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Abstract. The exact solutions of the nonlinear heat (porous medium)
equation are constructed. We obtain a new class of the heat wave type
solutions the construction of which is reduced to the Cauchy problems
for nonlinear second order differential equations with a singularity. For
these problems we prove a new existence and uniqueness theorem in
the class of analytic functions. A special case of the heat wave front is
considered in details. The results of numerical experiments are presented
and discussed.
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1 Introduction

The heat equation [1,2] is one of the well-known objects of classical mathematical
physics. If a thermal conductivity does not depend on temperature, we have
the linear equation. This case is well studied and we do not consider it. In
this paper we deal with the nonlinear heat equation when the coefficient of
thermal conductivity has a power-law dependence on the temperature. Besides
heat conduction this equation also describes the ideal polytropic gas filtration
in a porous medium. Therefore, in the literature it is also called “the porous
medium equation” [2, 3].

Solutions of a heat wave type are an important and interesting class of non-
linear heat equation solutions. Description of the process of the heat wave spread
across the cold background at a finite speed, and the first examples of heat wave
type solution were given by Ya.B. Zel’dovich in [4]. In the class of analytical
functions the boundary-value problem with degeneration (Sakharov’s problem
of the initiation of the heat wave) was first considered by A.F. Sidorov in [5]. The
inverse problem, where for a given edge of the heat wave solution is recovered,
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including the boundary regime, was studied by S.P. Bautin in [6]. There are
certain papers of the scientific Sidorov’s school members, which are devoted to
this problem [7–9]. The numerical methods for the construction of a heat wave
are proposed in [10,11].

In this paper we construct exact solutions of the heat wave type for the non-
linear one-dimensional heat equation. The construction reduces to the Cauchy
problem for nonlinear ordinary differential equations of second order with a sin-
gularity at the highest derivative. In the literature such solutions of nonlinear
partial differential equations are called “the exact solutions” [12, 13]. The ob-
tained exact solutions allow us to find some of global properties of heat waves.

2 Problem Statement

We consider the nonlinear parabolic equation

𝑇𝑡 = div(𝑘∇𝑇 ) ,

in the case of 𝑘 = 𝑇𝜎, 𝜎 ∈ R>0 (the porous medium equation) [2, 3], i. e.

𝑇𝑡 = div(𝑇𝜎∇𝑇 ) . (1)

Here 𝑇 is a function (temperature), depending on the time 𝑡 > 0 and x
def
=

(𝑥1, 𝑥2, 𝑥3) ∈ R3 be a vector of spatial variables. Operators div and ∇ act on x.
If there are the symmetries, Eq. (1) can be converted to the form of one-

dimensional heat equation

𝑢𝜏 = 𝑢𝑢𝜌𝜌 +
1

𝜎
𝑢2𝜌 +

𝜈

𝜌
𝑢𝑢𝜌 , 𝜈 ∈ {0, 1, 2} , (2)

where 𝑢 : 𝐷 → R is a unknown function, defined on a set 𝐷 ⊂ R2. It depends
on the time variable 𝜏 > 0 and the space variable

𝜌
def
= ||x|| =

(︃
𝜈+1∑︁

𝑘=1

𝑥2𝑘

)︃ 1
2

.

If 𝜈 ̸= 0, it should be noted that 𝜌 ̸= 0.
The values of the parameter 𝜈 correspond to the heat propagation on the

line, on the plane and in the space of symmetrically with regard to the origin.
In this paper we construct and study the exact heat wave-type solutions of

Eq. (2), which satisfy the condition

𝑢|𝜌=𝑓(𝜏) = 0 , (3)

where 𝜌 = 𝑓(𝜏) is a front of the heat wave, defined in the plane of the vari-
ables (𝜏, 𝜌). We have found that the boundary problem (2), (3), besides the
trivial solution 𝑢(𝜏, 𝜌) = 0, which is obvious, has some nontrivial classes of exact
solutions.
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Similar one-dimensional nonlinear heat conduction problems with the heat
flux at the origin specified in the form of an exponential time dependence are
considered in paper [14]. We construct exact (automodel) and approximate so-
lutions of this problem.

3 Construction of Exact Solutions

This section is dedicated to finding non-trivial heat wave-type solutions of Eq. (2),
the construction of which is associated with the solution of ordinary differential
equations.

