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Abstract

This paper addresses the nonconvex optimization problem with the cost
function and constraints given by d.c. functions. The original problem
is reduced to a problem without inequality and equality constraints
by means of the exact penalization techniques. Furthermore, the pe-
nalized problem is presented as a d.c. minimization problem. For
the latter problem we develop the global optimality conditions (GOCs)
which reduce the nonconvex optimization problem to a family of convex
problems. In the paper the properties of the GOCs are investigated.
The effectiveness of the GOCs is demonstrated by examples.

1 Statement of the Problem

Consider the following problem:

(P) :

f0(x) := g0(x)− h0(x) ↓ min
x

, x ∈ S,

fi(x) := gi(x)− hi(x) ≤ 0, i ∈ I = {1, . . . ,m},
fi(x) := gi(x)− hi(x) = 0, i ∈ E = {m+ 1, . . . , l};


where the functions gi(·), hi(·), i ∈ {0} ∪ I ∪ E , are convex on IRn, so that the functions fi(·), i ∈
{0}∪ I ∪E , are the d.c. functions[Floudas et al., 2004, Horst et al., 1993, Tuy, 1995, Hiriart-Urruty et al., 1993,
Hiriart-Urruty, 1985]. Recall that any continuous function can be approximated by d.c. function with any
desirable accuracy. Let all functions in (P) be smooth.

Besides, assume that the set S ⊂ IRn is convex and compact.
Furthermore, suppose that the set Sol(P) of global solutions to Problem (P), Sol(P) := {x ∈ F | f0(z) =

V(P)} and the feasible set F of Problem (P), F := {x ∈ S | fi(x) ≤ 0, i ∈ I, fi(x) = 0, i ∈ E}, are non-empty.
Besides, in what follows the optimal value V(P) of Problem (P) is supposed to be finite:

V(P) := inf(f0,F) := inf
x
{f0(x) | x ∈ F)} > −∞.
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2 Exact Penalty

Introduce the penalty function W (·) for Problem (P) as follows

W (x) := max{0, f1(x), . . . , fm(x)}+
∑
j∈E

|fj(x)| . (1)

Further, along with Problem (P), consider the penalized problem without the inequality and equality con-
straints:

(Pσ) : θσ(x) , f0(x) + σW (x) ↓ min
x

, x ∈ S, (2)

where σ ≥ 0 is a penalty parameter.
As well-known, if z ∈ Sol(Pσ), and z is feasible in (P), i.e. z ∈ F , then z turns out to be a global solution

to (P): z ∈ Sol(P) [Nocedal et al., 2006, Bonnans et al., 2006, Izmailov et al., 2014, Hiriart-Urruty et al., 1993,
Clarke, 1983, Burke, 1991]. On the other hand, the inverse implementation does not, in general, hold.

Hence, the crucial moment of the exact penalization (EP) theory is the existence of a threshold value σ∗ ≥ 0
of the penalty parameter σ ≥ 0 for which Sol(Pσ) ⊂ Sol(P) ∀σ ≥ σ∗. In other words, for σ ≥ σ∗ Problems
(P) and (Pσ) turn out to be equivalent in the sense that Sol(P) = Sol(Pσ) (see Chapt. VII, Lemma 1.2.1
in [Hiriart-Urruty et al., 1993]).

On the other hand, the existence of the threshold exact penalty parameter σ∗ ≥ 0 allows us to solve a
single unconstrained problem instead of a sequence of unconstrained problems with σk → ∞ [Byrd et al., 2012,
Di Pillo et al., 2012, Di Pillo et al., 2015].

Recall that under various constraint qualification (CQ) conditions (MFCQ, etc. [Robinson, 1976, Burke, 1991,
Zaslavski, 2013, Kruger, 2015, Kruger et al., 2014]), the error bound properties [Nocedal et al., 2006,
Bonnans et al., 2006, Izmailov et al., 2014, Robinson, 1976, Burke, 1991, Han et al., 1979, Kruger, 2015,
Kruger et al., 2014], the metric sub-regularity conditions, calmness of constraints systems can help to prove
the existence of the exact penalty threshold σ∗ ≥ 0 even for a global solution [Clarke, 1983, Burke, 1991,
Cococcioni et al., 2017, Zaslavski, 2013, Di Pillo et al., 2012, Di Pillo et al., 2015].

