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Abstract

We present recent advances in nonlinear optimization, which have been
obtained based on p-regularity theory, successfully developing for the
last years. The main result of this theory gives a detailed descrip-
tion of the structure of the zero set of an irregular nonlinear mapping.
We illustrate the theory with an application in different branches of
optimization. Amongst the applications, the construction of p-factor
operator is used to construct numerical methods for solving degenerate
optimization problems and p-order necessary and sufficient optimality
conditions are formulated. The reducibility of inequality-constrained
optimization problems to the equality constrained optimization prob-
lems is proved in the framework of p-regularity theory. Moreover, the
connection between singular problems and nonlinear problems is shown.

1 Introduction

This work concerns the problem of solving a nonlinear equation of the form

F (x) = 0, (1)

or optimization problem
minφ(x), F (x) = 0, (2)

where F : X → Y is a sufficiently smooth mapping from a Banach space X to a Banach space Y . Of course,
the solution to many interesting nonlinear problems can be cast in this form and there have been many works
devoted to this problem. The purpose of this paper is to present some of our own work and that of others
in this area in a coherent way, which has hitherto been scattered throughout various references, as well as
giving a number of new results. This paper is based on [Tretyakov, 1984], [Brezhneva & Tretyakov, 2007] and
[Prusinska & Tretyakov, 2016].

We separate nonlinear mappings F and problems of the form (1) into two classes, called regular and irregular.
Roughly speaking, regular problems are those to which implicit function theorem arguments can be applied and
the irregular ones are those to which it cannot, at least not directly.
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2 Goal of the Present Contribution

In this work, we show how to apply p-regularity theory, also known as factor-analysis of nonlinear mappings to
the description and investigation of singular mappings and, in addition, to develop methods for finding solutions
to related singular problems. In particular, we show how these ideas apply to some specific situations, such as
optimization problems.

2.1 The Regular Case

Fix a point x∗ ∈ X and suppose that F : X → Y is C1. It is well known that if F is regular at x∗, i.e.,

Im F ′(x∗) = Y, (3)

then the properties of the linear approximation of F locally correspond to the properties of the mapping F , since
the mapping F can be locally linearized by a local diffeomorphism; that is, by a nondegenerate transformation
of coordinates. Namely, there exist a neighborhood U of the point 0 and a C1 mapping φ : U → X such that
φ(0) = x∗, φ′(0) = IX , (the identity map on X), and

F (φ(x)) = F (x∗) + F ′(x∗)x (4)

for all x ∈ U . If the regularity condition (3) is not satisfied, then there is no such correspondence in general.
There exist numerous problems where the linear approximation of F is not enough to describe the properties

of the mapping. For example, there are essential nonlinear mappings, i.e., mappings whose local linearization
does not give a good approximation. We formalize this as follows.

Definition 1
Let V be a neighborhood of x∗ in X. A C2 mapping F : V → Y is referred to as essentially nonlinear at the
point x∗, if there exists a perturbation of the form F̃ (x∗ + x) = F (x∗ + x) + ω(x), where ∥ω(x)∥ = o(∥x∥),
such that there does not exist any C1 nondegenerate transformation of coordinates φ(x) : U → X such that

φ(0) = x∗, φ′(0) = IX and (4) holds with φ and F̃ .

Definition 2
We say the mapping F is singular (or degenerate, abnormal) at x∗ if it fails to be regular; that is, its derivative
is not onto:

Im F ′(x∗) ̸= Y. (5)

2.2 Essential Nonlinearity and Singular Maps

The following Theorem establishes the relationship between these two notions.

Theorem 1
Suppose F : V → Y is C2 and that x∗ is a solution of (1). Then F is essentially nonlinear at the point x∗ if and
only if F is singular at the point x∗.

Consider the following singular optimization problem

minϕ(x), (6)

subject to
F (x) = 0, (7)

where F : X → Y, X, Y – Banach spaces, and ϕ : X → R, F ∈ Cp+1(X), ϕ ∈ C2(X) and at the solution point x∗

we have
Im F ′(x∗) ̸= Y. (8)

2.3 Description of the Solution Set. Lyusternik Theorem.

If operator F ′(x∗) is nonsingular then T1M(x∗) = KerF ′(x∗), where T1M(x∗) is a tangent cone to the set
M = {x ∈ X : F (x) = F (x∗) = 0} at the point x∗.
If operator F ′(x∗) is singular then T1M(x∗) ̸= Ker F ′(x∗). For example for F (x) = x2

1 − x2
2 + o(∥x∥2), the

solution of F (x) = 0 is x∗ = 0 and F ′(0) = 0. Hence Ker F ′(0) ̸= R2. Moreover T1M(0) =

(
t
t

)
∪
(

t
−t

)
.
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2.4 Optimality Conditions. Lagrange Theorem

If F ′(x∗) ·X = Y then there exists λ∗ ∈ Y ∗ such that ϕ′(x∗) = F ′(x∗)∗ · λ∗.

