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Abstract—A database dependency is a formal concept which
is used to describe patterns in data. These patterns are employed
during data analysis, data cleansing, and schema normalization.
There is about dozen of major dependency types.

In this paper we survey these types of database dependencies
employed in the relational databases. We start from the earliest
ones — functional dependencies and conclude with the state-of-
the-art findings. For each type we provide both formal and non-
formal definitions and present an example and counterexample.
We also briefly discuss extraction algorithms and possible use
cases.

I. INTRODUCTION

The era of big data not only presents new opportunities, but
also poses new challenges for both industry and academy. The
challenges come from the three “Vs”, which are frequently
used to describe the properties of big data: volume, velocity,
and variety. Volume refers to the ever-increasing amounts of
data that need to be processed. Velocity usually implies rapid
arrival speeds and variety reflects that different types of data
involved.

To benefit from this data, one has to be able to process,
store, and query it efficiently. This requires that data seman-
tics — patterns, properties, and purposes must be known to
the user. Unfortunately, most of the time this is not the case
for big data: it is hard to obtain this knowledge because of
these three properties, especially given the large volumes.

There is a strong demand for methods, tools, and approaches
for knowledge extraction. One of such tools is database depen-
dencies, a concept known since the early 70s. This approach
is very promising because big data is closely related to the
NoSQL movement, which relies on very wide “tables”. Thus,
knowledge extraction employing these dependencies becomes
very relevant in this environment.

A database dependency is a formal concept that can be
used to describe patterns in data. Initially, the dependencies
were employed for schema normalization and data cleansing.
Currently, one of the most popular contemporary applications
is data analysis.

A database dependency can be described as a rule which has
left and right hand sides (LHS and RHS). This rule guarantees
some properties of the data and involves LHS and RHS. For
example, functional dependency guarantees that for any pair
of tuples with equal LHS their RHS would be equal also.

Database dependencies are quite an old concept. The first
kind — functional dependencies were introduced in 1971.
Since then, the area grew rapidly, and many novel types and

sub-types were proposed. Currently, there is a dozen of major
dependency types.

In this paper we survey database dependency concepts
employed in the relational databases. We survey them starting
from the earliest ones and conclude with the state-of-the-art
findings. We provide both formal and non-formal definitions
and present an example for each type. We also briefly discuss
extraction algorithms and possible use cases. Our goal is to
produce a broad survey that involves major types of database
dependencies without delving into details.

II. MOTIVATION

The idea of this paper arrived during our development of a
data-driven tool for automatic database physical design. Our
approach was to rely on data properties instead of work-
load knowledge. During this study an extensive exploration
of dependency concept literature was performed. We have
discovered many classes of such concepts, not only textbook
examples like functional dependencies. However, there were
no single study which would present a broad overview of this
field.

Thus, we decided to convert our expertise into a survey
which would cover the major classes of dependencies, includ-
ing the recent ones. This survey may be useful to beginners and
to researchers who are interested in discovery of knowledge
hidden in the data and who do not require solid theoretical
understanding.

III. RELATED WORK

There are several surveys on database dependency concepts.
However, they are not entirely comparable to this study due
to a number of reasons. First, there is a couple of studies that
survey different kinds of dependencies, but which are more
than 20 years old [1]. This fact renders them unusable for
learning up-to-date dependency types.

On the other hand, the recent studies pursue goals that differ
from the ones of our survey.

Reference [2] is a classification of types of relaxed func-
tional dependencies. In this survey, the authors consider 35
types of imprecise functional dependencies, build a classifica-
tion and provide a list of application domains for each class.
However, the authors deliberately left inclusion dependencies
and multivalued dependencies out of scope of this work.

There is another type of surveys that deal with dependency
discovery methods. Reference [3] contains a Related Work



Patient Gender Doctor Hospital Area Phone
Benson M Morgan St. Mark’s North 89084140683
Ellis F Robin St. George South 89608401913
Graham M Robin St. Mark’s North 89084140683
Harris M Jean St. Mungo’s West 89607968712
Joy F Smith St. Thomas’ East 89685290066

TABLE I
FD EXAMPLE

section that lists a number of methods for discovery of func-
tional dependencies. Another functional dependency discovery
survey is presented in reference [4]. This work features not
only a survey, but also an experimental evaluation.

