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Abstract. A version of collocations and least residuals method (CLS)
based on polynomial approximation of high degree (p - approach) was
proposed and implemented. In rectangular domains collocation points are
selected using the roots of Chebyshev polynomials and approximate so-
lution is represented in the form of direct products of Chebyshev polyno-
mials series. It was shown that the use of p - approach in the CLS method
allows to obtain numerical solutions with high accuracy and to implement
complex boundary conditions with no special techniques. The numeri-
cal method used to solve a problem of bending of laminated anisotropic
rectangular plates within frameworks of classical laminated plate the-
ory, first order shear deformation theory and Grigolyuk-Chulkov’s broken
line theory. Several specific example problems are solved, including fixed
three-ply laminates with transversely isotropic layers under transverse
uniform loading.

Keywords: Collocations and least residuals method, Chebyshev poly-
nomials, plate theory, spectral methods, composite materials

1 Introduction

The collocation and least residuals method (CLS) is an efficient method for
numerial solution of boundary value problems both for systems of ordinary and
partial differential equations. It is based on the collocation method (CM) [1], with
approximate solution is represented as a linear combination of basis functions in
some functional space. To determine it unknown coefficients in CM residual of
equations 𝑅(𝑥) vanishes at given points (collocation points)

𝑅(𝑥𝑐𝑜𝑙𝑖 ) = 0, {𝑥𝑐𝑜𝑙} – collocation points. (1)

Mathematical and Information Technologies, MIT-2016 — Mathematical modeling

299



The main difference between CLS method and CM is the minimizing technique of
𝑅(𝑥). In CLS method we minimize some functional of residual in the collocation
points [2, 3], instead of the condition (1). The CLS method is used to minimize
residual in 𝐿2 norm ∑︁

𝑖

‖𝑅(𝑥𝑐𝑜𝑙𝑖 )‖22 → min . (2)

In CLS method the number of equations can exceed the number of unknown
coefficients in representation of the solution. The solutions of arising overde-
termined systems of linear algebraic equations (SLAE) are defined in the sense
of (2) (least squares). In comparison with CM (1) the obtained overdetermined
SLAE is often better conditioned and leads to less nonphysical oscillations in
numerical solutions. Similar regularization approaches are applied in the finite
element method (Least squares finite element methods) [4].

In this paper, an approximate solution is represented as a linear combination
of polynomials of high degrees (p - approach) that is typical for spectral methods.
This allows to obtain numerical solutions of high accuracy at low computational
cost. Term (2) makes the implementation of p - approach more convenient in
CLS method when compared with CM. This modification based on p - approach
is called hp - version of CLS method.

We will demonstrate the application of a method to solving problems of solid
mechanics – bending of laminated anisotropic rectangular plates. On a practical
level, for calculating the stress and displacement fields of such structures the the-
ories of plates are used. They lead to a smaller computational efforts compared
to three-dimentional elasticity formulation.

Boundary value problems arising in a plate theories have a number of features
that present difficulties for many well-known numerical methods. First, govern-
ing equations of plate theories may contain derivatives of high orders. Second,
boundary conditions may be quite complicated, for example, in a form of linear
combination of functions and their higher order derivatives. Third, equations of
the plate theory may contain small parameters in the derivatives. These features
cause serious difficulties for widely used finite differences and finite element meth-
ods. The use of both p - approach and term (2) in hp - version of CLS method
may resolve these difficulties and obtain high accuracy solutions at relatively low
computational efforts.

2 Formulation of Problem and Governing Equations

Let us consider a static bending of laminate composed of 3 layers of constant
thickness (Fig. 1). Layers are transversely isotropic with material symmetry axis
in the plate’s plane. Layers orientation scheme is

𝜃1 = 𝜃3 = 0, 𝜃2 = 𝜋/2,

where 𝜃𝑘 is an angle measured counterclockwise from the 𝑥 coordinate axis to
the 𝑘-th layer material symmetry axis.
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Fig. 1. Rectangular multilayered plate under transverse loading; 𝑎, 𝑏, ℎ — plate’s di-
mensions in the directions 𝑥, 𝑦, 𝑧 respectively, 𝑧𝑘 — 𝑘-th layer lower surface coordinate,
𝑘 = 1, 2, 3.