We assume that

𝑢(𝜏, 𝜌) = 𝜓(𝜏, 𝜌)𝑤(𝜉) , 𝜉
def
= 𝜉(𝜏, 𝜌) , (4)

where 𝜓, 𝜉 and 𝑤 are twice continuously differentiable functions of their vari-
ables, such that 𝜓𝜏𝜉𝜏𝜉𝜌 ̸≡ 0. Now we substitute (4) in (2) and find the accept-
able expression for 𝜓(𝜏, 𝜌) and 𝜉(𝜏, 𝜌). After dividing the resulting equation by
𝜓2𝜉2𝜌 ̸≡ 0, we have

𝑤𝑤′′ +
1

𝜎
(𝑤′)2 +

[︂
2

(︂
1

𝜎
+ 1

)︂
𝜓𝜌
𝜓𝜉𝜌

+
𝜉𝜌𝜌
𝜉2𝜌

+ 𝜈
1

𝜌𝜉𝜌

]︂
𝑤𝑤′+

+

(︃
1

𝜎

𝜓2
𝜌

𝜓2𝜉2𝜌
+
𝜓𝜌𝜌
𝜓𝜉2𝜌

+ 𝜈
𝜓𝜌
𝜌𝜓𝜉2𝜌

)︃
𝑤2 − 𝜉𝜏

𝜓𝜉2𝜌
𝑤′ − 𝜓𝜏

𝜓2𝜉2𝜌
𝑤 = 0 .

In order that the obtained expression becomes an ODE we should solve an
overdetermined system of partial differential equations

𝜓𝜌
𝜓𝜉𝜌

= 𝑎1 ,
𝜉𝜌𝜌
𝜉2𝜌

= 𝑎2 ,
𝜓𝜌𝜌
𝜓𝜉2𝜌

= 𝑎3 ,
𝜉𝜏
𝜓𝜉2𝜌

= 𝑎4 ,
𝜓𝜏
𝜓2𝜉2𝜌

= 𝑎5 ,

𝜓𝜌
𝜌𝜓𝜉2𝜌

= 𝑎6 ,
1

𝜌𝜉𝜌
= 𝑎7 ,

(5)

where 𝑎𝑙 ∈ R, 𝑙 = 1, 7.

Proposition 1. Let 𝜈 ̸= 0, then the system (5) is solvable if

2𝑎2 = −𝑎1 = −2𝑎7 , 2𝑎22 = 𝑎3 = 𝑎6 , 𝑎2 ̸= 0 .

Proof. 1∘. Let 𝑎4 ̸= 0. We have 𝜓(𝜏, 𝜌) = 𝜉𝜏/(𝑎4𝜉
2
𝜌) from the fourth equation of

system (5). We can find 𝜉(𝜏, 𝜌) from the second and seventh equations. These two
equations are solvable, only if 𝑎2 = −𝑎7 ̸= 0. In this case 𝜉(𝜏, 𝜌) = ln[𝑓(𝜏)𝜌]−1/𝑎2 .
Substituting 𝜓(𝜏, 𝜌) and 𝜉(𝜏, 𝜌) in (5), we obtain the relations 2𝑎2 = −𝑎1 =
−2𝑎7, 2𝑎22 = 𝑎3 = 𝑎6 and solvable by quadratures ODE

𝑓𝑓 ′′ +

(︂
𝑎5
𝑎2𝑎4

− 1

)︂
(𝑓 ′)2 = 0 ,
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which determines

𝑓(𝜏) =

{︃
𝐶2𝑒

𝐶1𝜏 , if 𝑎5 = 0 ,

(𝐶1𝜏 + 𝐶2)
𝑎2𝑎4
𝑎5 , if 𝑎5 ̸= 0 .

Consequently, the system (5) is solvable.
2∘. Let 𝑎4 = 0. From the fourth equation of system (5) we have 𝜉(𝜏, 𝜌) = 𝜉(𝜌).

Then second and seventh equations provide that 𝑎2 = −𝑎7 ̸= 0 and we have
𝜉(𝜌) = ln[𝑐𝜌]−1/𝑎2 . Substituting 𝜉(𝜌) in (5), we obtain the system of equations

𝜌𝜓𝜌
𝜓

= −𝑎1
𝑎2

,
𝜌2𝜓𝜌𝜌
𝜓

=
𝑎3
𝑎22

,
𝜌2𝜓𝜏
𝜓2

=
𝑎5
𝑎22

,
𝜌𝜓𝜌
𝜓

=
𝑎6
𝑎22

. (6)

Equations (6) have solutions

𝜓(𝜏, 𝜌) = 𝑓1(𝜏)𝜌−
𝑎1
𝑎2 , 𝜓(𝜏, 𝜌) = 𝑓2(𝜏)𝜌

𝑎6
𝑎2
2 ,

𝜓(𝜏, 𝜌) = 𝑓3(𝜏)𝜌
𝑎2+

√
𝑎2
2+4𝑎3

2𝑎2 + 𝑓4(𝜏)𝜌
𝑎2−

√
𝑎2
2+4𝑎3

2𝑎2 , 𝜓(𝜏, 𝜌) =
𝑎22𝜌

2

𝑎22𝑓5(𝜌)𝜌2 − 𝑎5𝜏
.

