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Abstract

Challenges in control of groups of robots arise from dynamic constraints
which assure the absence of collisions between robots. To solve the
problem of optimal control for the group of robots we use a two-stage
method of synthesis. At the first stage we solve a problem of stabiliza-
tion of each robot in some point of the state space. At the second stage
we search for optimal moving trajectories as sets of points of the state
space at which each robot is stabilized. Optimization criteria contain
conditions of absence of collisions and other phase constraints. For sta-
bilization we use a symbolic regression method. At the second stage to
search for optimal trajectories we use various evolutionary and gradient
algorithms of nonlinear programming. In the example, we considered
a group of three mobile robots. To search for points of optimal trajec-
tories we used four methods: the genetic algorithm, the particle swarm
optimization, the fast gradient descent and the bees algorithm.

1 Introduction

The classical approach to solving the applied problem of optimal control for a mobile robot is to solve successively
two problems. The first one is a control synthesis problem or ensuring stability to the robot relative to some point
of the state space. The second one is the parametric optimal control problem, which consists in finding points
of the state space relative to which the control system, synthesized at the first stage, should ensure stability.
And sequential switching of the detected points in the state space ensures the movement of the robot from the
initial condition to the terminal one, taking into account the phase constraints and the optimal value of the given
quality criterion.

The same approach we apply to the control of a group of robots. When solving problems at both stages, we
use evolutionary computation methods, for the synthesis problem - the symbolic regression, for the problem of
optimal parametric control - evolutionary algorithms.
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2 Problem Statement of Optimal Control of Group of Robots

Consider the problem of optimal control for a group of robots.
Given models of the plants

ẋj = f j(xj ,uj), (1)

where xj ∈ Rnj , xj = [xj
1 . . . x

j
nj
]T is a state vector of the robot j, uj ∈ Uj ⊆ Rmj , uj = [uj

1 . . . u
j
mj

]T is a
control vector of the robot j, Uj is a compact set, j = 1,. . . ,N , N is a number of robots.

Given initial conditions
xj(0) = x0,j , j = 1, . . . , N. (2)

Given terminal conditions
φj
k(x

j(tf )) = 0, k = 1, . . . , lj , lj ≤ nj , (3)

where

tf =

{
t, if t < t+ and φj

k(x
j(t)) = 0, k = 1, . . . , lj , j = 1, . . . N ;

t+, if t = t+,
(4)

t+ is a given time limit of control.
Given static phase constraints

αk(x
j(t)) ≤ 0, k = 1, . . . , r. (5)

To define dynamic phase constraints, we introduce in the set of robot numbers I = {1, 2, . . . , N} a set of
pairs

V = ((i1, j1), (i2, j2), . . . , (iW , jW )), (6)

where ik, jk ∈ I, ik ̸= jk.
Then the dynamic phase constraints determining the conditions of closure of pairs of objects are given by

βr(x
ik(t),xjk(t)) ≤ 0, k = 1, . . . ,W, r = 1, . . . , R, (7)

where W is the number of combinations of N elements taken 2 at a time, W = N !/(2!(N − 1)!) = N(N − 1)/2.
The dynamic phase constraints poses the property of vector commutativity

βr(x
ik(t),xjk(t)) = βr(x

jk(t),xik(t)).

Given a quality functional

J =

∫ tf

0

f0(x
1, . . . ,xN ,u1, . . . ,uN ) dt→ 0, (8)

It is necessary to find a control function that ensures the movement of robots from the given initial states (2)
to the terminal position (3) without violating the phase constraints (5), (7) with the optimal value of the quality
criterion (8).

At the first stage we solve the problem of stabilization

uj = gj(x̃j − xj), (9)

where x̃j is some point of the state space Rnj .
To solve the problem, we use one of the methods of symbolic regression [Diveev, 2015a].
At the second stage we find the set of points of the state space and the parameters of switching between them

X̃j = (x̃j,1, x̃j,2, . . . , x̃j,K , εj), j = 1, . . . , N. (10)

The points found (10) are stabilization points of robots

uj = gj(x̃j,p − xj), (11)

where the index p increases its value over given intervals of time

p← p+ (1− ϑ(tj − t)), tj =← tj + δt(1− ϑ(tj − t)),
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t1 = δt, δt is a given interval of time,

ϑ(A) =

{
1, if A > 0 ;

0, otherwise.