Engineering constants of transversely isotropic material are [5]

𝐸𝐿 = 25 Mpsi, 𝐸𝑇 = 1 Mpsi, 𝐺𝐿𝑇 = 0.5 Mpsi,

𝐺𝑇𝑇 = 0.2 Mpsi, 𝜈𝐿𝑇 = 𝜈𝑇𝑇 = 0.25.
(3)

Here 𝐸, 𝐺, 𝜈 are elasticity and shear modulus, Poisson ratios. 𝐿 signifies the
material symmetry axe, 𝑇 the transverse direction. Layers thicknesses are

ℎ1 = ℎ3 = ℎ/4, ℎ2 = ℎ/2.

The upper surface of the plate is under uniform transverse load 𝑞0, the lower
surface is free, and a continuity condition of displacements 𝑢, 𝑣, 𝑤 and stresses
𝜎𝑧𝑧, 𝜎𝑥𝑧, 𝜎𝑦𝑧 is used on interface surfaces. The corresponding boundary condi-
tions are defined on the boundary of the plate. The task is to calculate the stress
and displacement fields of such plates.

Calculation of thin laminated anisotropic structures within framework of the
three-dimensional elasticity is associated with high computational efforts. There-
fore, many researchers frequently make use of more robust plate theories, that
allows to reduce the dimension of the original problem by excluding the direction
of the coordinate 𝑧 from consideration. We consider three plate theories, where
transverse shear stresses are simulated differently: classical laminated plate the-
ory (CLPT), first order shear deformation theory (FSDT) or Timoshenko’s plate
theory [6] and Grigolyuk-Chulkov’s broken line theory (GCT) [7].

Classical laminated plate theory uses the classical Kirchhoff assumption
which implies the geometric relationships in the form of

𝑒𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤0

𝜕𝑥2
, 𝑒𝑦𝑦 =

𝜕𝑣0
𝜕𝑦

− 𝑧
𝜕2𝑤0

𝜕𝑦2
, 𝑒𝑧𝑧 = 0,

𝑒𝑥𝑦 =
1

2

(︂
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

)︂
− 𝑧

𝜕2𝑤0

𝜕𝑥𝜕𝑦
, 𝑒𝑥𝑧 = 0, 𝑒𝑦𝑧 = 0.
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Here 𝑒𝑖𝑗 – strains; 𝑢0(𝑥, 𝑦), 𝑣0(𝑥, 𝑦), 𝑤0(𝑥, 𝑦) – central plane displacements.

Constitutive equations for 𝑘-th layer are expressed by

⎛
⎜⎝
𝜎𝑘𝑥𝑥
𝜎𝑘𝑦𝑦
𝜎𝑘𝑥𝑦

⎞
⎟⎠ =

⎛
⎜⎝
𝑄𝑘11 𝑄

𝑘
12 𝑄

𝑘
16

𝑄𝑘12 𝑄
𝑘
22 𝑄

𝑘
26

𝑄𝑘16 𝑄
𝑘
26 𝑄

𝑘
66

⎞
⎟⎠

⎛
⎜⎝
𝑒𝑥𝑥

𝑒𝑦𝑦

𝑒𝑥𝑦

⎞
⎟⎠ , (4)

⎛
⎜⎝
𝑄𝑘11 𝑄

𝑘
12 𝑄

𝑘
16

𝑄𝑘12 𝑄
𝑘
22 𝑄

𝑘
26

𝑄𝑘16 𝑄
𝑘
26 𝑄

𝑘
66

⎞
⎟⎠ = 𝐷𝑘

1𝐶
𝑘
1 (𝐷𝑘

1 )𝑇 ,

where

𝐶𝑘1 =

⎛
⎜⎝
𝐶𝑘11 𝐶

𝑘
12 0

𝐶𝑘12 𝐶
𝑘
22 0

0 0 𝐶𝑘66

⎞
⎟⎠ , 𝐷𝑘

1 =

⎛
⎝

cos2 𝜃𝑘 sin2 𝜃𝑘 − sin 2𝜃𝑘

sin2 𝜃𝑘 cos2 𝜃𝑘 sin 2𝜃𝑘

(sin 2𝜃𝑘)/2 −(sin 2𝜃𝑘)/2 cos 2𝜃𝑘

⎞
⎠

Coefficients 𝐶𝑘𝑖𝑗 express in terms of the engineering constant as follows:

𝐶𝑘11 =
𝐸𝑘𝐿

1 − 𝜈𝑘𝐿𝑇 𝜈
𝑘
𝑇𝐿

, 𝐶𝑘22 =
𝐸𝑘𝑇

1 − 𝜈𝑘𝐿𝑇 𝜈
𝑘
𝑇𝐿

,

𝐶𝑘12 =
𝜈𝑘𝐿𝑇𝐸

𝑘
𝑇

1 − 𝜈𝑘𝐿𝑇 𝜈
𝑘
𝑇𝐿

, 𝐶𝑘66 = 𝐺𝐿𝑇 .