Thus, it is obvious that for the compatibility of (6) and, as a consequence, the
system (5) as well, it is required that

−𝑎1
𝑎2

=
𝑎6
𝑎22

=
𝑎2 ±

√︀
𝑎22 + 4𝑎3

2𝑎2
= 2 ⇐⇒ 2𝑎2 = −𝑎1 , 2𝑎22 = 𝑎6 = 𝑎3 .

The proposition is proved. ⊓⊔
The case 𝜈 = 0 deserves a special attention. Here the system for 𝜉(𝜏, 𝜌) and

𝜓(𝜏, 𝜌) consists of five equations:

𝜓𝜌
𝜓𝜉𝜌

= 𝑎1 ,
𝜉𝜌𝜌
𝜉2𝜌

= 𝑎2 ,
𝜓𝜌𝜌
𝜓𝜉2𝜌

= 𝑎3 ,
𝜉𝜏
𝜓𝜉2𝜌

= 𝑎4 ,
𝜓𝜏
𝜓2𝜉2𝜌

= 𝑎5 , (7)

where 𝑎𝑙 ∈ R, 𝑙 = 1, 5.

Proposition 2. Let 𝜈 = 0, then (7) is solvable if

2𝑎2 = −𝑎1 , 2𝑎22 = 𝑎3 .

Proof. 1∘. a) Let 𝑎2, 𝑎4 ̸= 0. We have 𝜓(𝜏, 𝜌) = 𝜉𝜏/(𝑎4𝜉
2
𝜌) from the fourth equa-

tion of system (7) and 𝜉(𝜏, 𝜌) = ln[𝑓(𝜏)𝜌+𝑔(𝜏)]−1/𝑎2 from the second one. Thus,
substituting the expression for 𝜓(𝜏, 𝜌) and 𝜉(𝜏, 𝜌) in (7), we get the system of
ODE’s for 𝑓(𝜏) and 𝑔(𝜏):

(2𝜌𝑓 + 𝑔)𝑓 ′ + 𝑓𝑔′

𝑓(𝜌𝑓 ′ + 𝑔′)
= −𝑎1

𝑎2
,

(𝜌𝑓 + 𝑔)𝑓 ′

𝑓(𝜌𝑓 ′ + 𝑔′)
=

𝑎3
2𝑎22

,

𝜌𝑓(𝜌𝑓 + 𝑔)𝑓 ′′ + 𝑓(𝜌𝑓 + 𝑔)𝑔′′ − 𝜌(𝜌𝑓 + 2𝑔)(𝑓 ′)2 + 𝑓(𝑔′)2 − 2𝑔𝑓 ′𝑔′

𝑓(𝜌𝑓 ′ + 𝑔′)2
=

= − 𝑎5
𝑎2𝑎4

.

(8)
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In order to get rid of the variable 𝜌 in (8) we demand that 𝑔(𝜏) ≡ 0. Then from
the first and second equations we have 𝑎1 = −2𝑎2 and 𝑎3 = 2𝑎22, respectively,
and the third one is converted to the exactly solvable ODE

𝑓𝑓 ′′ +

(︂
𝑎5
𝑎2𝑎4

− 1

)︂
(𝑓 ′)2 = 0 ,

which determines

𝑓(𝜏) =

{︃
𝐶2𝑒

𝐶1𝜏 , if 𝑎5 = 0 ,

(𝐶1𝜏 + 𝐶2)
𝑎2𝑎4
𝑎5 , if 𝑎5 ̸= 0 .

Consequently, the system (7) is solvable.
b) Let 𝑎2 ̸= 0, 𝑎4 = 0. We have 𝜉(𝜏, 𝜌) = 𝜉(𝜌) from the fourth equation

of system (7). With this in mind we obtain 𝜉(𝜌) = ln[𝑐1𝜌 + 𝑐2]−1/𝑎2 from the
second equation of system (7). Substituting 𝜉(𝜌) in (7), we obtain the system of
equations