A survey of discovery methods for different types of de-
pendencies is presented in reference [5]. This survey includes
methods for conditional, inclusion, approximate, and XML
dependency discovery.

Thus, to the best of our knowledge, there is no broad survey
which lists known types of database dependencies.

IV. DEPENDENCY TYPES

A. Functional Dependencies

The notion of the functional dependency (FD) was originally
introduced by E.F. Codd in the early 1970s in his paper
“Further Normalization of the Data Base Relational Model”
[6]. In this paper, Codd proposed to use FDs for database
schema design. Now, the range of FD application is much
wider. For example, study [7] describes query optimization
methods that are based on the FD notion.

Study [8] contains research results on the topic of FDs that
are used for query optimization. Besides, the usefulness of
FDs is shown in relational database systems as well as in
non-relational database environments.

The first formal definition of an FD was given in W.W. Arm-
strong’s work [9].

Definition 1: A relation R satisfies the FD X → Y (where
X,Y ⊆ R), if and only if for all t1, t2 ∈ R holds: if t1[X] =
t2[X], then t1[Y ] = t2[Y ].

Thus, an FD is essentially a “many to one” relation between
the value sets of attributes participating in LHS and RHS.

Consider relation depicted in Table I. The following FDs
are present:
• {Area, Phone} → {Hospital}
• {Patient} → {Gender}

As we can see from Table I, any value from the set {Patient,
Doctor} is related exactly to one value from the set {Area}.
The second FD can be explained in a similar manner.

Further, we can list dependencies which do not hold (violate
the FD condition) in the relation:
• {Doctor} → {Hospital, Area}
• {Hospital} → {Patient}
The first one is not an FD since two different values in the

RHS attribute set (Hospital and Area) present for a fixed value
of the Doctor attribute. For example doctor Robin maps si-
multaneously to {St.George, South}, {St.Mark′s,North}

that contradicts the meaning of FD. The issue with the second
dependency can be explained in a similar way.

Nowadays, relaxed FDs (RFDs) [2] are one of the most
active sub-types of FDs. These dependencies relax one or more
constraints of the canonical FD. For example, RFD has to hold
for most tuples, not for all of them like in FD case.

B. Inclusion Dependencies

Inclusion dependency (IND) was first formalized by R. Fa-
gin [10], but have also been used by J.M. Smith and
D.C.P. Smith in [11]. Since then INDs have become just as
popular as any other traditional dependency type (FD, MVD,
JD).

By introducing this concept, a new kind of a normal form
was defined — the domain-key normal form (DK/NF). This
form requires every constraint on the relation to be a logical
consequence of key constraints and domain constraints. A
relation is in DK/NF if it is guaranteed that no insertion
and deletion anomalies are present, as it is stated in Fagin’s
theorem 3.13 (“a satisfiable 1NF relation schema is in DK/NF
if and only if it has no insertion or deletion anomalies” [10]).
We say that an insertion anomaly occurs if after insertion of
a tuple one of relation constraints (either key or domain) is
violated. Similarly, a deletion anomaly occurs when deletion
of a single tuple results in constraint violation. According to
paper [12], we define IND as:

Definition 2: Let R = (R1 . . . Rk) and S = (S1 . . . Sm)
be two relational tables. Further, R̂ = Ri1 . . . Rin and Ŝ =
Si1 . . . Sin be n-ary column combinations of distinct columns.
We say that IND R̂ ⊆ Ŝ holds, if for every tuple tR ∈ R, there
is a tuple tS ∈ S, such that tR[R̂] = tS [Ŝ]. R̂ is called the
dependent column combination and Ŝ – the referenced column
combination.

In other words, we can say that all tuples of the attribute
combination R̂ in the relation R must be also contained in
tuples of the attribute combination Ŝ of the relation S.

Figure IV-B depicts an example of IND {DLN} ⊆ {DLID}.
This dependency information can help us in discovery of a
foreign key (which is DLN in the example).

UID Name Gender DLN
1 Sofia F 21
2 Leonard M 35
3 Shavkat M 10
4 Mary F 65
5 Andrew M 10

DLID Country
21 Romania
35 Spain
10 Germany
65 USA

TABLE II
IND EXAMPLE

Let us construct an example where the dependency pre-
sented in Table IV-B is violated. In order to violate {DLN} ⊆
{DLID}, the DLN should stop being the foreign key for the
corresponding table. Thus, we have to substitute any value of
the DLN with the value absent in the DLID. For example,
changing the third tuple to (3, Shavkat,M, 11) is enough to
break this dependency.