It is convenient to define the following quantities

𝐴𝑖𝑗 =

3∑︁

𝑘=1

∫︁ 𝑧𝑘+1

𝑧𝑘

𝑄𝑘𝑖𝑗 𝑑𝑧 =

3∑︁

𝑘=1

𝑄𝑘𝑖𝑗(𝑧𝑘+1 − 𝑧𝑘),

𝐷𝑖𝑗 =

3∑︁

𝑘=1

∫︁ 𝑧𝑘+1

𝑧𝑘

𝑄𝑘𝑖𝑗 𝑧
2 𝑑𝑧 =

1

3

3∑︁

𝑘=1

𝑄𝑘𝑖𝑗(𝑧
3
𝑘+1 − 𝑧3𝑘),

(5)

where 𝑧𝑘 – coordinates of layers lower surface (Fig. 1). Finaly governing equations
for considered problem within CLPT framework are given by

(𝐴12 +𝐴66)
𝜕2𝑣0
𝜕𝑥 𝜕𝑦

+𝐴11
𝜕2𝑢0
𝜕𝑥2

+𝐴66
𝜕2𝑢0
𝜕𝑦2

= 0,

(𝐴12 +𝐴66)
𝜕2𝑢0
𝜕𝑥 𝜕𝑦

+𝐴22
𝜕2𝑣0
𝜕𝑦2

+𝐴66
𝜕2𝑣0
𝜕𝑥2

= 0,

(2𝐷12 + 4𝐷66)
𝜕4𝑤0

𝜕𝑥2 𝜕𝑦2
+𝐷11

𝜕4𝑤0

𝜕𝑥4
+𝐷22

𝜕4𝑤0

𝜕𝑦4
= 𝑞0.

(6)

We consider two kinds of boundary conditions:
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– clamped

𝑥 = 0 : 𝑢0 = 0, 𝑣0 = 0, 𝑤0 = 0,
𝜕𝑤0

𝜕𝑥
= 0;

𝑥 = 𝑎 : 𝑢0 = 0, 𝑣0 = 0, 𝑤0 = 0,
𝜕𝑤0

𝜕𝑥
= 0;

𝑦 = 0 : 𝑢0 = 0, 𝑣0 = 0, 𝑤0 = 0,
𝜕𝑤0

𝜕𝑦
= 0;

𝑦 = 𝑎 : 𝑢0 = 0, 𝑣0 = 0, 𝑤0 = 0,
𝜕𝑤0

𝜕𝑦
= 0;

– simply-supported

𝑥 = 0 :
𝜕𝑢0
𝜕𝑥

= 0, 𝑣0 = 0, 𝑤0 = 0,
𝜕2𝑤0

𝜕𝑥2
= 0;

𝑥 = 𝑎 :
𝜕𝑢0
𝜕𝑥

= 0, 𝑣0 = 0, 𝑤0 = 0,
𝜕2𝑤0

𝜕𝑥2
= 0;

𝑦 = 0 : 𝑢0 = 0,
𝜕𝑣0
𝜕𝑦

= 0, 𝑤0 = 0,
𝜕2𝑤0

𝜕𝑦2
= 0;

𝑦 = 𝑎 : 𝑢0 = 0,
𝜕𝑣0
𝜕𝑦

= 0, 𝑤0 = 0,
𝜕2𝑤0

𝜕𝑦2
= 0.

First order shear deformation theory allows transverse shear in a first
approximation by defining independent function of rotation of the transverse
normal about central surface: 𝜑𝑥(𝑥, 𝑦) and 𝜑𝑦(𝑥, 𝑦). The strains are obtained by

𝑒𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

+ 𝑧
𝜕𝜑𝑥
𝜕𝑥

, 𝑒𝑦𝑦 =
𝜕𝑣0
𝜕𝑦

+ 𝑧
𝜕𝜑𝑦
𝜕𝑦

,

𝑒𝑥𝑦 =

(︂
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

)︂
+ 𝑧

(︂
𝜕𝜑𝑥
𝜕𝑦

+
𝜕𝜑𝑦
𝜕𝑥

)︂
,

𝑒𝑥𝑧 =
𝜕𝑤0

𝜕𝑥
+ 𝜑𝑥, 𝑒𝑦𝑧 =

𝜕𝑤0

𝜕𝑦
+ 𝜑𝑦, 𝑒𝑧𝑧 = 0.

