
A Proposed Method in Agile Practices to Create

Requirements Documentation and Test Cases

Palash Bera1 and Abhimanyu Gupta2

1 Saint Louis University

pbera@slu.edu
2 Saint Louis University

abhimanyugupta@slu.edu

Abstract. Two problems are common in agile based software development ap-

proaches. First, software requirements change frequently and therefore they are

difficult to maintain and document. Second, test case development takes time

and effort and thus the testing process is often delayed. To provide solution to

these problems, we suggest using Action-Triad method for capturing the soft-

ware application requirements. This method can be used to create conceptual

models that can be used as documentation in agile development. The method

can also create requirements traceability matrix (RTM) and test cases. When the

requirements change, the conceptual models, RTM, and test cases can be regen-

erated. The method is demonstrated here using a case study.

Keywords: Requirements Documentation, Conceptual Models, Test Case

1 Introduction

Agile practices advocate on iterative and test-driven software development strategy

where the focus is on working software and not on extensive documentation [1, 2].

Agile practices focus on capturing the requirements through user stories which are

constantly updated in the development cycle [3]. In a survey on agile practice, [4]

found that most organizations struggle to identify requirements and maintain the

changes in the requirements. A test case is a set of inputs, execution conditions, and

expected results to verify that a software program is compliant to specific require-

ments [5]. Agile practices suggest that test cases based on the requirements should be

written prior to the codes written by the developers [6]. However, based on a case

study, [1] found that incremental software development was not tested as test imple-

mentation was too slow. Developing test cases from the requirements took lot of time

and effort. As a result, much testing was postponed until the later stages of the pro-

ject, resulting in generating large number of software defects.

Kaner [7] mentions that designing good test cases is a complex art as the process of

test creation is subjective and is based on testers’ domain knowledge. Also there is no

clear method in writing test cases. For example Kaner mentions that if an application

mailto:pbera@slu.edu

114 Proposed Method in Agile Practices

has 20 variables, then should we create one test case combining all variables or multi-

ple test cases for each variable. In agile development, creating test cases is particular-

ly challenging as the application changes frequently during the development process.

Based on the above discussion, two questions can be raised in the context of agile

practices: (1) how to document requirements in a standardized way so that the re-

quirement changes are captured quickly? and (2) how to create test cases consistently

and quickly prior to software application development? To answer these questions,

this paper proposes an action based method for capturing requirements in a structured

way and creating test cases based on these requirements. The structured requirements

can be documented and changes in the requirements can be controlled through the use

of the method. The method can be also used for creating test cases thus test cases can

be created before the software application is developed. In section 2, this method is

described and in section 3, a sample case study is presented. Section 4 is the discus-

sion section where the benefits for practice are discussed.

2 Action Triad method

To develop requirements documentation and test cases, we propose a method that

can convert software application requirements to a set of triads called Action-Triad

Method. Action is the focus of this method and is modeled as a relationship between

two concepts. As actions are performed by specific agents on other agents or objects

thus this model is described as a set of action triads consisting of Agent-Action-

Concept. Accordingly we define an action triad as <x, y, z> where x is an agent, y is

an action performed by the agent, and z is the concept (agent or object) on which the

action is performed on. The concepts of action triad are described in Table 1.

Table 1. Action triad concepts

Concepts in

Action Triad

Definition

Agent An agent is an entity that can interact with objects or other agents [8].

Function A function represents activities that are performed by agents.

Object An object represents non-agents in the domain with which the agents act.

Objects can be tangible (e.g. Phone) or intangible (e.g. Web site).

Dimension Dimensions describe the objects or agents in measurable form.

Instance Dimensions have instances that are generally expressed in text or numbers.

Software application requirements can be decomposed into a set of triads. These tri-

ads can have precedence (i.e. function of one triad needs to be performed earlier than

the other). Additional concepts - instances, scenario, expected results, and require-

ment ID are identified that are relevant to software testing. A dimension can have

multiple values or instances. Each instance can have a positive or a negative scenario.

Positive scenario means that the action with the specific instance can be performed

successfully. If the user cannot perform the action successfully with a specific in-

stance then the scenario is negative. For example, if password is null then the null

instance is considered as a negative scenario as the action login (dimension of which

is password) cannot be completed successfully. Expected results indicate the outcome

Proposed Method in Agile Practices 115

when an action is taken using a specific instance (e.g. null password should result in

incomplete login).

