
x(ξi, τs)dt+ 2ε(ξi − ξ0i )

}
ρΦ(φ)ρΘ(θ)dφdθ (31)

+ 2r

∫
Θ

∫
Φ

{
Lt∑
s=0

kiu
′
x(ξi, τs)sgn

(
ϑ̃d0(τs, y)

)
min

(
0, g(τs, y)

)
dt

}
ρΦ(φ)ρΘ(θ)dφdθ, i = 1, . . . , Lx,

∂J(y)

∂ki
=

∫
Θ

∫
Φ

{
− λ1a

2
Lt∑
s=0

τ−
s+1∫

τ+
s

ψ(0, t)[u(ξi, τs)− zi]dt+ 2ε(ki − k0i )

}
ρΦ(φ)ρΘ(θ)dφdθ+ (32)

+ 2r

∫
Θ

∫
Φ

{
Lt∑
s=0

[u(ξi, τs)− zi]sgn
(
ϑ̃d0(τs, y)

)
min

(
0, g(τs, y)

)
dt

}
ρΦ(φ)ρΘ(θ)dφdθ, i = 1, . . . , Lx,

∂J(y)

∂zi
=

∫
Θ

∫
Φ

{
λ1a

2
Lt∑
s=0

τ−
s+1∫

τ+
s

ψ(0, t)kidt+ 2ε(zi − z0i )

}
ρΦ(φ)ρΘ(θ)dφdθ+ (33)

− 2r

∫
Θ

∫
Φ

{
Lt∑
s=0

kisgn
(
ϑ̃d0(τs, y)

)
min

(
0, g(τs, y)

)
dt

}
ρΦ(φ)ρΘ(θ)dφdθ, i = 1, . . . , Lx,

∂J(y)

∂τs
=

∫
Θ

∫
Φ

{
− λ1a

2

τ−
s+1∫

τ+
s

ψ(0, t)

Lx∑
i=1

kiut(ξi, τs)dt+ 2ε(τs − τ0s )

}
ρΦ(φ)ρΘ(θ)dφdθ+ (34)

+ 2r

∫
Θ

∫
Φ

{
Lx∑
i=1

kiut(ξi, τs)sgn
(
ϑ̃d0(τs, y)

)
min

(
0, g(τs, y)

)
dt

}
ρΦ(φ)ρΘ(θ)dφdθ, s = 1, . . . , Lt.
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The function ψ(x, t) = ψ(x, t; y, φ, θ) in formulas (31)-(34) is the solution of the following conjugate initial
boundary value problem:

ψ′
t(x, t) = −a2ψ′′

xx(x, t) + λ0ψ(x, t)− a2λ1ψ(0, t)

Lx∑
i=1

kiδ(x− ξi, t− τs)+ (35)

+2r

{
sgn

(
ϑ̃d0(t, y)

)
min

(
0, g(t, y)

)} Lx∑
i=1

kiδ(x− ξi, t− τs), (x, t) ∈ Ω,

ψ(x, T ) = −2µ(x)[u(x, T )− U(x)], x ∈ [0, l], (36)

ψ′
x(0, t) = λ1ψ(0, t), t ∈ [0, T ], (37)

ψ′
x(l, t) = −λ2ψ(l, t), t ∈ [0, T ]. (38)

Here two dimensional generalized function δ(x, t) such that

l∫
0

T∫
0

δ(x, t)dtdx = 1,

and for arbitraries functions f(x, t) integrated at x ∈ [0, l], t ∈ [0, T ] satisfy a condition

l∫
0

T∫
0

f(x, t)δ(x− x̄, t− t̄)dtdx = f(x̄, t̄),

for all x̄ ∈ [0, l], t̄ ∈ [0, T ].
Solution of the conjugate initial boundary value problem (35)-(38) ψ(x, t) = ψ(x, t; y, φ, θ), i = 1, . . . , Lx

satisfies the following conditions: 1) it is continuously differentiable on t and is twice continuously differentiable
on x at t ∈ (τs, τs+1), x ∈ (ξi, ξi+1); 2) at t = τs is continuous on x at x ∈ (ξi, ξi+1); 3) at x = ξi is continuous
on t, and its first derivatives on x, ψ′

x(ξi, t) have a finite gap; 4) points (ξi, τs) are continuity points on x and
have gap t.

Were given numerous computer experiments. Reduction of their results would occupy volume in article. In
general they confirmed the received formulas and effectiveness of the offered approach to numerical problem
solving of synthesis of the concentrated controls in systems of distributed parameters.

4 Conclusion

On the example of synthesis of boundary control process of heating of the bar for control systems of objects
with distributed parameters described by the equations with partial derivatives is considered. Unlike many
other works in this direction, here is formulated the problem definition, in which it is optimized not only the
controlled actions, but also are optimized both of control locations of the given number of points, and timepoints
of measurements at restricted quantity of opportunities of the organization of a feedback. The objective is
brought to a class of problems of parametrical optimal control of distributed parameter systems.

Are received formulas for components of a gradient of the target functional with the aim to applying of efficient
numerical methods of optimization for determining of parameters of control depending on the state of the process
and placement of points of control.

It is simple to extend the considered problem definition and approach to its decision, to other types of
differential equations with partial derivatives and initial boundary conditions describing various evolutionary
(technological, ecological, economic and others) processes.
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