Constitutive equations of FSDT are obtained by adding to (4) expressions for
the shear stresses (︃

𝜎𝑘𝑦𝑧
𝜎𝑘𝑥𝑧

)︃
=

(︃
𝑄𝑘44 𝑄

𝑘
45

𝑄𝑘45 𝑄
𝑘
55

)︃(︃
𝑒𝑦𝑧

𝑒𝑥𝑧

)︃
,

(︃
𝑄𝑘44 𝑄

𝑘
45

𝑄𝑘45 𝑄
𝑘
55

)︃
= 𝐷𝑘

2𝐶
𝑘
2 (𝐷𝑘

2 )𝑇 , 𝐶𝑘2 =

(︂
𝐶𝑘44 0
0 𝐶𝑘55

)︂
, 𝐷𝑘

2 =

(︂
cos 𝜃𝑘 sin 𝜃𝑘

− sin 𝜃𝑘 cos 𝜃𝑘

)︂
,

where stiffness coefficients are express by engineering constants

𝐶𝑘44 = 𝐺𝑇𝑇 , 𝐶𝑘55 = 𝐺𝐿𝑇 .
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Governing equations for FSDT can be written as

(𝐴12 +𝐴66)
𝜕2𝑣0
𝜕𝑥 𝜕𝑦

+𝐴11
𝜕2𝑢0
𝜕𝑥2

+𝐴66
𝜕2𝑢0
𝜕𝑦2

= 0,

(𝐴12 +𝐴66)
𝜕2𝑢0
𝜕𝑥 𝜕𝑦

+𝐴22
𝜕2𝑣0
𝜕𝑦2

+𝐴66
𝜕2𝑣0
𝜕𝑥2

= 0,

−𝐴44
𝜕𝜑𝑦
𝜕𝑦

−𝐴44
𝜕2𝑤0

𝜕𝑦2
−𝐴55

𝜕𝜑𝑥
𝜕𝑥

−𝐴55
𝜕2𝑤0

𝜕𝑥2
= 𝑞0,

(𝐷12 +𝐷66)
𝜕2𝜑𝑦
𝜕𝑥 𝜕𝑦

−𝐴55𝜑𝑥 −𝐴55
𝜕𝑤0

𝜕𝑥
+𝐷11

𝜕2𝜑𝑥
𝜕𝑥2

+𝐷66
𝜕2𝜑𝑥
𝜕𝑦2

= 0,

(𝐷12 +𝐷66)
𝜕2𝜑𝑥
𝜕𝑥 𝜕𝑦

−𝐴44𝜑𝑦 −𝐴44
𝜕𝑤0

𝜕𝑦
+𝐷22

𝜕2𝜑𝑦
𝜕𝑦2

+𝐷66
𝜕2𝜑𝑦
𝜕𝑥2

= 0,

where coefficients are defined by (5).
Boundary conditions for clamped edges in FSDT are written as follows:

𝑢0 = 0, 𝑣0 = 0, 𝑤0 = 0, 𝜑𝑥 = 0, 𝜑𝑦 = 0, (𝑥, 𝑦) ∈ 𝜕𝛺.

More details of CLPT and FSDT plate theories are described in [6].
Grigolyuk-Chulkov’s theory is layerwise theory, where mechanical prop-

erties of each layer are considered separately. For this purpose, in each layer the
rotations of transverse normal about central surface 𝜑𝑘𝑥(𝑥, 𝑦) and 𝜑𝑘𝑦(𝑥, 𝑦) are
defined. It can be assumed that the GCT is a generalization of the FSDT that
takes into account transverse shear stresses in each layer separately.