Let us ϕ(x) = x2
1 + x3, F (x) =

(
x2
1 − x2

2 + x2
3

x2
1 − x2

2 + x2
3 + x2x3

)
. Here x∗ = (0, 0, 0)T and ϕ′(0) =

 0
0
1

,

F ′(0) =

(
0 0 0
0 0 0

)
but ϕ′(0) ̸= F ′(0)T · λ.

2.5 Newton method for Singular Equations

Consider in general the problem of solving nonlinear equation (1) where F : X → Y, X, Y – B-spaces in general
case, and F ∈ Cp+1(X), p ∈ N. Let x∗ solution point to (6), i.e. F (x∗) = 0. We will consider the singular case,
i.e. F ′(x∗) is singular.

For X = Rn, Y = Rn it means that matrix F ′(x∗) is degenerate.

Example 1.

F (x) =

(
x1 + x2

x1x2

)
, (9)

F : R2 → R2, where x∗ = (0, 0)T solution to (8) and

F ′(0) =

(
1 1
0 0

)
is singular at x∗ = (0, 0)T .

Newton method

xk+1 = xk − {F ′(xk)}−1F (xk) (10)

k = 0, 1, 2, 3, . . . .
Let x0 = (x1

0, x
2
0)

T and x0 ∈ Uε(0), ε > 0 sufficiently small. Then we have for k = 1

x1 =
1

x1
0 − x2

0

(
−x1

0x
2
0

x1
0x

2
0

)
. (11)

For x1
0 = x2

0 we obtain @{F ′(x0)}−1, so it is unapplicable.

But even ever ∃{F ′(x0)}−1, say for x0 = (t+ t3, t)T , we have x1 =

(
−1

t − t
1
t + t

)
and ∥x1−0∥ ≈ 1

t → ∞, t → 0.

If t = 10−5 then ∥x1 − 0∥ ≈ 105 and we have rejecting effect.

2.6 Newton Method for Unconditional Optimization Problems

Consider

min
x∈Rn

ϕ(x)

ϕ(x) = x2
1 + x2

1x2 + x4
2

and

xk+1 = xk − {ϕ′′(xk)}−1ϕ′(xk),

x∗ = (0, 0)T , n = 2 at the initial point, x0 = (x01, x02)
T where x01 = x02

√
6(1 + x02),

ϕ′′(x0) =

(
2 + 2x02 2x02

√
6(1 + x02)

2x02

√
6(1 + x02) 12x2

02

)
, det ϕ′′(x0) = 0, ̸ ∃{ϕ′′(x0)}−1.
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2.7 Modified Lagrange Function Method (Augment Function Method)

Consider the following constrained optimization problem

minϕ(x) (12)

gi(x) ≤ 0, i = 1,m (13)

and modified Lagrange function of the following form

LE(x, λ) = ϕ(x) +
1

2

m∑
i=1

λ2
i gi(x)

w = (x, λ)

G(w) =

 ∇ϕ(x) +
m∑
i=1

λ2
i∇gi(x)

D(λ)g(x)

 = 0n+m (14)

G′(w) =

 ∇2ϕ(x) +
m∑
i=1

λ2
i∇2gi(x) (g′(x))TD(λ)

D(λ)g(x) D(g(λ))

 ,

where D(u) := diag{ui}, i = 1, . . . ,m, u ∈ Rm.
If at the solution point of (14) w∗ = (x∗, λ∗), gi(x

∗) = 0 and λ∗
i = 0 then G′(w∗) is singular.