(𝜌+ 𝑐)𝜓𝜌
𝜓

= −𝑎1
𝑎2

,
(𝜌+ 𝑐)2𝜓𝜌𝜌

𝜓
=
𝑎3
𝑎22

,
(𝜌+ 𝑐)2𝜓𝜏

𝜓2
=
𝑎5
𝑎22

, (9)

where 𝑐 = 𝑐2/𝑐1. Equations (9) have solutions

𝜓(𝜏, 𝜌) = 𝑓1(𝜏)(𝜌+ 𝑐)−
𝑎1
𝑎2 ,

𝜓(𝜏, 𝜌) = 𝑓2(𝜏)(𝜌+ 𝑐)
𝑎2+

√
𝑎2
2+4𝑎3

2𝑎2 + 𝑓3(𝜏)(𝜌+ 𝑐)
𝑎2−

√
𝑎2
2+4𝑎3

2𝑎2 ,

𝜓(𝜏, 𝜌) =
𝑎22(𝜌+ 𝑐)2

𝑎22𝑓4(𝜌)(𝜌+ 𝑐)2 − 𝑎5𝜏
.

Thus, it is obvious that for the compatibility of (9) and, as a consequence, of
the system (7) it is required that

−𝑎1
𝑎2

=
𝑎2 ±

√︀
𝑎22 + 4𝑎3

2𝑎2
= 2 ⇐⇒ 2𝑎2 = −𝑎1, 2𝑎22 = 𝑎3 .

2∘. a) Let 𝑎2 = 0, 𝑎4 ̸= 0. We have 𝜓(𝜏, 𝜌) = 𝜉𝜏/(𝑎4𝜉
2
𝜌) from the fourth

equation of system (7) and 𝜉(𝜏, 𝜌) = 𝑓(𝜏)𝜌 + 𝑔(𝜏) from the second one. Thus,
substituting the expression for 𝜓(𝜏, 𝜌) and 𝜉(𝜏, 𝜌) in (7), we get 𝑎3 = 0 and the
system of ODE’s for 𝑓(𝜏) and 𝑔(𝜏):

𝑓 ′

𝑓(𝜌𝑓 ′ + 𝑔′)
= 𝑎1 ,

𝜌𝑓𝑓 ′′ + 𝑓𝑔′′ − 2𝜌(𝑓 ′)2 − 2𝑓 ′𝑔′

𝑓(𝜌𝑓 ′ + 𝑔′)2
=
𝑎5
𝑎4

. (10)

To eliminate the variable 𝜌 in (10) we have to demand that 𝑓(𝜏) ≡ const. Then
from the first equation we have 𝑎1 = 0, and the second one is converted to the
exactly solvable ODE

𝑔′′ − 𝑎5
𝑎4

(𝑔′)2 = 0 ,

Mathematical and Information Technologies, MIT-2016 — Mathematical modeling

348



which determines

𝑔(𝜏) =

{︃
𝐶1𝜏 + 𝐶2 , if 𝑎5 = 0 ,

ln(𝐶1𝜏 + 𝐶2)−
𝑎4
𝑎5 , if 𝑎5 ̸= 0 .

Consequently, the system (7) is solvable.
b) Let 𝑎2, 𝑎4 = 0. We have 𝜉(𝜏, 𝜌) = 𝜉(𝜌) from the fourth equation of system

(7). Given this, we obtain 𝜉(𝜌) = 𝑐1𝜌 + 𝑐2 from the second equation of system
(7). Substituting 𝜉(𝜌) in (7), we obtain the system of equations

𝜓𝜌
𝜓

= 𝑐1𝑎1 ,
𝜓𝜌𝜌
𝜓

= 𝑐21𝑎3 ,
𝜓𝜏
𝜓2

= 𝑐21𝑎5 . (11)

Equations (11) have solutions

𝜓(𝜏, 𝜌) = 𝑓1(𝜏)𝑒𝑐1𝑎1𝜌 , 𝜓(𝜏, 𝜌) = 𝑓2(𝜏)𝑒𝑐1
√
𝑎3𝜌 + 𝑓3(𝜏)𝑒−𝑐1

√
𝑎3𝜌 ,

𝜓(𝜏, 𝜌) =
1

𝑓4(𝜌) − 𝑐21𝑎5𝜏
.

Thus, it is obvious that for the compatibility of the system of equations (11)
and, as a consequence, of the system (7) it is required to 𝑎1 = 𝑎3 = 0.