Assume that some regularity condition is fulfilled that ensures the existence of such threshold value σ∗ ≥ 0 of
penalty parameter.

3 Global Optimality Conditions (GOC)

Before all, we will prove that the cost function θσ(·) of Problem (Pσ) is a d.c. function, i.e. it can be represented
as a difference of convex functions. Indeed, since

|fi(x)| = max{gi(x)− hi(x), hi(x)− gi(x)} ± [gi(x) + hi(x)] = 2max{gi(x), hi(x)} − [gi(x) + hi(x)],

it can be readily seen that

θσ(x)
△
= f0(x) + σmax{0, fi(x), i ∈ I}+ σ

∑
i∈E

|fi(x)| = Gσ(x)−Hσ(x), (3)

where
Hσ(x) := h0(x) + σ

[∑
i∈I

hi(x) +
∑
j∈E

(gj(x) + hj(x))
]
, (4)

Gσ(x) := θσ(x) +Hσ(x) = g0(x) + σmax
{∑

j∈I

hj(x);
[
gj(x) +

j ̸=i∑
j∈I

hj(x)
]
, i ∈ I

}
+

+ 2σ
∑
i∈E

max{gi(x);hi(x)}. (5)

Obviously, Gσ(·) and Hσ(·) are both convex functions [Hiriart-Urruty et al., 1993, Rockafellar et al., 1998,
Rockafellar, 1970], so that the function θσ(·) is a d.c. function, as claimed. Besides, it is clear, that for a
feasible (in (P)) point z ∈ S we have

W (z)
△
= max{0, f1(z), . . . , fm(z)}+

∑
i∈E

|fi(z)| = 0,
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and therefore, for ζ := f0(z), we obtain

θσ(z)=f0(z) + σW (z) = f0(z) = ζ. (6)

Theorem 3.1. Let a point z ∈ F be a solution to Problem (P) and σ ≥ σ∗ > 0, where σ∗ ≥ 0 is a threshold
value of penalty parameter.

Then, for every pair (y, β) ∈ IRn × IR such that

Hσ(y) = β − ζ, (7)

the following inequality holds
Gσ(x)− β ≥ ⟨∇Hσ(y), x− y⟩ ∀x ∈ S. (8)

Remark 3.1. It is not difficult to note that Theorem 3.1 reduces the solution of the nonconvex Problem (Pσ)
to an investigation of the family of the convex (linearized) problems

(PσL(y)) : Φσy(x) := Gσ(x)− ⟨∇Hσ(y), x⟩ ↓ min
x

, x ∈ S, (9)

depending on the pairs (y, β) ∈ IRn+1 which fulfill the equation (7) (or, what is the same),

(PσL(y)) : Φσy(x) := Gσ(x)− ⟨∇h0(y) + σ
[∑
i∈I

∇hi(y) +
∑
j∈E

(∇gj(y) +∇hj(y))
]
, x⟩ ↓ min

x
, x ∈ S. (9′)

It is worth noting that the linearization is carried out with respect to the “unified” nonconvexity of Problem
(P) accumulated by the function Hσ(·) (see (P)–(1) and (4)) that includes all the functions hi(·), i ∈ {0} ∪
I ∪ E , gj(·), j ∈ E , which generate all nonconvexity in Problems (P) and (Pσ) (according to the representations
(3)–(5)).

Hence, the verification of the principal inequality (8) can be performed by solving the linearized problems
(PσL(y)) and varying the parameters (y, β) satisfying (7). Besides, we have to verify (8), which can be rewritten
as follows

V(PσL(y)) ≥ β − ⟨∇Hσ(y), y⟩ =: N(y, β), (8′)

where V(PσL(y)) is the optimal value of the linearized problem (PσL(y))

Remark 3.2. Suppose, we found a triple (y, β, u), (y, β) ∈ IRn × IR, Hσ(y) = β − ζ, u ∈ S, such that the
principal inequality (8) is violated, i.e.