When the action triads are processed by a software tool then two types of outputs

are generated- a set of conceptual models and tables and set of test cases. Conceptual

models are generally graphical representations (e.g. UML Use Case and BPMN pro-

cess models) of the domain that need to be reflected in the Information Systems [9].

Conceptual models are used for documenting the features of the domain that needs to

be reflected in the Information Systems [9]. [10] mention that conceptual models

could be highly relevant in agile development methods as agile development requires

efficient communication between the stakeholders. The conceptual models and their

descriptions can be used as requirements documentation in agile development. Using

the precedence of the triads, a high level BPMN process model can be created and

using the agents and the action performed by them, UML Use Case model can be

developed. The dimensions of the functions can be used to create test case steps and

the instances can be used in these test cases. As a large combination of instances can

create large number of test cases therefore an optimization engine (part of the soft-

ware tool) could be used to come up with minimum number of test cases that can

cover maximum combination of instances. As the action triad method captures the

requirements ID, therefore a requirements traceability matrix (RTM) can also be gen-

erated. RTM maps the requirements with the test cases. A set of guidelines is pro-

posed so that application requirements can be captured in to set of action triads. These

guidelines are:

 Decompose an application to be developed to sets of action triads.

 Indicate the sequence of the action triads for the application.

 Ensure that each action triad is unique for an application under testing.

 Ensure that each dimension has an instance with at least one positive scenario.

In this method, functions must have dimensions but agents and objects may not.

3 A Case Study

To illustrate the application of the Action-Triad method, a small case study is used. In

this case study, a user logs in and logs out of an application. The description of the

requirements is provided in Table 2. The objective of this case study is to create con-

ceptual models, RTM, and automated test cases to test the functionalities as described.

Table 2. Requirements Example

The screen shots of the interface of the application are shown in Figure 1.

Description Requirement ID

The user needs to provide a valid username and password to successfully

login to the application.

1.1

After the user logs into the application, then she is taken to the browse

application page where the user can click on different reports.

1.2

On clicking the logout button the user gets an alert to logout. If the user

clicks on yes then she is logged out otherwise on clicking cancel the user

is taken back to the browse application page.

1.3

A user has a valid username (John) and a valid password (1234!). 1.4

116 Proposed Method in Agile Practices

Fig. 1: Login and Logout functions of an application

To apply the action-triad method, the application description is decomposed into

two action triads: <User, Login, Application> and <User, Logout, Application>. The

dimensions of the two functions- login and logout are the actions that users can per-

form in the application. Note that the number of triads is not dependent on the number

of application screens but depends on the functions that users perform. The dimen-

sions are elaborated in Table 3 using instances, scenarios, expected results, and re-

quirements ID. The details of this information are obtained from Table 2 and Figure

1. The number of instances that can be used for dimensions in functions will depend

on the requirements. If high number of instances is used in the triads then more num-

ber of test cases may be generated. A mix of positive and negative scenarios for the

instances is recommended to test the application properly.

Note that the username and password appear as dimensions in both user agent and

the login function. In the former case, the instances of these dimensions have positive

scenarios, meaning the instances are actual username and password that are assigned

to the user. In the latter case, the instances are the ones that a tester will input in the

application to test it. Some of these instances will have negative scenarios such as

when password is Blank.

Table 3. Details of the dimensions of the Login and Logout functions

Proposed Method in Agile Practices 117

The outputs of the action-triad method are described next. In Figure 2, high level Use

Case and BPMN diagram are generated from the method. As the agent –user is asso-

ciated with two actions therefore the Use Case shows these two actions. Login appli-

cation is followed by the logout application and they are shown accordingly in the

BPMN. It is to be noted that these models are high level as detailed level information

(e.g. join operators in BPMN) is not captured in the method.

Fig. 2: Use Case and BPMN models of the application

In addition to the above conceptual models, an action path model for each function is

created. Figure 3 shows the action path model for the Login function where the valid

and invalid ways of login are shown. This action path model can be useful in

designing or modifying the interface (e.g. login screen).

Fig. 3: Action path model for Login function

Login Application

User

Logout Application

User Login Application Logout Application

START

User attempts to Login Application

Is LoginUsername

valid?

Yes

No

Select valid LoginUsername

Is LoginPassword

valid?