Name Disease Doctor
Wilson Arthritis Lewis
Taylor Insomnia Jackson
Kimberly Pancreatitis Brooks
Ellis Schizophrenia Brooks

TABLE III
JD EXAMPLE

Name Doctor
Wilson Lewis
Taylor Jackson
Kimberly Brooks
Ellis Brooks

Name Disease
Wilson Arthritis
Taylor Insomnia
Kimberly Pancreatitis
Ellis Somnambulism

TABLE IV
JD EXAMPLE

Name Doctor
Wilson Lewis
Taylor Jackson
Kimberly Brooks
Ellis Brooks

Doctor Disease
Lewis Arthritis
Jackson Insomnia
Brooks Pancreatitis
Brooks Somnambulism

TABLE V
JD COUNTEREXAMPLE

IND is one of the most important dependencies for many
tasks such as data integration, integrity checking, schema
design, and any other where we may need additional meta-
data for understanding significant aspects or structure of an
unknown database. Consider a data source that comes only
with superficial information, such as relation or attributes
names with no interrelational constraints. In this case, detected
INDs between relations may be considered as a precondition
for a foreign key constraint. In fact, being a basis of the
interrelational constraint is the most prominent application of
the IND.

There are further state of the art approaches for exact and
approximate inference of INDs: [13], [14], [12].

C. Join Dependencies

Join dependencies (JDs) were first mentioned at the end of
the 1970s in the works [15], [16]. The notion of JDs ensures
lossless reconstruction of the data that was decomposed into a
number of relations. The data is reconstructed using the join
relational operation.

Paper [17] contains the formal definition of JD:
Definition 3: A JD defined for a relation R[U ] (U — is a

set of attributes) is an expression of the form ./ [X1, · · · , Xn],
where X1 ∪ · · · ∪ Xn = U . An instance I of R[U ] satisfies
./ [X1, · · · , Xn], if I = πX1

(I) ./ · · · ./ πXn
(I).

Consider the relation presented in Table III. Here, the
following FD exists: {Name} → {Disease}. This FD implies
that the JD ./ [{Name,Doctor}, {Name,Disease}] is satisfied,
thus lossless decomposition is available (see Table IV).

Let us study the violation of JD constraint in the same table
III. The dependency ./ [{Name,Doctor}, {Doctor,Disease}]
is not a valid JD because there is no opportunity to restore
the original table. In this case the join of these two tables
would lead to appearance of two phantom records, absent

FlightID Aircraft Date (DD/MM/YY) Price
1 A320 01.01.17 300
2 A320 04.01.17 340
3 Boeing 747 13.03.17 210
4 A380 15.03.17 410
5 Boeing 747 17.03.17 270
6 A320 23.07.17 450

TABLE VI
DD EXAMPLE

in the original table. The key “Brooks” would produce four
items instead of two. This is explained by the fact that the
dependency {Hospital} → {Doctor} is not an FD. Also, there
may be the opposite case when the records would be lost.

Currently, several algorithms are being actively developed
for efficient testing of existing JDs. For example, the algorithm
[18] is aimed for an I/O-efficient testing in the external
memory model.

Paper [19] contains the finite axiomatization of the implica-
tion problem for inclusion and conditional independence atoms
(dependencies) in the dependence logic context. The general
axiomatization approach is described, which extend to such
types of dependencies as inclusion and join dependencies.

D. Differential Dependencies

Differential dependencies (DD) are the newest concept we
review in this paper. They were first presented in 2011 [20]
and are defined as follows:

Definition 4: Let φLHS [X], φRHS [Y ] be differential func-
tions specifying constraints on distances over attributes X
and Y of relation R. A differential dependency φLHS [X] →
φRHS [Y ] holds on relation R if for any pair of tuples for
which the difference on attributes X satisfies the constraints
specified by φLHS [X], the difference on Y also satisfies the
constraints specified by φRHS [Y ].

