
2

Two Dimensional Visualization of Software Metrics
TIBOR BRUNNER and ZOLTÁN PORKOLÁB, Ericsson Ltd.

Successful software systems are under continuous change. Bug-fixing, adding new features modify or extend additional code to

the existing code base. Under these activities we must be aware of software quality, avoid its degradation and alert when a major
code refactoring seems to be inevitable. For this purpose we must continuously collect quality related data from the software:

static analysis results, software metrics and other statistics. However, data have to be analyzed and presented in a way that

the architects and designers could comprehend the information in various context: e.g. related to the number of changes on the
code, with the relative distribution of the issues and in connection with the complexity of the given module.In this paper we

show how to collect some of these key quality indicators and how to present them in a clear manner so architects and developers

can overview the quality factors organized by nested components of the program in a multidimensional way. This method allows
programmers to reason about correctness of the architecture, identify critical components and decide about necessary actions,

like refactoring the architecture.

Categories and Subject Descriptors: D.2.8 [Metrics]: Complexity measures—Visualization; H.1.2 [Models and Principles]:
User/Machine Systems—Human Information Processing

General Terms: Software metrics, Human Factors

Additional Key Words and Phrases: Software complexity, Two dimensional, Visualization

1. INTRODUCTION

Static program analysis is a methodology which means the observation of a software without its exe-
cution. Static analysis techniques target testing, correctness checking, comprehending and other pur-
poses [Crawford et al. 1985; Gyimothy et al. 2005]. CodeCompass [Ericsson 2017] is a static analysis
framework which gives opportunity to perform various kind of analysis on the source code and present
the results in different visualization methods. The architecture of this framework consists of two or-
thogonal layers. On a vertical layer it has a classical server-client architecture, since the statically
collected information is presented by a web server towards a GUI or other querying client scripts. And
on the horizontal layer the server and the client are implemented as independent plug-ins.

Plug-ins provide the different functionalities of the framework. These can examine the code base
from a wide range of aspects: some of them are language parsers which collect the named entities of
a given language (variables, functions, classes, etc.) for further processing, others are inspecting the
version control history of the project, yet others provide additional data from external sources, like
third party databases.

In this paper first in Section 2 we overview the main features of CodeCompass, an open source code
comprehension framework. We discuss the most important software metrics we measure in Section 3.

Author’s address: Tibor Brunner, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117; email:
bruntib@caesar.elte.hu; Zoltán Porkoláb, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117;
email: gsd@caesar.elte.hu

Copyright c©by the paper’s authors. Copying permitted only for private and academic purposes.
In: Z. Budimac (ed.): Proceedings of the SQAMIA 2017: 6th Workshop of Software Quality, Analysis, Monitoring, Improvement,
and Applications, Belgrade, Serbia, 11-13.9.2017, Also published online by CEUR Workshop Proceedings (http://ceur-ws.org,
ISSN 1613-0073)



2:2 • T. Brunner and Z. Porkoláb

To collect measurement data we use plug-ins for CodeCompass. We introduce them in Section 4. Our
paper concludes in Section 5.

2. CODECOMPASS

Bugfixing or new feature development requires a confident understanding of all details and conse-
quences of the planned changes. For long existing stems, where the code base have been developed
and maintained for decades by fluctuating teams, original intentions are lost, the documentation is
untrustworthy or missing, the only reliable information is the code itself. Code comprehension of such
large software systems is an essential, but usually very challenging task. As the method of compre-
hension is fundamentally different from writing new code, development tools are not performing well.

During the years, different programs have been developed with various complexity and feature set
for code comprehension but none of them fulfilled all requirements. CodeCompass [Ericsson 2017] is
an open source framework developed by Ericsson Ltd. and the Eötvös Loránd University, Budapest
to help understanding large legacy software systems. Based on the LLVM/Clang compiler infrastruc-
ture, CodeCompass gives exact information on complex C/C++ language elements like overloading,
inheritance, the (read or write) usage of variables, possible calls on function pointers and the virtual
functions – features that various existing tools support only partially.The wide range of interactive vi-
sualizations extends further than the usual class and function call diagrams; architectural, component
and interface diagrams are among the few of the implemented graphs.