Yes

No

Select valid LoginPassword

Login successfully completed

END

118 Proposed Method in Agile Practices

Based on the triad information, the tool uses an optimization engine to create test

cases with specific steps. A test case generally contains specific steps that testers need

to perform to test a certain function of an application. Along with the steps, a test case

contains test objective, expected results, and traceability (i.e. which steps correspond

to specific part of the requirements) [11]. The engine optimizes the dimensions and

their instances to create test cases. The dimensions (column 1 of table 3) become test

case step descriptions and the instances (column 2 of table 3) become the values of

these descriptions. As all the instances will not fit into one test case therefore the

optimization engine will create multiple test cases ensuring that a pair of instances is

covered in at least one test case. To make the test case step description readable, spe-

cific user actions (e.g. enter or click) are used in the step descriptions. In the tool,

each dimension can be classified as: text, dropdown, and button. These keywords are

linked to action words that users perform to test the application. For example, if text is

selected as a dimension type then the keyword “Enter” will be used in the test case

step description. Thus a test case step description could be “Enter John as Logi-

nUsername” where John is an instance of the dimension LoginUsername (type is

text). Similarly when dimension type is button then the keyword “click” is used in the

step description.

For the case study described here, the action triad method generated 5 test cases (1

positive and 4 negative) for the login function. Table 4 shows two test cases of login

function that are generated using the action-triad method. Each test case has a descrip-

tion, step number, step description, expected results, and traceability. The step de-

scription has specific actions with specific values (e.g. Enter “John” as Logi-

nUserName). However, each test case is different as different combinations of in-

stances are used. If one of the instances has a negative scenario then the test case is

considered negative meaning the actions mentioned in the test case should not be

successfully executed. If no instances have negative scenarios then the test case is

considered as positive meaning the actions mentioned in the test case should be exe-

cuted successfully.

Each test case starts with the instances of the dimensions (e.g. UserPassword and

UserUsername) of the entities (e.g. user). This step is considered as a pre-requisite i.e.

the condition that is required before the test case can be run. A pre-requisite step does

not have expected results and traceability.

Each test case can have only one negative instance scenario. This is because from a

tester’s perspective, if a test case has two or more negative instances (e.g. Username

is null and password is null) then it is not possible to identify the exact cause of fail-

ure of the test (e.g. whether the test failed because password was incorrect or it failed

because the username was incorrect).

Proposed Method in Agile Practices 119

Table 4. Sample test cases created for the login function

The action triad method also creates a standardized form of test cases called- Gherkin

syntax (Figure 4). Gherkin syntax is a business readable language that describes the

behavior of the software. The syntax includes status parameter and the values of sta-

tus are either successful or unsuccessful. If a test case has a negative value of an in-

stance then the status is unsuccessful or else the status is successful. Gherkin syntax

(Figure 4) is a rearrangement of the test cases written in tabular format (Table 4). In

some agile projects, user stories are written in Gherkin syntax and used to generate

automated test scripts using test automation tools.

Fig. 4: Gherkin syntax of the test cases for the login function

Feature: User Login Application

 As a User

 I want to Login Application

Scenario Outline: User attempts to Login Application with various input parameters

Given UserPassword is '<UserPassword>'

 And UserUsername is '<UserUsername>'

 When User Login Application

 And LoginUsername is '<LoginUsername>'

 And LoginPassword is '<LoginPassword>'

 And LoginTrigger is '<LoginTrigger>'

 Then status of Login should be '<Status>'

 Examples:

 | UserPassword | UserUsername | LoginUsername | LoginPassword | LoginTrigger | Status |

 | 1234! | John | John | 1234! | Login | Successful |

 | 1234! | John | John | Password | Login | Unsuccessful |

 | 1234! | John | Blank | 1234! | Login | Unsuccessful |

 | 1234! | John | JohnInvalid | 1234! | Login | Unsuccessful |

 | 1234! | John | John | Blank | Login | Unsuccessful |

120 Proposed Method in Agile Practices

RTM is created where the pairwise combination of each dimension is mapped with the test

cases. The complete RTM shows that all the possible pairwise input values as defined in the

login function have been covered by at least one test case. For example in Table 5, the partial

RTM shows that the pair “UserPassword = 1234! and LoginUsername = John” (row 3) is men-

tioned in the test cases 1, 2, and 5. This table thus ensures that the requirements are covered

completely in all these optimized 5 test cases.

Table 5. Partial Requirements Traceability Matrix (RTM) for the Login function

4 Discussion

In agile practices, software development is performed by teams that include business

analysts, testers, and developers [1]. Due to short implementation cycles (sprints) in

agile, the analysts face difficulty in developing requirements documentation. Further

as the application requirements change, the documentation needs to be updated fre-

quently. The testers in the agile team face the challenge of developing the test cases

prior to the codes written by the developers.