Speaking less formally, we say that if a DD φLHS [X] →
φRHS [Y ] holds, then for any two tuples on attribute com-
bination X whose distance belongs to the range specified by
φLHS , the distance of the same two tuples on Y is in the range
specified by φRHS . Differential function on attributes may be
specified by operators {=, <,>,≤,≥}. In this case, DD can
be reduced to other dependency concepts in the following way:
(i) if a differential function for LHS represents a similarity
constraint (= 0), then DD becomes matching dependency
(MD concept, [21]), (ii) if all differential constraints are (= 0),
then DD subsumes FD [20].

Consider an example presented in Figure VI — a table
containing flight information. The following DD [Aircraft(=
0) ∧ Date(≤ 4)] → [Price(≥ 40,≤ 60)] holds. It means
that for the same type of aircraft (Aircraft(= 0)) the price
difference for flights in any range of four days (Date(≤ 4))
must be ≥ 40 and ≤ 60.

If we take away the date from the dependency, the de-
pendency will be violated: [Aircraft(= 0)] → [Price(≥
40,≤ 60)]. Let us consider the A320 value. There is the
following set of Price attribute values corresponding to



A320: {300, 340, 450}. Here, the difference between prices
for FlightID = 1 and FlightID = 6 is outside of the range
specified by the dependency. This illustrates the dependency
violation.

Since DDs represent a special kind of FD and MD, their ap-
plication domains overlap. DD has a rather broad application:
the data quality problem, integrity constraints checking, and
query optimization. Furthermore, the idea of a differential key
(a new type of constraint that is based on deduced rules related
to attribute distance) provides insight into the data partitioning
task.

DD is a more general concept than FD, and its definition is
based on distances between attribute values, so FD inference
algorithms are not fully capable of DD discovery — they find
special cases only. Nevertheless, in the original work [20] DD
row- and column-based inference approaches are described.

E. Multivalued Dependencies

Multivalued dependencies (MVD) were introduced indepen-
dently by R. Fagin and C.A. Zaniolo in 1976 [22], [23]. The
modern MVD definition is as follows [24]:

Definition 5: A relation R satisfies the MVD X � Y
(where X,Y ⊆ R, X∩Y = ∅), if and only if for all t1, t2 ∈ R
holds: if t1[XY ] = t2[XY ] then there is t ∈ R such that
t[XY ] = t1[XY ] and t[X(R−XY )] = t2[X(R−XY )].

That means if we have two tuples of R that agree on X ,
then their values for Y may be swapped, and the result will
be two tuples that are also in the relation R.

In subsequent studies, the MVD definition was slightly
modified: LHS and RHS of dependency are no longer nec-
essarily disjoint [25]. A number of MVD inference rules were
presented as well.

Traditionally, MVDs have been considered as the neces-
sary and sufficient condition of a relation to be decomposed
into two of its projections without loss of information [22].
This means that an MVD X � Y holds if and only if
R = R[XY ] ./ R[X(R − XY )] [24]. Such information on
relation decomposability may be used in a schema (re-)design
task as it reveals internal structure of a data source.

Lately, MVDs were generalized by bringing in a new
concept of full hierarchical dependency, see Section IV-F.
Another remarkable fact is the relationship between FDs and
MVDs: we may say for X ∩ Y = ∅, that if an FD X → Y
holds in a relation, then an MVD X � Y also holds. Thus,
each FD is also an MVD, but not vice versa [25].

Let us consider a relation presented in Figure VII. At-
tribute CourseID determines a set of values StudentName
and RecommendedBook. The latter does not depend on
attribute StudentName (that means there is no connectivity
between these two attributes), and we may say that the
MVDs {CourseID} � {StudentName} and {CourseID} �
{RecommendedBook} hold in relation.

To show the violation of the dependence, it is sufficient to
replace the value of one field in the table VII. The result of
the changes is shown in the table VIII, from which we can
see that changing the value of attribute RecommendedBook

CourseID StudentName RecommendedBook
10 Michael Course book math
10 Michael Course book mechanic
10 Lena Course book math
10 Lena Course book mechanic
106 Michael Course book cs
106 Michael Course book mlearn
9 John Course book reading
9 John Course book grammar

TABLE VII
MVD EXAMPLE

CourseID StudentName RecommendedBook
10 Michael Course book math
10 Michael Course book mechanic
10 Lena Course book optic
10 Lena Course book mechanic
106 Michael Course book cs
106 Michael Course book mlearn
9 John Course book reading
9 John Course book grammar

TABLE VIII
MVD COUNTEREXAMPLE

in the third row of the table violates both MVDs. In order to
keep the dependencies there should be Course book math for
Lena and Course book optic for Michael.