To make comprehension more extensive, CodeCompass is not restricted to the source code. It also
utilizes build information to explore the system architecture as well as version control information
when available: git commit history and blame view are also visualized. Clang Static Analyzer results
are also integrated to CodeCompass. Although the tool focuses mainly on C and C++, it also supports
Java and Python languages.

A plug-in can introduce a model schema. CodeCompass establishes a connection to a relational
database system and provides an Object Relational Mapping (ORM) tool to handle the persistence
of ordinary C++ objects. Besides relational databases the given plug-in can also store its data in an
arbitrary alternative database system or even in a single text file. The plug-in can provide a parser
which fills this database. Currently CodeCompass contains many different type of parsers. Some of
them parse the source code of different programming languages, others gather source control infor-
mation from the Git database, or do text-search indexing. In this paper we will discuss the Metrics
plug-in which provides metrics-related data in details in Section 3. The dataset collected by the parser
is transfered to the client by a web server. This server listens on a port and routes the client queries
based on the given URL to the single plug-ins. There are well defined interfaces between the client
and the server, or the plug-in itself can also define its own API, since as an independent module of the
framework only the plug-in has information about the structure of the stored dataset. The API can
be accessed by a client program through a Remote Procedure Call (RPC) methodology. CodeCompass
provides a web based GUI which enables different visualizations of the provided information. The GUI
is also expansible by the plug-ins using JavaScript modules.

Having a web-based, pluginable, extensible architecture, the CodeCompass framework can be an
open platform to further code comprehension, static analysis and software metrics efforts. CodeCom-
pass also a good starting point to develop a Language Server Protocol Clang Daemon [Microsoft 2017]
prototype.

3. METRICS

Metrics are some quantitative measurements of a software. These are aiming to describe a project
based on a given perspective [Fenton 1991].



Two Dimensional Visualization of Software Metrics • 2:3

3.1 Lines of Code

Maybe the most important metric is the Lines of Code. This is a simple way of describing the size
of a project. There are subversions of this metric which give a more subtle picture: we can count the
number lines which contain only comments, we can omit blank lines and we can compute pure source
lines separately. This metric is independent from the programming language it is applied on.

3.2 Cyclomatic complexity

A more sophisticated way of measuring complexity of the software is Cyclomatic or McCabe metric [Mc-
Cabe 1976]. This measures the linearly independent paths in a control flow. This metric can be easily
applied on procedural languages, since it is determined by the number of decisions in the program.
Note that this is also the number of parts the planar graph of the control-flow diagram divides the sur-
face. Unfortunately this metric does not make distinction between the nested and sequential branches,
though intuitively nested loops or conditionals are considered more complex than sequential ones.

3.3 Tight coupling

There are metrics which reflect on the architecture of the program on a higher level. Different types of
Coupling can be defined which indicate how much the modules are independent from each other [Chi-
damber and Kemerer 1994; Henderson-Sellers 1996]. E.g. data coupling is tight when much informa-
tion is shared between the modules via procedure parameters or global variables, or control coupling
is tight when the module is controlling the flow of another by instructing it what to do, etc.

3.4 Runtime metrics

Not only static time metrics can be defined but also runtime ones which can be collected during pro-
gram execution. These are like execution time and load time measurements or coverage metrics which
show the ratio of the source code covered by a test suite and the amount of uncovered parts.