2.8 Elements of p-regularity Theory

Let us recall the basic constructions of p-regularity theory which is used in solving of singular problems.
The construction of the p-factor-operator. Suppose that the space Y is decomposed into a direct sum

Y = Y1 ⊕ . . .⊕ Yp, (15)

where Y1 = Im F ′(x∗), Z1 = Y. Let Z2 be closed complementary subspace to Y1 (we assume that such closed
complement exists), and let PZ2 : Y → Z2 be the projection operator onto Z2 along Y1. By Y2 we mean the
closed linear span of the image of the quadratic map PZ2F

(2)(x∗)[·]2. More generally, define inductively,

Yi = span Im PZi
F (i)(x∗)[·]i ⊆ Zi, i = 2, . . . , p− 1,

where Zi is a chosen closed complementary subspace for (Y1 ⊕ . . . ⊕ Yi−1) with respect to Y, i = 2, . . . , p and
PZi : Y → Zi is the projection operator onto Zi along (Y1 ⊕ . . .⊕ Yi−1) with respect to Y, i = 2, . . . , p. Finally,
Yp = Zp.

The order p is chosen as the minimum number for which (15) holds. Let us define the following mappings

Fi(x) = PYiF (x), Fi : X → Yi i = 1, . . . , p,

where PYi : Y → Yi is the projection operator onto Yi along (Y1 ⊕ . . .⊕ Yi−1 ⊕ Yi+1 ⊕ . . .⊕ Yp) with respect
to Y, i = 1, . . . , p.

Definition 3
The linear operator Ψp(h) ∈ L(X,Y1 ⊕ . . .⊕ Yp), h ∈ X, h ̸= 0

Ψp(h) = F ′
1(x

∗) + F ′′
2 (x

∗)h+ . . .+ F (p)
p (x∗)[h]p−1,

is called the p-factor operator.

Definition 4
We say that the mapping F is p-regular at x∗ along an element h, if

Im Ψp(h) = Y.

565



Definition 5
We say that the mapping F is p-regular at x∗ if it is p-regular along any h from the set

Hp(x
∗) = {

p∩
k=1

KerkF
(k)
k (x∗)} \ {0},

where k-kernel of the k-order mapping F
(k)
k (x∗) is as follows

KerkF
(k)
k (x∗) = {ξ ∈ X : F

(k)
k (x∗)[ξ]k = 0}.

For a linear surjective operator Ψp(h) : X 7→ Y between Banach spaces we denote by {Ψp(h)}−1 its right
inverse. Therefore {Ψp(h)}−1 : Y 7→ 2X and we have

{Ψp(h)}−1(y) = {x ∈ X : Ψp(h)x = y} .

We define the norm of {Ψp(h)}−1 via the formula

∥{Ψp(h)}−1∥ = sup
∥y∥=1

inf{∥x∥ : x ∈ {Ψp(h)}−1(y)}.

We say that {Ψp(h)}−1 is bounded if ∥{Ψp(h)}−1∥ < ∞.

The following theorem gives a description of a solution set in degenerate case.

Theorem 2 (Generalized Lyusternik Theorem) Let X and Y be Banach spaces and U be a neighborhood
of x∗ ∈ X. Assume that F : X→Y, F ∈ Cp(U) is p-regular at x∗. Then

T1M(x∗) = Hp(x
∗).

We now give another version of the theorem.
To state the result, we shall denote by dist(x,M), the distance function from a point x ∈ X to a set M :

dist(x,M) = inf
y∈M

∥x− y∥, x ∈ X.

Theorem 3. Let X and Y be Banach spaces, and U be a neighborhood of a point x∗ ∈ X. Assume that
F : X → Y is a p-times continuously Fréchet differentiable mapping in U and satisfies the condition of strong
p-regularity at x∗. Then there exist a neighborhood U ′ ⊆ U of x∗, a mapping ξ 7→ x(ξ) : U ′ → X, and constants
δ1 > 0 and δ2 > 0 such that F (ξ + x(ξ)) = F (x∗),

∥x(ξ)∥X ≤ δ1

p∑
i=1

∥fi(ξ)− fi(x
∗)∥Yi

∥ξ − x∗∥i−1
(16)

and ∥x(ξ)∥X ≤ δ2
∑p

i=1 ∥fi(ξ)− fi(x
∗)∥1/iYi

for all ξ ∈ U ′.

Consider our example

F (x) =

(
x2
1 − x2

2 + x2
3

x2
1 − x2

2 + x2
3 + x2x3

)
here x∗ = (0, 0, 0)T , and

T1M(0) = Span


 1

−1
0

 ∪ Span


 1

1
0


F ′(0) = 0

Ker2F ′′(0) = Span


 1

−1
0

 ∪ Span


 1

1
0

 .