Coordinates of stabilization points are searched simultaneously for all robots, adding penalties to the target
function for violation of phase constraints

J̃ = J + ω1h1 + ω2h2, (12)

where

h1 =

∫ tf

0

r∑
k=1

N∑
j=1

ϑ(αk(x
i(t)))dt, h2 =

∫ tf

0

s∑
k=1

W∑
w=1

ϑ(βk(x
j1(t),xj2(t)))dt.

3 Method of Variational Complete Binary Genetic Programming for Synthesis of
Stabilization System

To solve the problem of control synthesis (9) is finding a multidimensional nonlinear function uj = gj(x̃j − xj)
that ensures the stability of a system of differential equations

xj = f j(xj ,gj(x̃j − xj)) (13)

relative to the point of the state space. We use one of the methods of symbolic regression, the method of
variational complete binary genetic programming.

To build a code of binary genetic programming we use the following basic sets:
- a set of arguments of mathematical expression

F0 = (q1, . . . , qP , x1, . . . , xN ); (14)

- a set of functions with one argument

F1 = (f1,1(z), f1,2(z), . . . , f1,R(z)); (15)

- a set of functions with two arguments

F2 = (f2,1(z1, z2), . . . , f2,S(z1, z2)); (16)

- a set of unit elements for functions with two arguments

E2 = (e1, . . . , eM ). (17)

A set of functions with one argument must include the identity function

f1,1(z) = z. (18)

Every function with two arguments from (16) has a unit element from the set (17), ∀f2,i(z1, z2) ∈ F2 ∃ej ∈ E2

f2,i(ej , z2) = z2, f2,i(z1, ej) = z1, (19)

i ∈ {1, . . . , S}, j ∈ {1, . . . ,M}.
To generate a code of binary genetic programming we combine the set of arguments (14) of mathematical

expression and the set of unit elements (17) into one ordered set

F = (f1 = q1, . . . , fP = qP , fP+1 = x1, . . . , fP+N = xN , fP+N+1 = e1, . . . , fP+N+M = eM ). (20)

We write down mathematical expression in the form of composition of nested functions and arguments of
mathematical expression

y = fα1(fα2(. . . fαK
) . . .) = fα1 ◦ fα2 ◦ . . . ◦ fαK

, (21)

where fαi ∈ F ∪ F1 ∪ F2, i = 1, . . . ,K.
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Figure 1: Complete binary computing tree

Define the inmost nesting depth of an element in the composition. Let the inmost depth is equal L. It means
that we have binary computing tree with level L. It has 2L leaves. We write down mathematical expression in
the form of a complete binary computing tree (see Fig.1)

In the Fig.1 a is an item number from the set F (20), b is an item number from the set F2 (16), u is an item
number from the set F1 (15).

Each level includes numbers of elements from the set F1 and the same numbers of elements from the set F2, and
the last level includes numbers from the set F . If the tree has redundant nodes or edges, then we use a number
of any function with two arguments for nodes, a number of identity function for edges and a number of unit
element for this function with two arguments on the last level. Code of binary variational genetic programming
is an ordered set of numbers of elements from the first, second and other levels of the tree

C = (u1, b1, u2,1, u2,2, b2,1, b2,2, . . . , uL,1, uL,2, . . . , uL,2L , aL,1, aL,2, . . . , aL,2L). (22)

Consider an example. Let we have the following mathematical expression

y = e−qx cos(qx+ sin(x)).

For this mathematical expression, we have sets

F1 = (f1,1(z) = z, f1,2(z) = −z, f1,3(z) = ez, f1,4(z) = cos(z), f1,5(z) = sin(z));

F2 = (f2,1(z1, z2) = z1 + z2, f2,2(z1, z2) = z1z2);

F = (f1 = x, f2 = q, f3 = 0, f4 = 1).

Here f3 = 0 is a unit element for addition and f4 = 1 is a unit element for multiplication.
Write down the mathematical expression in the form of composition of functions from these sets

y = f1,1(f2,2(f1,3(f1,2(f2,2(f1, f2))), f1,4(f2,1(f2,2(f1, f2), f1,5(f1))))).