0 > Gσ(u)− β − ⟨∇Hσ(y), u− y⟩,

Then, using the equation (7) and the convexity of the function Hσ(·), we derive

0 > Gσ(u)− β −Hσ(u) +Hσ(y) = θσ(u)− ζ = θσ(u)− θσ(z),

or, θσ(z) > θσ(u), z ∈ F , u ∈ S. Hence, the point z can not be a solution to (Pσ).
Moreover, if z and u are feasible in (P), z, u ∈ F , and since W (u) = 0, we obtain f0(z) = θσ(z) > θσ(u) =

f0(u). It means that z /∈ Sol(P) and u ∈ F is a vector better than z ∈ F .
Hence, the conditions (7)–(8) of Theorem 3.1 possess the classical constructive (algorithmic) property (once

the conditions are violated, one can find a feasible vector which is better than the point under investigation).

Let us demonstrate the effectiveness of this property by an example.

Example 3.1. Consider the problem ([Nocedal et al., 2006, Example 12.20])

f0(x) = 4x1x2 ↓ min
x

, x ∈ IR2,

f1(x) = x2
1 + x2

2 − 1 = 0.

}
(10)

It is easy to see that the point z =
(√

2
2 ,

√
2
2

)⊤
, ζ := f0(z) = 2, is feasible: f1(z) = 0 and satisfies the KKT-

equation ∇f0(z) + λ1∇f1(z) = 0 ∈ IR2 with λ1 = −2. However, it is not clear whether the point z is a global
solution. In order to decide on it, let us apply Theorem 3.1.
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Since f0(x) = 4x1x2 = (x1 + x2)
2 − (x1 − x2)

2, it can be readily seen that

g0(x) = (x1 + x2)
2, h0(x) = (x1 − x2)

2, g1(x) = x2
2 + x2

2, h1(x) ≡ 1. (11)

Besides, let set σ := 3 > |λ1| = 2. Then, according to (4) and (5), we have

Hσ(x) = h0(x) + σ
[
g1(x) + h1(x)

]
= (x1 − x2)

2 + 3(x2
1 + x2

2 + 1),
Gσ(x) = g0(x) + 2σmax{g1(x);h1(x)} = (x1 + x2)

2 + 6max{x2
1 + x2

2; 1}.

}
(12)

Let choose, now, y = (−1, 0.5)⊤ which is unfeasible in the problem (10). Then we have

Hσ(y) = (y1 − y2)
2 + 3(y21 + y22 + 1) = 9

and, as a consequence, we derive β = Hσ(y) + ζ = 9 + 2 = 11. Furthermore, let choose a feasible point
u = (−0.6; 0.8)⊤, u2

1 + u2
2 = 1, and compute Gσ(u) (see (12))

Gσ(u) = (u1 + u2)
2 + 6max{u2

1 + u2
2; 1} = (0.2)2 + 6 = 6.04.

Besides, it is not difficult to compute that u− y = (−0.6; 0.8)⊤ − (−1; 0.5)⊤ = (0.4; 0.3)⊤,

∇Hσ(y) = 2(y1 − y2; y2 − y1)
⊤ + 6(y1, y2)

⊤ = 2(4y1 − y2; 4y2 − y1)
⊤ = (−9; 6)⊤.

Whence we immediately derive that

⟨∇Hσ(y), u− y⟩ = ⟨(−9; 6)⊤, (0.4; 0.3)⊤⟩ = −3.6 + 1.8 = −1.8,
β + ⟨∇Hσ(y), u− y⟩ = 11− 1.8 = 9.2 > 6.04 = Gσ(u).

The latter inequality means that in Problem (10) the principal inequality (8) of Theorem 3.1 is violated.

Hence, the point z =
(√

2
2 ,

√
2
2

)⊤
is not a global solution to the problem (10) in virtue of Theorem 3.1.

Indeed, it is confirmed by the inequality f0(u) = −0.48 < ζ = f0(z) = 2.