The proposed action-triad method helps to resolve these challenges by capturing the

requirements in a systemic way. The method generates conceptual models that can be

used for requirements documentation. The RTM and test cases in multiple formats are

also generated in this method. When the application requirements change, the concep-

tual models, RTM, and test cases can be regenerated.

The requirements documentation, RTM, and test cases are currently written manually

but the use of the action-triad method can help the agile teams to develop these out-

puts automatically. Thus the software applications can be developed in shorter time.

Currently, the action-triad method is applied to few real-world agile practice based

projects using a software tool. To test the effectiveness of the method, it has to be

applied to complex application development projects and modified as necessary.

State diagrams as models have also been used for creating automated test cases. A

state diagram depicts the states that a system can assume and shows the events that

cause and/or result from a change from one state to another [11]. Test cases are de-

rived from the state diagrams by identifying valid and invalid state transitions [11].

However, there are two main challenges in using such models. First, developing such

models is difficult due to the complexity of state diagrams. As the application gets

complex, the number of states and the transitions grow rapidly creating explosion of

states (a phenomenon called – state explosion [12]). Second, creating optimized test

Pairwise Combination

Test

Case 1

Test

Case 2

Test

Case 3

Test

Case 4

Test

Case 5 Total

UserPassword = 1234!, UserUsername = John 1 1 1 1 1 5

UserPassword = 1234!, LoginUsername = John 1 1 1 3

UserPassword = 1234!, LoginPassword = 1234! 1 1 1 3

UserPassword = 1234!, LoginTrigger = Login 1 1 1 1 1 5

UserUsername = John, LoginUsername = John 1 1 1 3

UserUsername = John, LoginPassword = 1234! 1 1 1 3

UserUsername = John, LoginTrigger = Login 1 1 1 1 1 5

LoginUsername = John, LoginPassword = 1234! 1 1

LoginUsername = John, LoginTrigger = Login 1 1 1 3

LoginPassword = 1234!, LoginTrigger = Login 1 1 1 3

Proposed Method in Agile Practices 121

cases from these models is challenging because of large number of states and the

frequent change in the functionalities of the application. A complex application will

have a large number of states and transitions. Thus modeling such application using

state diagrams is challenging and so is deriving the test cases from the diagrams. Al-

ternatively, we suggest using ER based Action Triad method as there is no need of

modeling transitions and only the higher state changes are modeled using triads. De-

composing an application into set of triads is still a modeling skill that modelers need

to apply. However, once the triads are identified, the methodology helps to create the

model elements consistently.

References

1. Heeager, L., Introducing Agile Practices in a Documentation-Driven

Software Development Practice: A Cast Study. Journal of Information

Technology Case and Application Research, 2012. 14(1): p. 3-24.

2. Fowler, M. The new methodology. 2003.

3. Beck, K. and C. Andres, Extreme Programming Explained: Embrace

CHange. 2004, Boston: Addison- Wesley Professional.

4. Sillitti, A., et al. Managing Uncertainty in Requirements: A Survey in

Documentation-Driven and Agile Companies. in 11th IEEE Int’l Symp.

Software Metrics. 2005. IEEE Press.

5. IEEE, IEEE Standard 610, in IEEE Standards Collection: Software

Engineering. 1990.

6. Boehm, B. and B. Turner, Management Challenges to Implementing Agile

Processes in Traditional Development Organizations. IEEE Software, 2005.

22(5): p. 30-39.

7. Kaner, C. Architectures of Test Automation. in STAR West. 2000. San Jose,

Canlifornia.

8. Wooldridge, M., Reasoning about Rational Agents. 2000, Massachusetts:

The MIT Press.

9. Dobing, B. and J. Parsons, Dimensions of UML Diagram Use: A Survey of

Practitioners. Journal of Database Management, 2008. 19: p. 1-18.

10. Rubin, E. and H. Rubin, Supporting Agile Software Development Through

Active Documentation. Requirements Engineering, 2011. 16: p. 117-132.

11. Board, I.S.T.Q. Standard Glossary of Terms Used in Software Testing 2015.

Version 3.1.

12. Valmari, A. The State Explosion Problem, Lectures on Petri nets: Advances

in Petri nets. 1998. Berlin-Heidelberg: Springer-Verlang.