The nesting depth in our case is three. The code of the mathematical expression is

C = (1, 2, 3, 4, 2, 1, 1, 2, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 3, 2, 1, 1, 3).

Fig.2 shows complete binary computing tree for the equation. To calculation the mathematical expression by
its code, we use an ordered set of real variables with the same cardinal number as the code.

Y = (y1, . . . , y30).

Calculate mathematical expression from the end

Y = (y1, . . . , y14, q, 0, x, 0, q, x, x, 0, q, 0, x, 0, q, x, x, 0);

Y = (y1, . . . , y10, q + 0, x+ 0, xq, x+ 0, q, 0, x, 0, q, x, x, 0, q, 0, x, 0, q, x, x, 0);

Y = (y1, . . . , y6, q,−x, qx, sin(x), q, x, xq, x, q, 0, x, 0, q, x, x, 0, q, 0, x, 0, q, x, x, 0);

Y = (y1, y2, e
−xq, cos(xq + sin(x)), . . .);

Y = (e−xq cos(qx+ sin(x)), e−xq cos(qx+ sin(x)), . . .).
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Figure 2: Complete binary computing tree for the mathematical expression

4 Variational Genetic Algorithm to Search for Optimal Solution

To search for optimal solution, we use a variational genetic algorithm. It uses principle of small variations of the
basic solution [Diveev, 2015b].

Define a small variation of a code of binary analytic programming as an integer vector of two components

w = [w1 w2]
T
, (23)

where w1 is a position in a code, w2 is a new value of the element of the code.
Let

C = (c1, . . . , cK) (24)

is a code of the mathematical expression for level L.
Then

K = 2L+2 − 2, (25)

and we obtain after the variation (23) a new code

w ◦ C = (

w1︷ ︸︸ ︷
c1, . . . , w2, . . . , cK). (26)

The small variation (23) satisfies the following conditions

w1 ∈ {1, . . . , 2L+2 − 2}, (27)

w1 ∈


{1, . . . , |F1|}, if 2i − 1 ≤ w1 ≤ 3 · 2i−1 − 2 ;

{1, . . . , |F2|}, if 3 · 2i−1 − 1 ≤ w1 ≤ 2i+1 − 2 ;

{1, . . . , |F |}, if 3 · 2L − 1 ≤ w1 ≤ 2L+2 − 2.

(28)

where i = 1, . . . , L.
A variational genetic algorithm consists of the following stages.
Set a code of some basic solution

C0 = (c01, . . . , c
0
K).

Generate a set of ordered sets of small variations

Ω = {W1, . . . ,WH},

where Wi is an ordered set of variations (23)

Wi =
[
wi,1, . . . ,wi,l

]
,

wi,j =
[
wi,j

1 wi,j
2

]T
, i = 1, . . . , H, j = 1, . . . , l, l is a set of numbers of variations.

We carry out crossover and mutation on the sets of variations. Select two parents Wi = (wi,1, . . . ,wi,l) and
Wj = (wj,1, . . . ,wj,l), and randomly define a point of crossover k ∈ {1, . . . , l} and exchange tails of the parents

W̃i = (wi,1, . . . ,wi,k−1,wj,k, . . . ,wj,l), W̃j = (wj,1, . . . ,wj,k−1,wi,k, . . . ,wi,l).
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Define randomly a mutation point µ ∈ {1, . . . , l} and generate new variation in this point µ · wi,µ =[
wi,µ

1 wi,µ
2

]T
for both new solutions.

To solve the problem of parametric optimal control, searching for points of the state space X̃j =
(x̃j,1, x̃j,2, . . . , x̃j,Kj , εj), we use evolutionary algorithms that work much better than gradient methods for non-
unimodal objective function as we show on the experiment. In this paper, we use three popular evolutionary
algorithms that are most suitable for solving the parametric optimal control problem: the genetic algorithm
[Goldberg, 1989], the particle swarm optimization [Kennedy & Eberhart, 1995]. [Karpenko & Seliverstov, 2010],
the bees algorithm [Pham et al., 2006], and the grey wolf algorithm [Mirjalili et al., 2014].

All evolutionary algorithms use a set of possible solutions with a given number H of elements in which the
evolution is performed at each iteration a predetermined number W of times to produce new possible solutions.
The solution of the problem is considered to be the best possible solution according to the value of the objective
function in the resulting set.