Expressions for geometrical equations in GCT have the form

𝑒𝑘𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

+

3∑︁

𝑖=1

𝑃𝑘𝑖
𝜕𝜑𝑖𝑥
𝜕𝑥

+ (𝑧 − 𝑧𝑘−1)
𝜕𝜑𝑘𝑥
𝜕𝑥

,

𝑒𝑘𝑦𝑦 =
𝜕𝑣0
𝜕𝑦

+

3∑︁

𝑖=1

𝑃𝑘𝑖
𝜕𝜑𝑖𝑦
𝜕𝑦

+ (𝑧 − 𝑧𝑘−1)
𝜕𝜑𝑘𝑦
𝜕𝑦

,

𝑒𝑘𝑥𝑦 =

(︂
𝜕𝑣0
𝜕𝑥

+
𝜕𝑢0
𝜕𝑦

)︂
+

3∑︁

𝑖=1

𝑃𝑘𝑖

(︃
𝜕𝜑𝑖𝑦
𝜕𝑥

+
𝜕𝜑𝑖𝑥
𝜕𝑦

)︃
+ (𝑧 − 𝑧𝑘−1)

(︃
𝜕𝜑𝑘𝑦
𝜕𝑥

+
𝜕𝜑𝑘𝑥
𝜕𝑦

)︃
,

𝑒𝑘𝑥𝑧 = 𝜑𝑘𝑥 +
𝜕𝑤

𝜕𝑥
, 𝑒𝑘𝑦𝑧 = 𝜑𝑘𝑦 +

𝜕𝑤

𝜕𝑦
, 𝑒𝑘𝑧𝑧 = 0,

where

𝑃 =

⎛
⎝

0 0 0
ℎ1 0 0
ℎ1 ℎ2 0

⎞
⎠ .

Boundary conditions for clamped edges in GCT are (𝑘 = 1, 2, 3)

𝑢0 = 0, 𝑣0 = 0, 𝑤0 = 0, 𝜑𝑘𝑥 = 0, 𝜑𝑘𝑦 = 0, (𝑥, 𝑦) ∈ 𝜕𝛺.
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Because of awkward form, governing equations of GCT are not presented.
Detailed description of the theory can be found in [7]. It is necessary to note,
that plate theories are approximations to elasticity theory and bring about their
own errors which are important to estimate.

3 hp - Version of CLS Method

Implementation aspects of CLS method are similar to the CM. Consider a general
boundary value problem for a linear elliptic system in a rectangular domain
𝛺 = [0, 𝑎] × [0, 𝑏]:

𝐿𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛺,

𝐿𝑏𝑛𝑑𝑢(𝑥, 𝑦) = 𝑔(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝜕𝛺.

Let us define a grid with non-overlapping rectangular cells 𝛺𝑘 (𝑘 = 1, . . .𝐾).
In each cell 𝛺𝑘 we introduce local variables (𝛼𝑘1 , 𝛼

𝑘
2), which are associated with

global variables (𝑥, 𝑦) in the Cartesian coordinate system by

𝛼𝑘1 =
𝑥− 𝑥*𝑘

𝑑𝑘1
, 𝛼𝑘2 =

𝑦 − 𝑦*𝑘

𝑑𝑘2
,

where 2𝑑𝑘1 , 2𝑑𝑘2 — sizes of cell in 𝑥 and 𝑦 directions, (𝑥*𝑘, 𝑦*𝑘) — the coordinates
of the cell centers. Local variables are varying in canonical interval 𝛼𝑘1 ∈ [−1, 1],
𝛼𝑘2 ∈ [−1, 1]. The upper index 𝑘, that indicates the cell’s number, will be omitted
further.

In this version of CLS method approximate solution in the cell is represented
in form of direct product of single variable basis functions :

𝑢(𝛼1, 𝛼2) =

𝑁1−1∑︁

𝑖1=0

𝑁2−1∑︁

𝑖2=0

𝑐𝑖1𝑖2𝜑𝑖1(𝛼1)𝜑𝑖2(𝛼2). (7)

Functions 𝜑𝑖 are chosen as the Chebyshev polynomials of the first kind 𝑇𝑛

𝜑𝑖1(𝛼1) = 𝑇𝑖1(𝛼1), 𝜑𝑖2(𝛼2) = 𝑇𝑖2(𝛼2).

In previous paper [8] we used cardinal functions in Lagrange-like form

𝜑𝑖1(𝛼1) =

𝑁1−1∏︁

𝑚=0
𝑚 ̸=𝑖1

𝛼1 − (𝛼1)𝑐𝑜𝑙𝑚
(𝛼1)𝑐𝑜𝑙𝑖1 − (𝛼1)𝑐𝑜𝑙𝑚

, 𝜑𝑖2(𝛼2) =

𝑁2−1∏︁

𝑙=0
𝑙 ̸=𝑖2

𝛼2 − (𝛼2)𝑐𝑜𝑙𝑙
(𝛼2)𝑐𝑜𝑙𝑖2 − (𝛼2)𝑐𝑜𝑙𝑙

, (8)

where
(︀
(𝛼1)𝑐𝑜𝑙𝑚 , (𝛼2)𝑐𝑜𝑙𝑚

)︀
are local coordinates of collocation points. But in prac-

tice polynomials (8) require a large number of arithmetic operations and lead to
complex expressions when differentiating. In this sense, Chebyshev polynomials
are more convenient choice.