The proposition is proved. ⊓⊔

Using the obtained results we can present the following non-trivial exact
solution of the equation (2):

𝑢(𝜏, 𝜌) = 𝑓 ′(𝜏)𝑤(𝜉) , 𝜉 = 𝜌− 𝑓(𝜏) , 𝑓(𝜏) =

{︃
𝐶1𝜏 + 𝐶2 ,

ln(𝐶1𝜏 + 𝐶2)𝛼 ;
(12)

𝑢(𝜏, 𝜌) =
𝑓 ′(𝜏)

𝑓(𝜏)
𝜌2𝑤(𝜉) , 𝜉 = ln[𝜌/𝑓(𝜏)] , 𝑓(𝜏) =

{︃
𝐶2𝑒

𝐶1𝜏 ,

(𝐶1𝜏 + 𝐶2)𝛼 ,
(13)

where 𝛼 ̸= 0, |𝐶1| + |𝐶2| > 0, and (12) takes place only when 𝜈 = 0. Note that
𝑤(𝜉) in (12) satisfies the ODE

𝑤𝑤′′ +
1

𝜎
(𝑤′)2 + 𝑤′ +𝐾(𝛼)𝑤 = 0 , (14)

where 𝐾(𝛼) is equal to zero or 𝛼−1 if 𝑓 is a linear or logarithmic function,
respectively. (𝜉) in (13) satisfies the ODE

𝑤𝑤′′+
1

𝜎
(𝑤′)2+

(︂
𝜈 + 3 +

4

𝜎

)︂
𝑤𝑤′+𝑤′+

(︂
2𝜈 + 2 +

4

𝜎

)︂
𝑤2+𝐾(𝜎)𝑤 = 0 , (15)

where 𝐾(𝛼) is equal to zero or 𝛼−1 if 𝑓 is exponential or power-law function,
respectively.
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It is obvious that the solutions of (12) and (13) are of heat wave type solutions
and satisfy the boundary condition (3) if and only if the solutions 𝑤(𝜉) of (14)
and (15) satisfy the initial conditions

𝑤|𝜉=0 = 0 , 𝑤′|𝜉=0 = −𝜎 , (16)

Thus, in this section we obtain exact solutions of the heat wave type (12)
and (13), the procedure of construction is reduced to the solution of the Cauchy
problem (14), (16) and (15), (16) respectively. Next the important question con-
cerning the solvability of these problems will be investigated.

Remark 1. If 𝑓(𝜏) = 𝐶1𝜏+𝐶2 we have the known linear heat wave type solution

𝑢(𝜏, 𝜌) = 𝜎𝐶1(𝐶1𝜏 − 𝜌+ 𝐶2) .

Indeed, in this case 𝐾(𝜎) = 0 and the Cauchy problem (14), (16) have a
unique solution 𝑤(𝜉) = −𝜎𝜉. Then from (12) we obtain a linear function.

Remark 2. If 𝑓(𝜏) = (𝐶1𝜏 + 𝐶2)𝛼, 𝛼 = 1, 𝜈 = 0 we have a linear heat wave as
well.

4 The Existence and Uniqueness of Solutions

The Cauchy problem for ordinary differential equations, which in the previous
section was reduced to the construction of exact solutions of the equation (2),
have a singularity, since 𝜉 = 0 degenerates the order of the equations. Therefore,
the existence of their solutions requires additional study, which will be done in
to this section. Consider the general form of the problem

𝑤𝑤′′ +
1

𝜎
(𝑤′)2 + 𝑤′ +𝐾1𝑤𝑤

′ +𝐾2𝑤
2 +𝐾3𝑤 = 0 ,

𝑤|𝜉=0 = 0 , 𝑤′|𝜉=0 = −𝜎 ,
(17)

where 𝐾𝑖 ∈ R, 𝑖 = 1, 3. We have the following theorem.

Theorem 1. The Cauchy problem (17) has a unique nontrivial analytic solution
in a neighborhood of 𝜉 = 0.

Proof. The proof is presented briefly because it is carried out by standard pro-
cedure of the majorants method.

The solution of the Cauchy problem (17) is constructed in the form of a
power series

𝑤(𝜉) =

+∞∑︁

𝑛=0

𝑎𝑛𝜉
𝑛 , 𝑎𝑛

def
=

𝑤(𝑛)(𝜉)

𝑛!

⃒⃒
⃒⃒
𝜉=0

. (18)

In this case, 𝑎0 ≡ 0, 𝑎1 ≡ −𝜎, and the remaining coefficients of the series (18)
are uniquely determined according to the recurrence formula
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𝑎𝑛+1 =
1

𝜎(𝜎𝑛+ 1)(𝑛+ 1)

[︃
𝜎

𝑛−2∑︁

𝑘=0

(𝑘 + 1)(𝑘 + 2)𝑎𝑘+2𝑎𝑛−𝑘+

+

𝑛−1∑︁

𝑘=1

(𝑘 + 1)(𝑛− 𝑘 + 1)𝑎𝑘+1𝑎𝑛−𝑘+1+

+𝐾1

𝑛−1∑︁

𝑘=0

(𝑘 + 1)𝑎𝑘+1𝑎𝑛−𝑘 +𝐾2

𝑛−1∑︁

𝑘=1

𝑎𝑘𝑎𝑛−𝑘 +𝐾3𝑎𝑛

]︃
, 𝑛 ∈ N .

