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Abstract—The industrial application of formal methods and 

in particular of software verification tools, e.g. based on 

satisfiability checking and symbolic computation as being in the 

main focus of the SC2 network, necessitates two main 

requirements. The methods and tools, first, need to actually aim 

at the problem class that occur in practice and, second, have to 

guarantee a high level of confidence. In this position paper, we 

raise two challenges in the domain of software verification: 

1) enhancing the field of application of software verification tools 

in practice by means of efficient support of IEEE-754-based 

floating-point models and 2) enhancing confidence of software 

verification tools by means of generating certificates for their 

computed analysis results. 
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I.  INTRODUCTION 

As an industrial associate partner of the SC
2
 network, we 

certainly play a minor role in the academic research activities 
performed in that network. Even though having a matching 
academic background for this network, the benefit we see in 
our participation lays merely in the contribution we can give: 
show which topics are very close to the emerging needs real 
end users have who successfully apply formal test and 
verification tools already today. This could enable researchers 
to align their focus of work. Furthermore, as we as a tool 
vendor are close to real world applications, we can also 
provide data on these models coming from practice, allowing 
academic partners to validate the efficiency of their 
approaches in a real world setting. The benefit for us is 
obvious: getting in touch with leading researchers in a very 
important domain and get insight into ideas and technologies 
on how to answer to the emerging needs from end users. 

II. BTC EMBEDDED SYSTEMS AG 

BTC Embedded Systems AG (BTC-ES), a majority 
shareholding of BTC Business Technology Consulting AG, 
provides products and services for formal verification, 
automated validation, and automated testing of embedded 
systems software. BTC-ES products significantly reduce 
required efforts for testing of embedded systems software, and 
considerably increase the quality of the developed systems. 
Additionally, BTC-ES offers on-site and off-site services 
around the testing products and testing in general in order to 
support customers in using the BTC-ES products successfully 
and efficiently. BTC-ES cooperates with two larger 
enterprises, dSPACE GmbH and IBM Rational Software. 

These two partners and BTC-ES strive to providing products 
and services for modeling, auto code generation, test 
automation, and formal verification to customers. dSPACE 
GmbH and BTC-ES support the tool chain Matlab®, 
Simulink®, Stateflow® and dSPACE’s TargetLink®. IBM 
Rational and BTC-ES provide solutions for the tool chains 
concerning the modeling tools Statemate® and Rhapsody® 
UML. Together with dSPACE GmbH, BTC-ES has a strong 
focus on the automotive domain with key customers in 
Germany and Japan. Due to the cooperation with IBM 
Rational the BTC-ES products are also widespread across 
several other domains, e.g. aerospace, defense, rail, 
telecommunication and consumer. The core competences of 
BTC Embedded Systems AG are: 

 model-driven development process 

 formal specification and verification of requirements 

 automatic test case generation for models and 
requirements 

 automatic test case generation based on code 

 automatic test case, trace, and vector execution 

 model and code coverage 

III. USE CASES 

As tool provider for automated testing and formal 
verification methods in safety critical development BTC-ES is 
challenged to keep pace with the increasing demands from end 
users. There are two major aspects relevant to the SC

2
 

network: 

 enhanced C-Code language support derived from the 
increasing use of IEEE-754-based floating-point 
processors, and 

 higher demands on the confidence in formal 
verification tools in safety-critical development 
projects. 

A. IEEE-754-Based Floating-Point Support 

Even though not thoroughly established yet, production 
application of formal verification techniques more and more 
requests to efficiently support floating-point arithmetic for 
basic operations such as addition and multiplication, but also 
for complex operations such as square-root calculation, 
exponential and trigonometric functions. Current and well-



established model checking techniques based on propositional 
satisfiability (SAT) checking or binary decision diagrams can 
deal with those floating-point operations, but the computation 
performance is very much negatively impacted by the 
necessity to reduce these operations to some Boolean decision 
problem aka bit-blasting. Even though it is a good approach to 
reuse the generic and well-established techniques for this type 
of problem, the obvious drawback is that it can be a hard 
problem for a Boolean solver to deal even with a small amount 
of combined floating-point variables. 

To illustrate the problem of bit-blasting for more complex 
arithmetic floating-point functions like the exponential 
function exp() as provided by the standard C library math.h, 

consider the following rather small formula to be solved: 

1.4 == exp(x) 

with x being a 64-bit floating-point variable ranging in the 
interval [-104.0, 89.0]. 

To solve above formula, one can apply cbmc1
, a bounded 

model checker for C and C++ programs [1][2]. Before passing 
the formula to cbmc, one has to cope with a suitable 
definition of the function exp() which is not provided by 
cbmc. We remark that the C standard does not precisely 
define library functions like exp() but just gives a rough 
description. The implementation of exp() in our experiment 
consists of about 700 LOC including comments. Using cbmc 
with a SAT solver as its backend, the C code is translated into 
a SAT formula containing about quarter of a million variables 
and more than a million of clauses, provoking a rather high 
runtime of about 5 minutes. 