To determine the unknown coefficients in representation (7) for each cell let
us write down the equation of three types
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– collocation equations at the collocation point
(︀
𝛼𝑐𝑜𝑙1 , 𝛼𝑐𝑜𝑙2

)︀

𝐿𝑢(𝛼𝑐𝑜𝑙1 , 𝛼𝑐𝑜𝑙2 ) = 𝑓(𝛼𝑐𝑜𝑙1 , 𝛼𝑐𝑜𝑙2 ); (9)

– boundary equations at given point
(︀
𝛼𝑏𝑛𝑑1 , 𝛼𝑏𝑛𝑑2

)︀
, on boundary 𝜕𝛺𝑘, adjacent

to 𝜕𝛺
𝐿𝑏𝑛𝑑𝑢(𝛼𝑏𝑛𝑑1 , 𝛼𝑏𝑛𝑑2 ) = 𝑔(𝛼𝑏𝑛𝑑1 , 𝛼𝑏𝑛𝑑2 ); (10)

– matching conditions on interface between neighbour cells at given points
(𝛼𝑚𝑎𝑡1 , 𝛼𝑚𝑎𝑡2 )

𝐿𝑚𝑎𝑡𝑢(𝛼𝑚𝑎𝑡1 , 𝛼𝑚𝑎𝑡2 ) = 𝐿𝑚𝑎𝑡𝑢
𝑎𝑑𝑗(𝛼𝑚𝑎𝑡1 , 𝛼𝑚𝑎𝑡2 ), (11)

Here 𝑢𝑎𝑑𝑗 – solution defined in neighbour cell 𝛺𝑎𝑑𝑗 .

Matching conditions 𝐿𝑚𝑎𝑡 usually require the continuity of the solutions and the
necessary number of its derivatives along the normal to the boundary of the cell.

In this version of CLS method the local coordinates of collocation points are
roots of Chebyshev polynomials (𝑖1 = 1, . . . , 𝑁1, 𝑖2 = 1, . . . , 𝑁2)

(︀
(𝛼1)𝑐𝑜𝑙𝑖1 , (𝛼2)𝑐𝑜𝑙𝑖2

)︀
= (𝑡𝑖11 , 𝑡

𝑖2
2 ),

where 𝑡𝑖11 and 𝑡𝑖22 – roots of Chebyshev polynomials of 𝑁1 and 𝑁2 degree re-
spectively. By the same way we define

(︀
𝛼𝑏𝑛𝑑1 , 𝛼𝑏𝑛𝑑2

)︀
and (𝛼𝑚𝑎𝑡1 , 𝛼𝑚𝑎𝑡2 ) on cell

boundaries (𝑖1 = 1, . . . , 𝑁1, 𝑖2 = 1, . . . , 𝑁2)

(−1, 𝑡𝑖22 ), (1, 𝑡𝑖22 ), (𝑡𝑖11 ,−1), (𝑡𝑖11 , 1).

Thus, for 𝑁1𝑁2 unknown coefficients in cell we use 𝑁1𝑁2 collocation equa-
tions appended by equations on cell boundary. Thus, in hp - version of CLS
method corresponding SLAE becomes overdetermined. In this version of method
approximate solution form does not satisfy to boundary and matching conditions
identically, so residual 𝑅(𝑥) (2) must contain not only collocation equations, but
boundary conditions (10) and matching conditions (11) too. In particular, this
allows us to consider the boundary conditions in complex form.