Let h = (1, 1, 0)T then ImF ′′(0)h = R2.
It means that the mapping F (x) is 2-regular at x∗ = 0 and

Ker2F ′′(0) = H2(0) = T1M(0).
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2.9 Optimality Conditions for p-Regular Optimization Problems

We define p-factor Lagrange function

Lp(x, λ, h) = φ(x) +

(
p∑

k=1

F
(k−1)
k (x)[h]k−1, λ

)
,

where λ ∈ Y ∗ and

L̄p(x, λ, h) = φ(x) +

(
p∑

k=1

2

k(k + 1)
F

(k−1)
k (x)[h]k−1, λ

)
.

Definition 6
The mapping F is called strongly p-regular at the point x∗ if there exists γ > 0 such that

sup
h∈Hγ

∥∥∥{Ψp(h)}−1
∥∥∥ < ∞

where

Hγ =

{
h ∈ X :

∥∥∥F (k)
k (x∗)[h]k

∥∥∥
Yk

≤ γ, i = 1, p, ∥h∥ = 1

}
.

Let us recall the following basic theorems of the p-regularity theory.

Theorem 4. (Necessary and sufficient conditions for optimality) Let X and Y be Banach spaces,
φ ∈ C2(X), F ∈ Cp+1(X), F : X → Y, φ : X → R. Suppose that h ∈ Hp(x

∗) and F is p-regular along h at the
point x∗. If x∗ is a local solution to the problem (6)–(7) then there exist multipliers, λ∗(h) ∈ Y ∗ such that

Lp′x(x∗, λ∗(h), h) = 0. (17)

Moreover, if F is strongly p-regular at x∗, there exist α > 0 and a multiplier λ∗(h) such that (17) is fulfilled and

L̄pxx(x∗, λ∗(h), h)[h]2 ≥ α∥h∥2. (18)

for every h ∈ Hp(x
∗), then x∗ is a strict local minimizer to the problem (6)–(7).

Example 2. Consider the problem

x2
2 + x3 → min,

F (x) =

(
x2
1 − x2

2 + x2
3

x2
1 − x2

2 + x2
3 + x2x3

)
= 0.

(19)

It is easy to verify that the point x∗ = 0 is a local minimum to problem (19).
For x∗ = 0, we have that F ′(0) = 0 is singular.

Ker2F ′′(0) = Span


 1

−1
0

 ∪ Span


 1

1
0


Consider the element h = (1, 1, 0)T .
Since ImF ′′(0)h = R2. It means that the mapping F (x) is 2-regular at x∗ = 0 along h. Consider the 2-factor-
Lagrange function with λ0 = 1. After some transformations we obtain

L2(x, λ(h), h) = x2
2 + x3 + α(x1 − x2) + β(x1 − x2 + x3),

where λ(h) = (λ1(h), λ2(h)) and λ1(h) = (0, 0)T , λ2(h) = (α, β)T . Let us calculate the coefficients α and β.
Using the equality L′

2 x(x
∗, λ(h), h) = 0 we obtain α = 1 and β = −1. Putting the coefficients into we have

L̄2(x
∗, λ(h), h) =

2

3
x2
2.

Therefore,

L̄′′
2 xx(x

∗, λ(h), h)[h]2 =
4

3
> 0.

It means that x∗ is a strict local minimizer to (19).
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2.10 P -Factor Method

Based on p-factor operator construction we give new method for solving nonlinear
equations

F (x) = 0, F : Rn → Rn (20)

where matrix F ′(x∗) is singular at the solution point x∗. Let Y1 = ImF ′(x∗), P̄1 = PY ⊥
1
,

Y2 = Im
(
F ′(x∗) + P̄1F

′′(x∗)h
)
, P̄2 = PY ⊥

2
,

Yk+1 = Im

F ′(x∗) +
k∑

i=1

P̄iF
′′(x∗)h+

∑
i2>i1

i1,i2∈{1,k}

P̄i2 P̄i1F
(3)(x∗)[h]2 + ...+

∑
ik>...>i1

i1,...,ik∈{1,k}

P̄ik ...P̄i1F
(k)(x∗)[h](k−1)

 ,

P̄k+1 = PY ⊥
k+1

, k = 2, p− 1.

Then the principal scheme of p-factor method the following

xk+1 = xk − {F ′(xk) + P1F
′′(xk)h+ ...+ Pp−1F

(p)(xk)h
p−1}−1·

·(F (xk) + P1F
′(xk)h+ ...+ Pp−1F

(p−1)(xk)h
p−1), (21)

where P1 =
p−1∑
i=1

P̄i, P2 =
∑

i2>i1
i1,i2∈{1,p−1}

P̄i2 P̄i1 , Pk+1 =
∑

ik>...>i1
i1,...,ik∈{1,p−1}

P̄ik ...P̄i1 , k = 2, p− 1 and h some fixed

element, ∥h∥ = 1 and Pi, i = 1, p− 1 matrices of orthoprojection such that in solution point x∗.