In recent years there is a trend to extend SAT by dedicated 
theories leading to the problem of satisfiability modulo 
theories (SMT). The SMT community currently provides a 
large set of theories accompanied with powerful SMT solvers. 
Concerning above problem, the interval-based SMT solver 
iSAT32

 [3][4] is a promising choice as it supports non-linear 
real arithmetic involving complex mathematical functions like 
exp(). Due to this built-in support, the internal formula 
representation has no space penalty, yielding a very fast 
solving time of above formula of fractions of a second. The 
obvious drawback of the iSAT3 approach (currently) is the 
lack of floating-point interpretations of these complex 
mathematical functions, though some first steps towards 
floating-point interpretation of basic operations were 
undertaken most recently [5]. 

The SMT approach perfectly fits into the challenge we are 
facing. Though there already are first attempts to standardize 
the theory of floating-point arithmetic within the SMT 
community [6][7], powerful tool support–in particular not 
relying on bit-blasting–is still a challenging and ongoing task, 
e.g. [8]. We strongly believe that strengthening the effort on 
the development of efficient floating-point SMT solvers being 
able to handle complex mathematical functions will be very 
beneficial for our customers, in particular with regard to the 

                                                           
1
 http://www.cprover.org/cbmc 

2
 https://projects.avacs.org/projects/isat3 

increasing trend of using floating-point processors and 
production code in industrial applications. 

B. Confidence in Formal Verification Tools in Safety-Critical 

Development Projects 

In reactive embedded software development for 
automotive applications, formal verification techniques such 
as model checking reached a high technology readiness level

3
. 

Off-the-shelf products implementing those techniques are 
available and applied not only in pilot projects and research, 
but also in production. This evolution comes along with 
increasing demands in the technology confidence. 
Furthermore, applying exhaustive formal verification 
techniques are viewed under return on investment constraints, 
obviously balancing efforts for formal verification with 
traditional testing approaches. Besides that, as model checking 
claims to be a “complete test”, it is assumed that all bugs in a 
system under verification are detected using that technology. 
More precisely, no witness trace showing a violation of a 
formal requirement specification remains unrevealed. Even 
though the techniques indeed are invented to give the ultimate 
answer, this expectation leaves one important aspect out of 
consideration: what about semantic bugs in the model checker 
itself influencing that ultimate answer? Albeit it is well 
understood that a software product of a size of a model 
checker contains bugs itself, occurrences of such bugs in 
production projects obviously have disproportionately 
dramatic impact on both the quality of the system and the cost 
to establish them, but also in the product’s confidence. Note 
that we are not talking about tool crashes here, but about bugs 
which are based on semantically wrong computations on a 
system under verification: the model checking result is wrong. 

Software products of this importance and impact require 
dedicated measures to assure quality. Traditional software 
quality assurance techniques such as systematic testing are 
applied before shipping the product to end users. This kind of 
offline quality assurance works well but it can of course not 
exhaustively simulate the application at the end-user’s site. 
This means that still some bugs in the tool may remain 
undetected even though tremendous effort is spent for this 
kind of offline quality assurance. The arising question 
therefore is: what about the remaining bugs in model checkers 
which are not detected offline to the end-user’s application? 
How can we detect the occurrence of semantic bugs in a 
model checker in some kind of online quality assurance in 
parallel to the production operation? 

The question of online quality assurance during real 
production application of model checkers is essentially the 
same as the question that the system under verification has 
been translated correctly to a model checkers input plus 
correct implementation of the model checking algorithms. In 
terms of a model checker, the above question can also be 
reduced to answer the following two queries: 

1) Is a detected counter-example a genuine counter-
example of the system under verification? 
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2) How can be made sure that claiming absence of a 
counter-example is a trustful answer that a counter-
example indeed does not exist? 

Intuitively, 1) is quite easy to answer. If a counter-example 
is generated, then this counter-example can be viewed as 
simulation trace. A simulation trace contains both stimulus 
and computed values of the representation in the model 
checker. Replaying that trace on the original system under 
investigation by checking if some stimulus indeed leads to the 
computed reactions as stated in the trace allows to safely judge 
whether the counter-example is a genuine one also showing 
malfunction of the original design

4
. 

Giving an answer to 2) is much harder. No counter-
example is generated which would allow for straight-forward 
validation of the model checker’s outcome. Alternatively, one 
could argue to simply let a second, different model checker 
answer the same inquiry in parallel to the first one. Upon 
successful application of the second model checker, diversity 
arguments could be applied: whenever two different model 
checkers return the same result then the probability of a wrong 
result is very low. That is true and theoretically the problem is 
solved with this argumentation. However and in particular in 
real world applications, there could be some constraints 
hindering the approach of really being applicable: 

 As we are in a proprietary setting: is there a second 
model checker available at all? 