3.5 Number of bugs metrics

CodeCompass supports the compile time analysis of the project. This way the before-mentioned met-
rics can be collected. But it can also invoke external tools to gather quantitative descriptors of mod-
ules. LLVM/Clang is a compiler infrastructure which parses source codes in C++ language, builds its
Abstract Syntax Tree (AST) which contains semantic information too. This enables programmers to
run several checks on the program. Static Analyzer and Clang Tidy are two tools inside Clang which
discover typical programming issues and misuses of the language. Some of these checks are simple
enough so only consideration of the AST is sufficient: using namespace is strongly contraindicated in a
header file. Its existence can be easily checked by inspecting the AST. Some others need path sensitive
examination of the source: we can find division by zero or null pointer dereferences by following the
control flow and note the possible values of the divisor or the pointer respectively. The technique used
here is called symbolic execution which means the interpretation of the source code. Note that this is
still a static analysis technique despite it has information about the symbolic values of variables and
more complex expressions.

CodeChecker aims to collect the bug findings of these Clang tools and to store them in a database.
The bugs can be queried through a public API. This way CodeCompass can access the number of errors
committed in the source code. This gives a metric which describes the quality of a module.

4. METRICS PLUG-IN IN CODECOMPASS

In this section we describe the Metrics plug-in of CodeCompass from the database layout and the
parser through the service to the GUI.



2:4 • T. Brunner and Z. Porkoláb

4.1 Database layout

Originally CodeCompass was developed as a code comprehension tool for large code bases. Scalability
was always an important aspect since large-scale projects are not rare in industrial environment. This
is the reason why not the whole AST is stored in the database. It turned out that for most tasks in
code comprehension storing the named entities (classes, functions, variables, etc.) is sufficient. These
are enough for navigating through the source code and inspect its regions.

The metrics differ from this in the sense that not only named language elements may possess metrics
but files too. For example we can take the Lines of Code metrics for functions, classes and for files as
well. In CodeCompass we chose a visualization method which works on the granularity of directories
and source files. Thus in the database the following fields take place:

id. Unique identifier of the metric.
file. Identifier of the file to which the metric belongs.
metric. Unsigned value of the metric.
type. The type of the metric, like McCabe, Lines of Code, Number of Bugs, etc.

4.2 Parser

Usually it is the parser’s job to collect all the information which is presented by the web service. How-
ever practically sometimes the service has enough information to answer some queries by computing
the result on-the-fly. We decided that Lines of Code and McCabe metrics are computed while parsing
the project. One reason is that the amount of information to store is proportional to the number of
files which requires much less space compared to the other tables of the database (e.g. the AST node
descriptor tables). The other reason is that some metrics are dependent on the programming language.
Although it would be a good approximation of McCabe metrics to count the number of if, while, for,
etc. keywords in a source file which introduce a control structure, but the answer would not be precise
in case of comments or string literals containing these keywords. It is more convenient to use a lan-
guage parser to build the AST and to count the control structures in it. However the disadvantage of
this solution is that technically we loose the language independence, since building the AST requires
a language parser added as a plug-in in CodeCompass.

4.3 Service

The main role of service layer is to serve the client. The question is that how much logic should the
service perform; most of the times simply reading the database is sufficient but sometimes it is more
convenient to accomplish a quick computation of which the result is not worth to store at parsing time.
Another case when it is advantageous to entrust the service by doing the job is when the information
is stored in a separate database. This is the case at CodeChecker where the checker results, i.e. the
specific bugs of the source code are stored in an external database which can be accessed via another
web interface. In CodeCompass we give the opportunity to visualize as many kind of metrics as many
can be collected either in parsing time or in the service. Thus the service of Metrics plug-in provides one
API function for gathering a specific metric for a given file: int getMetrics(FileId, Metric type).