(F (x∗) + P1F
′(x∗)h+ ...+ Pp−1F

(p−1)(x∗)hp−1) = 0 (22)

and p-factor matrix
F ′(x∗) + P1F

′′(x∗)h+ ...+ Pp−1F
(p)(x∗)hp−1 (23)

is nonsingular (p-regular along h). It means that P̄p = 0, Yp = Rn.
Consider the case p = 2 for our example

xk+1 = xk − {F ′(xk) + P1F
′′(xk)h}−1 · (F (xk) + P1F

′(xk)h) (24)

where P1 is ortoprojection on to Im(F ′(x∗))⊥ and element h, (∥h∥ = 1), such that 2-factor matrix

F ′(x∗) + P1F
′′(x∗)h (25)

nonsingular (2-regular along h). Then at the solution point will be hold

F (x∗) + P1F
′(x∗)h = 0

and we can solve the following equation
F (x) + P1F

′(x)h = 0 (26)

where by virtue of (25) x∗ will be locally unique solution.

Theorem 5. Let F ∈ Cp(Rn) and there exists h, ∥h∥ = 1 such that p-factor matrix (23) is nonsingular. Then
for any x0 ∈ Uε(x

∗) (ε > 0 sufficiently small) will be fulfilled for scheme (21)

∥xk+1 − x∗∥ ≤ c∥xk − x∗∥2, k = 0, 1, 2, . . . . (27)

where c > 0 – constant. N

Example 3.

F (x) =

(
x1 + x2

x1x2

)
, x∗ = (0, 0)T and F ′(0) =

(
1 1
0 0

)
is singular at x∗ = (0, 0)T . The scheme of 2-factor

method is the following
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xk+1 = xk − {F ′(xk) + P1F
′′(xk)h}−1 · (F (xk) + P1F

′(xk)h) (28)

where P1 =

(
0 0
0 1

)
, h = (1,−1)T . Then

F ′(xk) + P1F
′′(xk)h =

(
1 1

x2
k − 1 x1

k + 1

)
and

xk+1 = xk −
(

1 1
x2
k − 1 x1

k + 1

)−1(
x1
k + x2

k

x1
kx

2
k + x2

k − x1
k

)
=

=

(
1 1

x2
k − 1 x1

k + 1

)−1(
0

x1
kx

2
k

)
.

It means, that ∥xk+1 − 0∥ ≤ c∥xk − 0∥2.

Example 4
min
x∈R2

x2
1 + x2

1x2 + x4
2

F (x) = φ′(x) =

(
2x1 + 2x1x2

x2
1 + 4x3

2

)
, x∗ = (0, 0)T , F is 3-regular at x∗ along h = (1, 1)T

F ′(0) + P1F
′′(0)h+ P2F

(3)(0)[h]2 = φ′′(0) + P1φ
(3)(0)h+ P2φ

(4)(0)[h]2 =

(
2 −11
2 11

)
is non singular!

Here P̄1 =

(
0 0
0 1

)
, P̄2 = 1

2

(
1 −1
−1 1

)
, P1 = P̄1 + P̄2 = 1

2

(
1 −1
−1 3

)
P2 = P̄2P̄1 = 1

2

(
0 −1
0 1

)
.

Consider the 3-factor scheme

xk+1 = xk −
(
φ′′(0) + P1φ

(3)(0)[h] + P2φ
(4)(0)[h]2

)−1

·
(
φ′(xk) + P1φ

′′(xk)[h] + P2φ
(3)(xk)[h]

2
)
.

Let us denote xk =

(
x1

x2

)
. Then

∥xk+1 − 0∥ =

∥∥∥∥∥xk −
(

2 −11
2 11

)−1(
2x1 − 11x2 + 2x1x2 − 6x2

2

2x1 + 11x2 + x2
1 + 18x2

2 + 4x3
2

)∥∥∥∥∥ =

=
1

44

∥∥∥∥( 11x2
1 + 132x2

2 + 22x1x2 + 44x3
2

2x2
1 + 48x2

2 − 4x1x2 + 8x3
2

)∥∥∥∥ ≤ 10∥xk − 0∥2.
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