To solve the overdetermined linear systems in the least squares sense (2) we
use 𝑄𝑅 factorization of its matrix, implemented by Householder method. In the
case of large linear systems we use domain decomposition method [9]. This allows
to reduce the solution of the problem in whole region to iterative process through
subdomains with computational complexity is much smaller than the original
problem for the region. For linear systems in a subdomain we use Householder
method again. In this case special matching conditions between subdomains
are used. For example, the continuity of function and its first derivative at the
boundary of the cell 𝛺𝑘 can be written as

𝑢+ 𝑝1
𝜕𝑢

𝜕𝑛
= 𝑢𝑎𝑑𝑗 + 𝑝1

𝜕𝑢𝑎𝑑𝑗

𝜕𝑛
,

where 𝑢 is solution in the cell at the current iteration; 𝑢𝑎𝑑𝑗 — solution in the
neighbor cell; 𝑛 — the outer normal to the boundary 𝛺𝑘. For plate theories,
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that may contain derivatives up to the 4th order, we can additionally require
the continuity of a linear combination of the second and third derivatives of the
approximate solution:

𝜕2𝑢

𝜕𝑛2
+ 𝑝2

𝜕3𝑢

𝜕𝑛3
=
𝜕2𝑢𝑎𝑑𝑗

𝜕𝑛2
+ 𝑝2

𝜕3𝑢𝑎𝑑𝑗

𝜕𝑛3
.

The choice of weights 𝑝1, 𝑝2 can affect the properties of the numerical solutions
and speed of convergence of the iterative process.

4 Numerical Experiments

In all numerical experiments a single cell that coincides with the entire domain
is used. Further we will consider only square plates 𝑎 = 𝑏 = 1 m.

To demonstrate the capabilities of hp - version of CLS method let us consider
the problem with the known exact solution. The last equation of the system (6) is
similar to the Kirchhoff-Love plate theory equation for bending of a homogeneous
orthotropic plates

𝐷11
𝜕4𝑤0

𝜕𝑥4
+ (2𝐷12 + 4𝐷66)

𝜕4𝑤0

𝜕𝑥2 𝜕𝑦2
+𝐷22

𝜕4𝑤0

𝜕𝑦4
= 𝑞0.

Consider 3-ply simply-supported square laminate under uniform transverse
load 𝑞0 with stiffness coefficients defined by (3). This problem can be solved by
Fourier method [10]. In this case maximum deflection is observed in the center of
the plate and if ℎ = 0.01 m, then the deflection value for Fourier method solution
(sum of first 2500 members) is

𝑤* =
𝑤0(0.5, 0.5)

𝑞0
108 = 9.8577127.

Deflections in the center of the plate are calculated by hp – version of CLS method
are shown in Table 1.

Table 1. Deflections at the center of the plate obtained by the hp – version of CLS
method, ℎ = 0.01.

𝑁1 ×𝑁2 𝑤0(0.5, 0.5)/𝑞0 · 108

10× 10 9.8579
20× 20 9.85773
30× 30 9.857715

Table 1 demonstrates high accuracy of numerical results, obtained by hp –
version of CLS method even for the differential equation with derivatives of
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4-th order of the unknown functions. Thus, hp – version of CLS method has no
difficulties when working with differential equations containing derivatives of
high orders like (3).

Consider another formulation of the problem. Let us use the free edge con-
ditions on the one of the edges (𝑥 = 1) in the previous problem.

𝐷11
𝜕2𝑤0

𝜕𝑥2
+𝐷12

𝜕2𝑤0

𝜕𝑦2
= 0,

𝐷11
𝜕3𝑤0

𝜕𝑥3
+ (𝐷12 + 2𝐷66)

𝜕3𝑤0

𝜕𝑥2𝜕𝑦
= 0.

These boundary conditions by the use of term (2) implements with no additional
effort in the CLS method. Fig. 2 shows the deformed shape of the plate with the
free edge.

Fig. 2. Simply-supported plate with free edge.

Now let us consider the bending of clamped 3-ply laminates with different
relative thickness ℎ/𝑎, as described in Section 2. Stress and displacement fields
calculation for such plates will be carried out within framework of three theories
described above.

Fig. 3. Stress fields for absolute value of 𝜎𝑥𝑥 and 𝜎𝑦𝑦 in 3-ply laminate for ℎ/𝑎=0.02.
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Brief analysis of solution shows that 𝜎𝑥𝑥 prevails in the stress state of outer
layers (Fig. 3). And maximum absolute values are observed in the vicinity of the
clamped edges (𝑥 = 0, 1). Similar conclusion are true for the middle layer of the
plate and component 𝜎𝑦𝑦, which is associated with an orientation of transversely
isotropic material.