Next, we move to a new function 𝑣
def
= 𝑣(𝜉) by the formula

𝑤(𝜉) = −𝜎𝜉 + 𝜉2𝑣(𝜉) .

Thus, we have the Cauchy problem

𝐴𝑣 +𝐵𝜉𝑣′ + 𝐶𝜉2𝑣′′ = 𝐷 + 𝜉𝑔1(𝜉, 𝑣) + 𝜉2𝑔2(𝜉, 𝑣, 𝑣′) + 𝜉3𝑔3(𝜉, 𝑣, 𝑣′, 𝑣′′),

𝑣|𝜉=0 = 𝑣0 , 𝑣′|𝜉=0 = 𝑣1 ,
(19)

where 𝐴,𝐵,𝐶 ∈ R+, 𝐷 ∈ R, and 𝑔1,2,3 are analytic functions of their arguments
(a specific type of these constants and functions is irrelevant for the proof).

Majorant Cauchy problem for (19) has the form

𝑉 ′′ = 𝐸[(𝐺1)𝜉 + (𝐺1)𝑉 𝑉
′ +𝐺2 + 𝜉𝐺3] ,

𝑉 |𝜉=0 = 𝑉0 , 𝑉
′|𝜉=0 = 𝑉1 ,

(20)

where

𝐸 = max
𝑛∈Z>0

[︂
(𝑛− 1)𝑛+ 1

𝐴+ 𝑛𝐵 + (𝑛− 1)𝑛𝐶

]︂
,

𝐺1
def
= 𝐺1(𝜉, 𝑉 ) , 𝐺2

def
= 𝐺2(𝜉, 𝑉, 𝑉 ′) , 𝐺3

def
= 𝐺3(𝜉, 𝑉, 𝑉 ′, 𝑉 ′′) ,

𝑉0 > 𝑣0 , 𝑉1 > 𝑣1 , 𝐺𝑖 > 𝑔𝑖 , 𝑖 = 1, 3 .

It is easy to show that the Cauchy problem (20) in a neighborhood of 𝜉 = 0
has a unique analytic solution majorizing zero. Consequently, the functions 𝑣
and 𝑤 are also analytical.

The theorem is proved. ⊓⊔
Therefore, the local solvability of the Cauchy problem (17) in the class of

analytic functions is proved.

5 Particular Case

5.1 Evaluation of the Interval of Existence of a Solution

Theorem 1 provides local solvability of the Cauchy problem in the class of ana-
lytic functions. However, it does not allow to evaluate the interval of convergence
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of the series. In this section, this complex and substantive problem is investigated
for a particular case. Consider the Cauchy problem

𝑤𝑤′′ +
1

𝜎
(𝑤′)2 + 𝑤′ +

1

𝛼
𝑤 = 0 ,

𝑤|𝜉=0 = 0 , 𝑤′|𝜉=0 = −𝜎 .
(21)

Construction of the solution of (2) is reduced to the problem (21), when 𝜈 = 0
and the heat front has the form 𝑓(𝜏) = ln(𝐶1𝜏 + 𝐶2)𝛼.

We construct the solution of (21) in the form of a power series

𝑤(𝜉) =

+∞∑︁

𝑛=0

𝑎𝑛𝜉
𝑛 , 𝑎𝑛

def
=

𝑤(𝑛)(𝜉)

𝑛!

⃒⃒
⃒⃒
𝜉=0

. (22)

In this case 𝑎0 ≡ 0, 𝑎1 ≡ −𝜎. The remaining coefficients of the series (22) are
determined from the recurrence formula

𝑎𝑛+1 =
1

(𝜎𝑛+ 1)(𝑛+ 1)

[︃
𝑛−2∑︁

𝑘=0

(︂
𝑘 + 1 +

𝑛− 𝑘

𝜎

)︂
(𝑘 + 2)𝑎𝑘+2𝑎𝑛−𝑘+

+
𝑎𝑛
𝛼

]︁
, 𝑛 ∈ N . (23)

Proposition 3. Power series (22) is convergent if |𝜉| 6 |𝛼|𝜎, 𝜎 > 1.