Let consider now possible relations between the conditions (7)–(8) of Theorem 3.1 and the classical optimality
conditions, in particular, the KKT theorem for Problem (P). For this purpose, suppose that a feasible (in
Problem (P)) point z satisfies the conditions (7)–(8) of Theorem 3.1.

First, let set in (7)–(8) y = z. Then we immediately derive that β := Hσ(z) + ζ = Gσ(z).
Therefore, from (8) it follows the validity of the inequality

Gσ(x)−Gσ(z) ≥ ⟨∇Hσ(z), x− z⟩ ∀x ∈ S.

It implies that the point z (satisfying (7)–(8)) is a solution to the linearized convex problem as follows

(PσL(z)) : Gσ(x)− ⟨∇Hσ(z), x⟩ ↓ min
x

, x ∈ S.

Since (PσL(z)) is a convex problem, then the following inclusion is, as well-known, the necessary and sufficient
optimality condition for z being a solution to (PσL(z)):

0n ∈ ∂Gσ(z)−∇Hσ(z) +N(z | S). (13)

When S = IRn, the inclusion (13) implies

∇Hσ(z) ⊂ ∂Gσ(z), (13′)

which is the necessary optimality condition for Problem (Pσ) with S = IRn [Hiriart-Urruty, 1985,
Strekalovsky, 2003]. Thus, the conditions (7)–(8) of Theorem 3.1 entail the well-known optimality con-
ditions (13) and (13′) [Nocedal et al., 2006, Bonnans et al., 2006, Izmailov et al., 2014, Floudas et al., 2004,
Strekalovsky, 2013, Strekalovsky, 2014, Strekalovsky, 2017, Strekalovskiy, 2003] for Problem (Pσ).

Nevertheless, the natural question arises on whether it is possible to find a triple (y, β, u) ∈ IR2n+1, satisfying
(7) and which violates the inequality (8).
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Theorem 3.2. Assume, that a feasible in Problem (P) point z is not an ε-solution to (P), i.e.

inf(f0,F) + ε = V(P) + ε < ζ := f0(z). (14)

In addition, let a vector v ∈ IRn satisfy the following inequality

(H) : f0(v) > ζ − ε. (15)

Then, for any penalty parameter σ > 0 one can find a tuple (y, β, u), (y, β) ∈ IRn+1, u ∈ F , the following
conditions take place

(a) Hσ(y) = β − ζ + ε;
(b) Gσ(y) ≤ β,
(c) Gσ(u)− β < ⟨∇Hσ(y), u− y⟩.

 (16)

Now let us demonstrate the effectiveness of the GOCs of Theorems 3.1 and 3.2 on another example.

Example 3.2. Consider the problem

f0(x) = x2
1 − 2x2

2 + x2
3 ↓ min

x
, x ∈ IR3,

f1(x) = x2
3 − x2

1 − x2
2 = 0, f2(x) = 4x1x3 = 0, −2 ≤ x2 ≤ 1.

}
(17)

It can be readily seen that the point z = (0, 0, 0)⊤, ζ := f0(z) = 0 is a degenerate KKT point in the problem
(17), since f1(z) = f2(z) = 0, ∇f0(z) = ∇f1(z) = ∇f2(z) = (0, 0, 0)⊤. However, it is not clear whether the
KKT vector z is a global solution to (17) or not. Therefore, let us apply Theorems 3.1 and 3.2 to clarify the
situation.

It is easy to see that in the problem (17) we have g0(x) = x2
1 + x2

3, h0(x) = 2x2
2, g1(x) = x2

3, h1(x) =
x2
1 + x2

2. In addition, using the d.c. representation f2(x) = 4x1x3 = (x1 + x3)
2 − (x1 − x3)

2, we obtain
g2(x) = (x1 + x3)

2, h2(x) = (x1 − x3)
2.

For simplicity of presentation, we will apply the denotation S = [−2, 1] for bounding the variable x2 ∈ IR, but
in the investigation of the linearized problems we use two inequality constraints x2 ≤ 1, x2 + 2 ≥ 0.