4.4 Graphical User Interface

CodeCompass provides a web-based user interface which can be opened in a browser. This enables us
to create any spectacular visualization using the modern JavaScript frameworks and libraries. This
also helps to achieve the largest user base, since no thick client application is required for browsing
analysis results. In the literature we can find a big variety of visualization methods [Langelier et al.
2005]. Many times these methods are aiming to represent several dimensions in one picture which



Two Dimensional Visualization of Software Metrics • 2:5

requires independent views. For this purpose the 3D space can be used [Wettel and Lanza 2008], or
the texture of the diagram elements [Holten et al. 2005]. A common visualization for software metrics
is the Treemap which means separate regions filling a surface and indicating the quantity by the area
of a region [Balzer et al. 2005]. As for the metrics’ visualization we chose such a two-dimensional
Treemap representation. In this view the source code hierarchy is visualized as rectangular boxes.
Each box belongs to a directory or a file in the current folder. Those which belong to a directory can be
clicked which event triggers a zooming animation which leads into the content of that directory. This
view is two-dimensional, because the different metrics can be assigned either to the size of a box or to
its color. For instance it can be set that the more lines of code is contained by a file, the bigger its size
is. Or the more bugs are found in a specific directory, the bluer its color is.

In the picture below we can see an example of metrics’ usage. In this example the CodeCompass
source code itself is parsed and analyzed. The used metrics are the lines of code in size dimension
and the number of bugs in color dimension. In the first image we can see the content of the service
directory. The largest subdirectory with LOC metrics is core-api since it has the biggest rectangle in
the top left corner. The second largest is language-api, etc. In codechecker-api folder we can see a blue
rectangle which indicates that it has a subdirectory with at least one found bug. By clicking on this
rectangle we get the second picture which navigates towards include directory where the actual file
(codeCheckerDBAccess.h) with a found bug can be seen.

Fig. 1. Screenshot of metrics view in CodeCompass.

5. CONCLUSION

In this paper we discussed a new approach to collect and visualize metrics data for large scale software
systems. Our solution is implemented as a plug-in of the CodeCompass open source software compre-
hension platform. The parser plug-in collects the required data into a database, and the CodeCompass



2:6 • T. Brunner and Z. Porkoláb

server provides data for the clients as a service. The web-based graphical user interface is aimed to
show various two-dimensional visualizations to reviel connections between the various components of
the software system.

REFERENCES

Michael Balzer, Oliver Deussen, and Claus Lewerentz. 2005. Voronoi treemaps for the visualization of software metrics. SoftVis
’05 Proceedings of the 2005 ACM symposium on Software visualization (2005), 165–172.

Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object oriented design. IEEE Transactions on software
engineering 20, 6 (1994), 476–493.

S.G. Crawford, A.A. McIntosh, and D. Pregibon. 1985. An analysis of static metrics and faults in C software. Journal of Systems
and Software 5, 1 (1985), 37 – 48. DOI:http://dx.doi.org/10.1016/0164-1212(85)90005-6

Ericsson. 2017. CodeCompass: a code comprehension framework. (2017). Retrieved June 1, 2017 from https://github.com/
Ericsson/CodeCompass

Norman E Fenton. 1991. Software metrics: a rigorous approach. (1991).
Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. 2005. Empirical validation of object-oriented metrics on open source software

for fault prediction. IEEE Transactions on Software engineering 31, 10 (2005), 897–910.
Brian Henderson-Sellers. 1996. Object-Oriented Metrics. Measures of Complexity. (1996).
D. Holten, R. Vliegen, and J.J. van Wijk. 2005. Visual Realism for the Visualization of Software Metrics. Visualizing Software

for Understanding and Analysis, 2005. VISSOFT 2005. 3rd IEEE International Workshop (2005).
Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. 2005. Visualization-based Analysis of Quality for Large-scale Soft-

ware Systems. ASE ’05 Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering
(2005), 214–223.

J. McCabe, Thomas. 1976. A Complexity Measure. IEEE Transactions on Software engineering 2, 4 (1976), 308–320.
Microsoft. 2017. Language Server Protocol. (2017). Retrieved June 1, 2017 from https://github.com/Microsoft/

language-server-protocol
Richard Wettel and Michele Lanza. 2008. CodeCity: 3D visualization of large-scale software. ICSE Companion ’08 Companion

of the 30th international conference on Software engineering (2008), 921–922.