The proof is cumbersome and is not given here. However, the idea of the
proof is simple and consists in the construction of the estimates for (23) with
two well-known inequalities

𝑛−3∑︁

𝑘=1

1

𝑘 + 1
6 ln

(︂
2𝑛− 1

5

)︂
,

𝑛−3∑︁

𝑘=1

1

(𝑘 + 1)2
<
𝜋2

6
− 5

4
.

Proposition 3 allows us to specify the area of existence of analytical solutions
of the Cauchy problem (21). This result means that the analytical solution exists
and is unique in the segment 𝜉 ∈ [−|𝛼|𝜎, |𝛼|𝜎]. Let us see what conclusions this
fact leads to for the original problem.

Let us recall that in the present case

𝑢(𝜏, 𝜌) =
𝛼𝐶1

𝐶1𝜏 + 𝐶2
𝑤(𝜉) , 𝜉 = 𝜌− ln(𝐶1𝜏 + 𝐶2)𝛼 .

We assume that the heat wave starts from the origin. For this purpose the heat
wave front 𝑓(𝜏) = ln(𝐶1𝜏 + 𝐶2)𝛼 must satisfy the condition 𝑓 |𝜏=0 = 0. Thus,
𝐶2 = 1, therefore, 𝑓(𝜏) = ln(𝐶1𝜏 + 1)𝛼. Since 𝜏 > 0, then 𝑓(𝜏) is analytical for
0 6 𝜏 6 1/𝐶1, 𝐶1 > 0.

It should be noted that depending on the sign of the parameter 𝛼 the heat
wave may have two directions of motion. Let 𝛼 > 0, then 𝑢(𝜏, 𝜌) > 0 if and
only if 𝜉 6 0. Since we are interested in the analytical solution, we assume
−𝛼𝜎 6 𝜉 6 0. In this case, the heat wave moves to the right, and the area of the
existence of an analytic solution is 0 6 𝜏 6 1/𝐶1, 0 6 𝜌 6 𝛼 ln 2. In the case of
𝛼 < 0 heat wave moves to the left.
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Remark 3. The constraint 𝜎 > 1, violates the generality, however, is it physicaly
motivated, because in filtration problems 𝜎 is a measure of the gas adiabatic,
which is known [15] to be greater than one.

Remark 4. For the coefficients 𝑎𝑛+1 of (22) we have

𝑎𝑛+1 = (−1)𝑛
𝜎𝑏𝑛+1

(𝑛+ 1)!𝛼𝑛(𝜎 + 1)𝑛
𝑛∏︀

𝑚=2
(𝑚𝜎 + 1)⌊ 𝑛

𝑚⌋
, 𝑛 ∈ N , (24)

where ⌊𝑥⌋ def
= max {𝑛 ∈ Z | 𝑛 6 𝑥 }, 𝑏1 ≡ −1, and the remaining coefficients

𝑏𝑛+1 are determined from the recurrence formula

𝑏𝑛+1 =
1

𝜎

𝑛−2∑︁

𝑘=0

(︂
𝑛

𝑘

)︂(︂
𝜎 +

𝑛− 𝑘

𝑘 + 1

)︂ 𝑛−1∏︁

𝑚=2

(𝑚𝜎 + 1)⌊ 𝑛
𝑚⌋−⌊ 𝑘+1

𝑚 ⌋−⌊𝑛−𝑘−1
𝑚 ⌋𝑏𝑘+2𝑏𝑛−𝑘−

−
𝑛−1∏︁

𝑚=1

(𝑚𝜎 + 1)⌊ 𝑛
𝑚⌋−⌊𝑛−1

𝑚 ⌋𝑏𝑛 , 𝑛 ∈ N .

Note that 𝑏𝑛+1 ∈ Z[𝜎], and

deg(𝑏𝑛+1) =

𝑛−1∑︁

𝑘=2

⌊︁𝑛
𝑘

⌋︁
.

For example,

𝑏2 = 1 , 𝑏3 = 1 , 𝑏4 = 3𝜎 + 5 , 𝑏5 = 36𝜎3 + 132𝜎2 + 143𝜎 + 41 ,

𝑏6 = 360𝜎4 + 1824𝜎3 + 3203𝜎2 + 2232𝜎 + 469 , ...

The leading coefficients of the polynomials 𝑏𝑛+1 are calculated according to
the formula

(𝑛− 1)!

2𝑛−1

𝑛∏︁

𝑚=2

𝑚⌊ 𝑛
𝑚⌋ .

Using the representation (24) it can be assumed that the interval of conver-
gence of the series (22) is |𝜉| < 2|𝛼|𝑁(𝜎), where 𝑁(𝜎) ∼

𝜎→+∞
𝜎.