5 Computational Experiment

Consider the task of optimal control of a group of three mobile robots.
Mathematical models of the control objects are the following

ẋj = uj
1 cos θ

j , ẏj = uj
1 sin θ

j , θ̇j = uj
2, (29)

where [xj yj θj ]T is a vector of state of the robot j, [uj
1 u

j
2]

T is a control vector of the robot j, j = 1, 2, 3.
Given the initial conditions

xj(0) = xj,0, yj(0) = yj,0, θj(0) = θj,0, j = 1, 2, 3. (30)

Given the following constraint on control

u−
i ≤ uj

i ≤ u+
i , i = 1, 2, j = 1, 2, 3. (31)

Given the phase constraint

r∗ −
√
(xj − x∗)2 + (yj − y∗)2 ≤ 0, j = 1, 2, 3, (32)

where x∗, y∗, r∗ are parameters of the phase constraint, r∗ > 0.
Given the terminal conditions

xj(tf ) = xj,f , yj(tf ) = yj,f , θj(tf ) = θj,f , j = 1, 2, 3, (33)

where

tf =

t, if t < t+ and
3∑

j=1

√
(xj(t)− xj,f )2 + (yj(t)− yj,f )2 + (θj(t)− θj,f )2 ≤ ε;

t+, otherwise

(34)

where t+ and ε are given positive values.
Given the dynamic phase constraints

r̃ −
√
(x1 − x2)2 + (y1 − y2)2 ≤ 0, r̃ −

√
(x1 − x3)2 + (y1 − y3)2 ≤ 0, r̃ −

√
(x2 − x3)2 + (y2 − y3)2 ≤ 0. (35)

Given the following quality functional

J = tf +

3∑
j=1

√
(xj(t)− xj,f )2 + (yj(t)− yj,f )2 + (θj(t)− θj,f )2 → min . (36)

Taking into account the phase constraints, the quality functional has the following form

J̃ = tf +
3∑

j=1

√
(xj(t)− xj,f )2 + (yj(t)− yj,f )2 + (θj(t)− θj,f )2+

tf∫
0

3∑
j=1

ϑ(r∗ −
√

(xj − x∗)2 + (yj − y∗)2) + ϑ(r̃ −
√

(x1 − x2)2 + (y1 − y2)2)+

+ϑ(r̃ −
√

(x1 − x3)2 + (y1 − y3)2) + ϑ(r̃ −
√
(x2 − x3)2 + (y2 − y3)2 dt→ min .

(37)
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In the overall functional (37), the error in fulfilling the terminal conditions and the time period, in which any
phase constraints (32), (35) are violated, are added to the time of the control process.

In the computational experiment the parameters of the problem had the following values: x(1)(0) = 10,
y(1)(0) = 10, θ(1)(0) = 0, x(2)(0) = 0, y(2)(0) = 10, θ(2)(0) = 0, x(3)(0) = 5, y(3)(0) = 10, θ(3)(0) = 0, u−

1 = −10,
u−
2 = −10, u+

1 = 10, u+
2 = 10, x1,f = 0, y1,f = 0, θ1,f = 0, x2,f = 10, y2,f = 0, θ2,f = 0, x3,f = 5, y3,f = 0,

θ3,f = 0, x∗ = 5, y∗ = 5, r∗ = 3, r̃ = 2, t+ = 2.8, ε = 0.01, δt = 0.7.
At the first stage, the problem of synthesis of control by the method of variational complete binary genetic

programming for one robot was solved. As a result, the following control was obtained

ui =


u−
i , if ũi < u−

i ;

u+
i , if ũi > u+

i ; i = 1, 2,

ũi, otherwise,

(38)

where
ũ1 = sgn(sgn(A)(exp|A| − 1)) ln(| exp |A| − 1|+ 1), ũ2 = B + C,

A = sgn(ln |q33(q2 − q32)|+
√
1 + exp(q3))× (exp |ln|q33(q2 − q32)|+

√
1 + exp(q3))×

×sgn(∆x− sgn(∆y)(exp |∆y| − 1)sgn(∆θ))× ln(∆x− sgn(∆y)(exp |∆y| − 1)sgn(∆θ)|+ 1),

B = sgn(q3∆θ)(exp |q3∆θ| − 1) +

(
µ(∆θ) +

1− exp(∆y/∆x)

1 + exp(∆y/∆x)

)−1

,

C = sgn(q32∆y(∆x+∆y))
√
|q32∆y(∆x+∆y)| × sgn(sgn(∆θ)(exp |∆θ| − 1)(q3 − q33))×

×(ln |(exp |∆θ| − 1)(q3 − q33)|+ 1) + µ(∆x∆y),

∆x = xf − x,∆y = yf − y,∆θ = θf − θ, q1 = 0.84180, q2 = 0.65527, q3 = 2.45020.