Hence, according to (3)–(5) we have

Hσ(x) = h0(x) + σ
∑
j∈E

[gj(x) + hj(x)] =

= 2x2
2 + σ[(x2

3 + x2
1 + x2

2) + (x1 + x3)
2 + (x1 − x3)

2] = 2x2
2 + σ[3x2

1 + 3x2
3 + x2

2];
(18)

Gσ(x) = g0(x) + 2σ
∑
j∈E

max{gj(x);hj(x)} =

= x2
1 + x2

3 + 2σ[max{x2
3;x

2
1 + x2

2}+max{(x1 + x3)
2; (x1 − x3)

2}].
(19)

Let us set σ := 1, y = ( 16 , 1,
7
6 )

⊤ /∈ F . Then we obtain

∇Hσ(x) = (0, 4x2, 0)
⊤ + σ(6x1, 2x2, 6x3)

⊤ = 6(x1, x2, x3)
⊤,

besides, ∇Hσ(y) = (1, 6, 7)⊤.
In order to find a suitable point in u ∈ F , consider the linearized problem as follows

(PσL(y)) : Gσ(x)− ⟨∇Hσ(y), x⟩ = x2
1 + x2

3 + 2max{x2
3;x

2
1 + x2

2}+
+ 2max{(x1 + x3)

2; (x1 − x3)
2} − ⟨(1, 6, 7)⊤, x⟩ ↓ min

x
, x ∈ IR3, −2 ≤ x2 ≤ 1. (20)

It is not difficult to see that the problem (20) amounts to the following one [Hiriart-Urruty, 1998]

x2
1 + x2

3 + 2γ1 + 2γ2 − x1 − 6x2 − 7x3 ↓ min
(x,γ)

,

x2
3 ≤ γ1, x2

1 + x2
2 ≤ γ1, γ = (γ1, γ2) ∈ IR2, (x1 + x3)

2 ≤ γ2, (x1 − x3)
2 ≤ γ2,

x2 ≤ 1, x2 + 2 ≥ 0, x ∈ IR3.

 (20′)
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Besides, as above, it can be readily seen that the Slater condition holds in (20′). Furthermore, the solution
vector (u, γ∗) ∈ IR5 satisfies the complementarity conditions as follows

η1(x
2
3 − γ1) = 0 = η2(x

2
1 + x2

2 − γ1), η3
[
(x1 + x3)

2 − γ2
]
= 0 = η4

[
(x1 − x3)

2 − γ2
]
,

µ1(x2 − 1) = 0 = µ2(x2 + 2).

}
(21)

and, besides, we have for γ∗ = (γ∗1, γ∗2)
⊤

γ∗1 = max{u2
3;u

2
1 + u2

2 }; γ∗2 = max{ (u1 + u3)
2; (u1 − u3)

2 }. (22)

In addition, since the Lagrange function for the problem (20′) has thee following form

L(x, γ; η1, η2, η3, η4, µ1, µ2) = x2
1 + x2

3 + 2γ1 + 2γ2 − x1 − 6x2 − 7x3+

+ η1(x
2
3 − γ1) + η2(x

2
1 + x2

2 − γ1) + η3
[
(x1 + x3)

2 − γ2
]
+ η4

[
(x1 − x3)

2 − γ2
]
+ µ1(x2 − 1)− µ2(x2 + 2), (23)

(an, besides, (η1, η2, η3, η4, µ1, µ2) ∈ IR6
+), then the KKT system contains the following equa-

tions [Rockafellar, 1993]
∂L(u, γ∗)

∂γ1
= 2− η1 − η2 = 0, i.e. η1 + η2 = 2,

∂L(u, γ∗)
∂γ2

= 2− η3 − η4 = 0, i.e. η3 + η4 = 2;

 (24)

(a)
∂L(u, γ∗)

∂x1
= 2u1 − 1 + 2η2u1 + 2η3(u1 + u3) + 2η4(u1 − u3) = 0,

(b)
∂L(u, γ∗)

∂x2
= −6 + 2η2u2 + µ1 − µ2 = 0,

(c)
∂L(u, γ∗)

∂x3
= 2u3 − 7 + 2η1u3 + 2η3(u1 + u3) + 2η4(u3 − u1) = 0.