Further we will use the following normalized quantities

𝜎̄𝑘𝑥𝑥 =
𝜎𝑘𝑥𝑥
𝑞0𝑆2

, 𝜎̄𝑘𝑦𝑦 =
𝜎𝑘𝑦𝑦
𝑞0𝑆2

, 𝜎̄𝑘𝑥𝑦 =
𝜎𝑘𝑥𝑥
𝑞0𝑆2

10−2,

𝑤̄0 =
𝜎𝑘𝑥𝑥
𝑞0

10−9, 𝑧 =
𝑧

ℎ
.

Table 2. Stresses and deflection in 3-ply laminate. The results of calculations carried
out in the framework of the CLPT, FSDT and GCT plate theories. Sign (%) is used
for relative percentage deviation from GCT.

ℎ/𝑎 GCT FSDT CLPT FSDT (%) CLPT (%)

𝜎̄3
𝑥𝑥(𝑎, 0, ℎ/2)

0.1 0.975 0.475 0.579 51.2 40.6
0.05 0.569 0.545 0.579 4.28 1.61
0.02 0.576 0.574 0.578 0.30 0.42
0.01 0.578 0.578 0.578 0.05 0.13

𝜎̄2
𝑦𝑦(0, 𝑎, ℎ/4)

0.1 0.636 0.662 0.456 4.21 28.2
0.05 0.605 0.536 0.456 11.5 24.6
0.02 0.483 0.471 0.456 2.65 5.72
0.01 0.463 0.460 0.455 0.64 1.82

𝜎̄3
𝑥𝑦(3/4𝑎, 3/4𝑎, ℎ/2)

0.1 0.983 0.675 0.006 31.3 38.4
0.05 0.632 0.647 0.006 2.28 4.20
0.02 0.616 0.616 0.006 0.04 1.74
0.01 0.609 0.609 0.006 0.02 0.62

𝑤̄(𝑎/2, 𝑎/2, ℎ/2)

0.1 –0.751 –0.603 –0.208 31.30 38.36
0.05 –2.650 –2.538 –1.667 2.28 4.20
0.02 –28.523 –28.335 –26.044 0.04 1.74
0.01 –213.312 –212.974 –208.354 0.02 0.62

Table 2 shows calculated deflections and stresses in vicinities of their maxi-
mum absolute values. We assume GCT as the most accurate among considered
theory, because its hypothesis is the most suitable in given structure [8, 7]. There-
fore, we will treat it as a reference.
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Despite the simplicity, the CLPT may be used for very thin laminated plates.
If the 5% deviations from GCL are admissible, CLPT can be applied for ℎ/𝑎 <
0.02 case. More accurate results are obtained within the framework of FSDT.
It can be used for plates with aspect ratio ℎ/𝑎 < 0.05. For thicker plates GCT
theory differs significantly.

In presented calculations all functions are approximated with 𝑁1 = 𝑁2 = 17
that allowed to get three guaranteed digits for the maximum deflection. In this
case, the CLPT is required to determine 17 · 17 · 3 = 867 unknown coefficients,
FSDT – 17 · 17 · 5 = 1445, and GCT – 2601. It is interesting that for ℎ/𝑎 < 0.02
CLPT results do not differ significantly from those of FSDT. In particular, it
means that for plates with ℎ/𝑎 < 0.02 CLPT is preferable, because of lower
computational efforts.

Fig. 4. Stresses distribution along 𝑧 coordinate 𝜎̄𝑥𝑥(𝑎, 0, 𝑧), 𝜎̄𝑥𝑥(𝑎/2, 𝑎/2, 𝑧) and
𝜎̄𝑦𝑦(0, 𝑏, 𝑧), 𝜎̄𝑦𝑦(𝑎/2, 𝑎/2, 𝑧) in 3-ply laminate for ℎ/𝑎 = 0.02.

Fig. 4 shows the distribution of stresses 𝜎𝑥𝑥 and 𝜎𝑦𝑦 along the 𝑧 coordinate
(thickness) for different points (𝑥, 𝑦): in the center of the plate and on the border
where they reach the maximum values. The absolute maximum stresses values
are observed at the outer sutfaces of layers. And the absolute values at the edges
of the plate exceed values at the center of the plate a few times, that is true for
both the stress tensor components.

Presented numerical results shows that hp - version of CLS method can be
successfully applied to problems of mechanics of laminates anisotropic rectan-
gular plates within framework the various plates theories. Term (2) allows us to
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consider a wide class of boundary value problems including complex boundary
conditions. Moreover p - approach allows to obtain high accuracy of numerical
solutions at low computational efforts.
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