The obtained control (38) is a nonlinear function uj
i = gji (x

j,1 − xj , yj,1 − yj , θj,1 − θj), i = 1, 2, j = 1, 2, 3,
that depends on the coordinates of the vector of the state of the robot j, j = 1, 2, 3, and ensures the stability of
the system of differential equations (29) with respect to the point [xj,1 yj,1 θj,1]T .

At the second stage we solve the problem of parametric optimal control by evolutionary algorithms. It is
necessary to find the coordinates of the points [xj,1 yj,1 θj,1]T , [xj,2 yj,2 θj,2]T , j = 1, 2, 3, which are together
with the terminal point [xj,f yj,f θj,f ]T the stabilization points of the system (29). Switching from points
[xj,1 yj,1 θj,1]T to points [xj,2 yj,2 θj,2]T and from points [xj,2 yj,2 θj,2]T to points [xj,f yj,f θj,f ]T is performed
at specified time moments t1 = 1s, t2 = 2s and the points found should provide the minimum value of the
functional (37).

When solving the problem of parametric optimal control, the parameters of evolutionary algorithms were
chosen so that the total number of calculations of the objective function was approximately the same. The
results of the calculations are given in Table 1. For comparison, the problem was also solved by the algorithm
of multipoint fast gradient descent, and the best solution of 48 starts was taken. The table shows values of the
functional (37) for each of the 10 tests and the number of calculations of the functional in each test. The table
contains: GA – genetic algorithm, PSO – particle swarm optimization, BA – bee algorithm, GW – the grey wolf
algorithm, MFGD – multipoint fast gradient descent. The last line of the table shows the average values for ten
tests.

From the results of the computational experiments it follows that the tested evolutionary algorithms find
solutions with approximately the same values of the objective function, and much better than the solutions
found by the fast gradient descent. The best solution found is J̃ = 1.9241:

[x1,1 y1,1 θ1,1]T = [0.08539 3.1936 − 0.0469]T , [x2,1 y2,1 θ2,1]T = [5.7851 7.8697 0.5353]T ,

[x3,1 y3,1 θ3,1]T = [0.0015 1.4369 0.1729]T , [x1,2 y1,2 θ1,2]T = [0.7282 1.5034 − 0.0294]T ,

[x2,2 y2,2 θ2,2]T = [10.0000 0.5002 0.0927]T , [x3,2 y3,2 θ3,2]T = [9.4238 3.1071 − 0.7933]T .
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Table 1: Results of Computational Experiments

GA PSO MFGD BA GW

2.2117 64600 2.8918 65602 4.9758 86626 2.8746 65838 2.0115 65026
2.2424 64616 2.3665 65602 6.1991 82530 2.8751 65838 2.0028 65026
2.4058 65314 2.8514 65602 6.5167 74338 2.8744 65838 2.1668 65026
2.5942 65350 2.8702 65602 5.7414 94818 2.8740 65838 2.2147 65026
2.8727 65458 2.2850 65602 5.7305 80482 2.8720 65838 1.9924 65026
2.5462 65332 2.8459 65602 4.7807 96866 2.8965 65838 2.0120 65026
2.3855 65204 2.8459 65602 5.8009 84578 2.8681 65838 2.0333 65026
2.3068 65214 2.4346 65602 6.1118 86626 2.8681 65838 2.1706 65026
2.1633 65602 2.8943 65602 6.2203 84578 2.8729 65838 2.1312 65026
2.6650 65556 2.3971 65602 5.8471 90722 2.8689 65838 1.9241 65026

2.4394 65225 2.6733 65602 5.7924 86216.4 2.8745 65838 2.0659 65026

Figure 3: Optimal trajectories of movement of robots
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