For complete understanding of MVDs and their place
among other dependency concepts, the following papers are
recommended [26], [24].

F. Full Hierarchical Dependencies

As it was already mentioned, a full hierarchical dependency
(FHD) is an attempt to generalize the MVD concept. The
first notion and formalization of FHD was presented in [27].
Nowadays, the following definition is used [24]:

Definition 6: Let X ⊆ R and S is a non-empty set of
pairwise disjoint subsets of R that are also disjoint from X .
S 6= ∅, for all Y ∈ S we have Y ⊆ S and for all Y, Z ∈
S ∪ {X} we have Y ∩ Z = ∅. Relation R satisfies FHD
X : Y1, . . . , Yk, if and only if for all t1, . . . , tk+1 ∈ R the
following condition is satisfied: if ti[X] = tj [X] for all 1 ≤
i, j ≤ k + 1 then there is some t ∈ R such that t[XYi] =
ti[XYi] for all i = 1, . . . , k and t[X(R − XY1 . . . Yk)] =
tk+1[X(R−XY1 . . . Yk)].

As we can see, in case of k = 1 this is the definition of
MVD. Moreover, if for each k = 1, . . . , n MVD X � Yk
holds over R, then R satisfies the FHD X : {Y1, . . . , Yn}.
Therefore, the area of FHD application is the same as the one
of MVDs — schema design in terms of relation decompo-
sition. The result of such decomposition is called generalized
hierarchical decomposition (GHD), and it may be represented
as a tree structure [27].

Since we show in the MVD section that
{CourseID} � {StudentName} and {CourseID} �
{RecommendedBook} hold, then the FHD {CourseID} :
{StudentName, RecommendedBook} also holds.



Category Weight Cost Distance
Portable 0− 5 kg 150$ 0− 10 km
Portable 0− 5 kg 200$ 11− 20 km
Portable 0− 5 kg 250$ 21− 30 km
Midsize 6− 10 kg 250$ 0− 10 km
Midsize 6− 10 kg 350$ 11− 20 km
Midsize 6− 10 kg 450$ 21− 30 km
Largesize 11− 15 kg 350$ 0− 10 km
Largesize 11− 15 kg 500$ 11− 20 km
Largesize 11− 15 kg 650$ 21− 30 km

TABLE IX
OD EXAMPLE

Due to the aforementioned relationships between concepts,
FHD mainly appears in studies on combining dependency
classes (e.g. [24], where non-trivial FD and FHD connectivity
is studied).

G. Order Dependencies

The term “order dependencies” (OD) first appeared in the
study [28]. An OD allows to describe the value of some
attribute using the information about the order relation on the
given value set. For example, we need to transfer an item from
point A to point B. OD gives us an opportunity to estimate
that in this case delivery by a heavy vehicle will cost at least
as much as the delivery by a car as both have to travel the
same distance (we ignore real-life aspects of shipping).

The formal definition ODs is as follows [29]:
Definition 7: Call X 7→ Y an order dependency (where

X,Y ⊆ R) over the relation R if, for every pair of admissible
tuples t1, t2 ∈ R, t1[X] � t2[X] implies t1[Y ] � t2[Y ].

The analysis of these ODs can be used for improving the
efficiency of database query processing. However, arrangement
of sets (on which the model of OD is based) is a challeng-
ing task. Currently, development of algorithms for fast sets
arrangement is a very active area of research. For example,
in study [29] an efficient algorithm for lexicographical set
arrangement has been introduced. Also, a large number of
inference rules that are used for query transformation during
the optimization process is presented.

For example, Table IX shows the following OD:
{Category, Weight, Distance} 7→ {Cost}. So, according to
the commodity (that is characterized by the weight of the
shipment) we can specify whether the delivery costs more or
less for the shipping to the same distances. As we have already
mentioned, we suppose that portable shipping will cost less
than the large size shipping on the same distances.

Consider the dependence {Distance} 7→ {Cost}. It is not a
valid OD since the order relation for the shipment price for
different distances will be violated. For example, shipment of
Largesize for 0–10 km is cheaper than shipment of Midsize
for 21–30 km.