(25)

It can be readily seen that the point u = (0, 1, 1)⊤ satisfies the KKT conditions (21),(24),(25) with
γ∗ = (γ∗1, γ∗2)

⊤ = (1, 1)⊤ (see (22)). Indeed, the equation (25) with u = (0, 1, 1)⊤ take the form

(a) 2η3 − 1− 2η4 = 0, or η3 − η4 = 1
2 ,

(b) 2η2 − 6 + µ1 − µ2 = 0,
(c) 2− 7 + 2η1 + 2η3 + 2η4 = 0.

 (25′)

Then, from (25′) (a) we derive η3 = 5
4 , η4 = 3

4 . Further, from (25′) (c) with the help of (24) it follows that
2η1 = 5− 2(η3 + η4) = 1, i.e. η1 = 1

2 , η2 = 3
2 .

On the other hand, thanks to (21) we see that µ2 = µ2(u) = 0.Then (25′) (b) provides that µ1 = 3. Hence,
the point u = (0, 0, 1)T really is a KKT point in (20′), and, due to convexity of problem (20′), u is also a solution
to (20) ((u, γ∗)

T is a solution to (20′)).
Now let us verify whether the principal inequality (8) of Theorem 3.1 holds with (y, β, u) where

β = Hσ(y) + ζ, ζ = f0(z) = 0. First compute Hσ(y) with y =

(
1

6
, 1,

7

6

)
: Hσ(y) = 3(y21 + y22 + y23) = 7

1

6
.

Thus, β = Hσ(y) = 7
1

6
. Furthermore, β + ⟨∇H(y), (u − y)⟩ = 5 5

6 . On the other hand, it can be readily

computed, that Gσ(u) = u2
1 + u2

3 + 2γ∗1 + 2γ∗2 = 5.

Therefore, we have Gσ(u) = 5 < 5
5

6
= β + ⟨∇H(y), u− y⟩.

Hence, the principal inequality (8) of Theorem 3.1 is violated, and, as a consequence, the degenerate KKT
point z = (0, 0, 0)T is not a global solution to the problem (17).

Moreover, by solving the linearized problem (PL(y)) with y =

(
1

6
, 1,

7

6

)T

, we constructed the feasible in (17)

point u = (0, 1, 1)T , which is better than z, since f0(u) = −1 < ζ0 = f0(z) = 0.
Furthermore, it can be readily seen, as above, that the point u = (0, 1, 1)T is also a KKT point in the original

problem (17), but not a global solution to (17). Moreover we can show this fact, by repeating the same procedure
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of finding another pair (y1, β1), such that Hσ(y1) = β1 − ζ1, where ζ1 := f0(u) = f0(z1), z1 := u, and by solving
the linearized problem (PL1) := (PL(y1)), which provides the point u1 such that

f0(u1) =: ζ2 < ζ1 = f0(u) = f0(z1).

So, by the procedure described above we give a hint how may be constructed one of the simplest global search
procedures which is able to escape stationary points and local solutions in non-convex Problem (P).

4 Sufficient Optimality Conditions

Now we turn to the question on when the conditions (7)–(8) of Theorem 3.1 become sufficient for a feasible point
being a global solution to nonconvex Problem (P).

Theorem 4.1. Suppose that for a feasible in Problem (P) point z, ζ := f0(z), the condition (H)–(15) is fulfilled.
In addition, let some penalty parameter σ > 0 be given. Finally, assume that for every pair (y, β) ∈ IRn × IR,
satisfying the relation

(a) Hσ(y) = β − ζ + ε, (b) Gσ(y) ≤ β, (26)

the following inequality holds
Gσ(x)− β ≥ ⟨∇Hσ(y), x− y⟩ ∀x ∈ S. (27)

Then, the point z ∈ F turns out to be an ε-global solution to Problem (Pσ) as well as to Problem (P).
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