5.2 Numerical Research

Finally, we present the results of numerical research of the problem (21). Using
the fourth order Runge-Kutta method in increments of ℎ = 10−4 the numerical
solution of problem (21) is constructed. Calculations show that the solution 𝑤(𝜉)
has a singular point: in the case of 𝛼 > 0 it can’t be extended to the left of some
point −𝜉0 (fig. 1 (a)), and in the case 𝛼 < 0 it can’t be extended to the right of
the point 𝜉0 (fig. 1 (b)).
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ξ−ξ0 0

(a)

w

ξ

ξ0

0

(b)

Fig. 1. The behavior of the numerical solution of the Cauchy problem (21): (a) if 𝛼 > 0,
(b) if 𝛼 < 0.

In table 1 we present calculations, illustrating the behavior of the studied
numerical solutions of the Cauchy problem near the point 𝜉0 for some values of
the parameters 𝛼 and 𝜎. Here 𝜉* is some point close to 𝜉0.

From the results of numerical calculations which are presented in table 1 it
can be assumed that the position of the singular point 𝜉0 on the 𝜉–axis is defined
as 𝜉0 = 2𝛼𝑁(𝜎), where 𝑁(𝜎) ∼

𝜎→+∞
𝜎.

bc

ρ

τ

u

f(τ
) =

ln(C
1τ
+ 1)

α

u ≡ 0

u = αC1
C1τ+1w(ξ)

0

Fig. 2. Heat wave with the front 𝑓(𝜏) = ln(𝐶1𝜏 + 1)𝛼.

The presented in this section results are easy to interpret in terms of the
original problem (2), (3). In this case, we have a heat wave (in assumption that its
movement starts from the origin and 𝛼 > 0) with the front of 𝑓(𝜏) = ln(𝐶1𝜏+1)𝛼.
The behavior of this wave is shown schematically in figure 2. It should be noted
here that in this case we observe an effect of the heat wave separation.

6 Conclusion

The authors obtained exact heat wave type solutions of the nonlinear heat equa-
tion (2), satisfying the boundary condition (3). The procedure for constructing
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Table 1. Numerical calculations

𝛼 = 0.5

𝜎 0.5 1 2 3

|𝜉*| 0.68609 1.16480 2.13212 3.11027

|𝑤(𝜉*)| 9.53136 · 10−5 9.43393 · 10−6 5.69455 · 10−7 1.70947 · 10−7

|𝑤′(𝜉*)| 1.88372 · 106 7.43198 · 104 5.34697 · 103 1.35322 · 103
𝛼 = 1

𝜎 0.5 1 2 3

|𝜉*| 1.37218 2.32960 4.26425 6.22054

|𝑤(𝜉*)| 2.53957 · 10−4 1.52447 · 10−5 5.79874 · 10−7 4.86545 · 10−8

|𝑤′(𝜉*)| 1.06136 · 106 9.19834 · 104 7.49431 · 103 2.59468 · 103
𝛼 = 2

𝜎 0.5 1 2 3

|𝜉*| 2.74436 4.65920 8.52851 12.44108

|𝑤(𝜉*)| 1.88666 · 10−4 1.06928 · 10−5 9.91851 · 10−7 1.37783 · 10−7

|𝑤′(𝜉*)| 7.69236 · 106 2.62281 · 105 8.10400 · 103 2.31033 · 103
𝛼 = 3

𝜎 0.5 1 2 3

|𝜉*| 4.11654 6.98881 12.79277 18.66183

|𝑤(𝜉*)| 4.06943 · 10−4 1.87411 · 10−5 1.10758 · 10−6 2.39348 · 10−7

|𝑤′(𝜉*)| 3.72015 · 106 2.24469 · 105 9.39279 · 103 2.19988 · 103

these solutions is reduced to the Cauchy problem for nonlinear ordinary differ-
ential equations of second order with a singularity. We establish the solvability
of the obtained problems in the class of analytic functions (theorem 1).

Unlike solutions in form of power series [8–11], obtained exact solutions have
several advantages. For example, it is possible to get comprehensive information
on the properties of the heat waves. In this paper we have obtained an estimates
for the area of analyticity (proposition 3) of heat wave type solution with front
𝑓(𝜏) = ln(𝐶1𝜏 + 1)𝛼. It’s behavior have been studied by numerical methods.

Note that the heat wave type solutions of the nonlinear heat equation are
important both from a theoretical point of view and in connection with appli-
cations. For instance, heat waves propagating with a finite rate, can be used to
describe high-temperature processes in plasma [4].
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