H. Conditional Functional Dependencies

One of the newest FD types is the Conditional Functional
Dependencies (CFDs). The first mention of CFD appears in
the study by Wenfei Fan et al. [30]. CFDs aim at capturing

SC NB City Client Rate
110 Bank1 Moscow Wood 10%
110 Bank2 Bremen Martin 7%
220 Bank1 Stockholm King 6%
110 Bank2 St. Petersburg King 7%
220 Bank1 Hamburg Turner 6%

TABLE X
CFD EXAMPLE, SOURCE DATA

SC NB Rate
220 Bank1 —
110 Bank2 —

TABLE XI
CFD EXAMPLE, PATTERN TABLEU

the consistency of data by enforcing bindings of semantically
related values.

We frequently encounter CFDs in our everyday life. For
example, the position of a worker determines his salary only in
some departments but not in the whole organization. CFDs are
extensively used in the data integration domain. It is justified
by the fact that the patterns existing in the individual data
sources would also present in the combined data set.

CFDs extend the FDs using the pattern table that provides
the bound of semantically related values. It is important to
note that it is necessary to apply CFDs only to tuples that
meet the values from the pattern table, but not to all tuples.

The formal definition CFDs is as follows [31]:
Definition 8: A conditional functional dependency (CFD) φ

on S is a pair (X → Y, Tp), where X → Y is a standard FD,
referred to as the embedded FD; and Tp is a “pattern tableau”
that defines over which rows of the table the embedded FD
applies. Each entry tp ∈ Tp specifies a pattern over X ∪ Y ,
so for each attribute in A ∈ X ∪ Y , either tp[A] = α, where
α is a value in the domain of A, or else tp[A] = , for the
special wild-card symbol . A row ri satisfies an entry tp of
tableau Tp for attributes A, denoted by ri[A] � tp[A], if either
ri[A] = tp[A], or else tp[A] = . The CFD φ holds if

∀i, j, p.ri[X] = rj [X] � tp[X]⇒ ri[Y ] = rj [Y ] � tp[Y ].

Consider the Table X that contains client base of various
banks. We introduce the following abbreviation: subdivision
code – SC, name of the bank – NB. Table X illustrates the
following CFD: {Subdivision code, Name of the bank} −→
{Rate}. The Table XI shows that the banking sector values
with an equal subdivision code will probably have an identical
interest rate. Although it is important to understand that this
condition holds for the majority of tuples in source data,
but not for all. For example, Bank2 in St. Petersburg with
subdivision code of 110 has above rate than Bank2 in Bremen,
which has the same subdivision code.

In order to demonstrate the violation of CFD we can modify
Table XI (pattern tableu) in the following way.substitute bank2
entry with the wild-card. In this case values corresponding to
SC = 110 are not equal: 7, 7, 10. Thus, the dependency does
not hold anymore.



Dependency Concept Notation Use-case Inference Rules and Algorithms

FD X → Y Data cleansing, Query optimization [8] TANE [32], FDEP [33], DFD [34], FDmine [35]

IND X ⊆ Y Data integration, Schema design,
Integrity checking [36] Binder [13], Faida [12], Mind [37]

JD ./ [X1, . . . , Xn] Schema design [15] Hu et.al [18]

DD φLHS [X]→ φRHS [Y ]
Data partition, Query Optimization,

Integrity Constraints [20] Song and Chen [20], Liu et.al [38]

MVD X � Y Data partition, Schema design [26] Savnik and Flach [26]

FHD X : {Y1, . . . , Yn} Data partition, Schema design [27] Biskup and Link [24]

OD X 7→ Y Query optimization [28] Szlichta et.al [29]

CFD X → Y, Tp Consistency checking, Data cleansing [30] Li et.al [39]

TABLE XII
CUMULATIVE TABLE

An important problem is efficient estimation of CFD con-
fidence using a small number of data passes and a small
amount of space. The solution to this problem is described
in [31]. An improvement of the algorithm for the minimum
CFD set construction has been proposed in the work [39].
The described algorithm works in linear time and is one of
the most efficient contemporary algorithms.

V. CONCLUSION

In this paper we surveyed several database dependency
concepts. For each type we provided both formal and non-
formal definitions and presented an example. We also briefly
discussed extraction algorithms and possible use cases. A
short summary of considered dependency types is presented
in Table XII.
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