 Even if there is a second model checker available, is 
that model checker able to produce the same result in 
terms of complexity? 

 Would an end user accept a potential run time and 
space increase? 

An alternative approach might be based on formal proofs 
of absence of bugs, preferably on the original software layer. 
When reducing the original formal requirement specification 
to (state or line) reachability in a program then we aim at a 
certificate of unreachability (of the corresponding state or 
line). The definition of such certificates desirably should not 
rely on any concrete analysis technique and should be 
revisable by a small stand-alone proof checker. This ultimate 
goal seems to be a very challenging and hardly investigated 
scientific topic but would have a very big impact on the 
confidence level of the system under verification and on 
formal verification methods in general due to the possibility of 
validating verification results online on customer site. 

Let us roughly consider a typical verification tool chain as 
depicted in Fig. 1: the original C program is instrumented 
according to the formal requirement specification, e.g., by 
introducing a new Boolean observer variable which is set to 
true if and only if the given requirement becomes violated. 
Thereafter, the C program is typically translated into some 
internal language in order to perform several transformation 
steps into a syntactically simpler form. Some usual rules are 
inlining of function calls, flattening of structural data types, 
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 Here, we abstract from bugs in simulators enabling to replay 

a counter-example on the original system under investigation. 

reducing to the cone of influence, unwinding internal loops, 
and rewriting to single assignment code. 

 

 

Fig. 1. Typical verification tool chain starting with a C program and a 
specification and leading to a corresponding SAT formula (left) and idea of 

lifting back a potential proof certificate from the SAT to the C layer (right). 

 

When employing an SMT and/or SAT solver as the 
backend engines of the analysis tool chain, the code is finally 
translated into an SMT and/or SAT formula. It usually holds 
that the SMT/SAT formula is unsatisfiable if and only if the 
state where the observer variable is true is unreachable (for 
some bounded search depth). 

Whenever it turns out that the SMT/SAT formula is 
unsatisfiable, we know that the given formal requirement is 
fulfilled–at least in theory. In practice however the verification 
tool chain mentioned above is a very complex collection of 
software being prone to error. Efficient SMT and SAT solvers 
in particular are highly optimized, even on bit level. In order 
to enhance trustworthiness of an unreachability result of the 
overall verification tool chain, it is desirable to generate a 
certificate which facilitates a separate validation of the result, 
namely independent from the actual model checking software. 

One natural approach is to generate a certificate on the 
SMT/SAT solver level and then to lift this certificate back 
through all the intermediate translation and transformation 
layers up to the original code level as indicated in Fig. 1. 
Though there is an extensive work on certificates of 
unsatisfiability for SAT formulas (based on resolution proofs 
of unsatisfiability, e.g. [9]), it seems that certificates of 
unreachability for imperative programming languages like C is 
hardly investigated. We believe that certification of 
verification results will become a major topic in future, in 
particular when establishing formal methods and their 
trustworthiness in industry. 



IV. CONCLUSION 

As industrial associate partner of the SC
2
 network we 

described some major challenges which we believe to be very 
important to be addressed in order to bring formal verification 
alive in broad production application in automotive embedded 
software development.  

First, with raising attractiveness of IEEE-754 floating-
point processors in the automotive domain, adjusted model 
checking techniques will be needed. Here SMT solving 
avoiding bit-blasting holds a lot of promise, not only for basic 
floating-point operations but also for complex ones like 
exponential function, square-root, etc. We strongly believe 
that SMT is the right choice to approach this new problem 
class as we obtained promising results here already also in 
cooperations with other academic partners of the SC

2
 network. 

Second, application of model checkers in broad software 
production dramatically increases the demand of confidence in 
the applied tool suites. Obviously, errors in one of a chain of 
tools used for developing and testing, in particular, safety 
critical software may have tremendous impact in efforts and 
costs on end-user’s side for quality assurance. In worst case, 
the bug is not detected at all leading to issues in the produced 
system, the car, later on with effects hopefully not causing 
harm to human beings.  

For model checkers, the worst case scenario is semantic 
bugs: the model checker’s analyzed semantics of a system 
under verification differs from the semantics of the original 
design, leading to wrong verification results. Returning a 
wrong witness trace for a formal requirement violation is the 
easy scenario here–this can simply be tackled by subsequent 
simulation against the original semantics. But what is about a 
model checker returning no counter witness, claiming that 
there is no bug in the system under verification with respect to 

an inquired formal requirement? We believe that providing 
evidence for results a model checker produces is very 
beneficial when talking about bringing formal verification into 
production. This is why we propose to think about some kind 
of proof certificates, which enable to probe whether a model 
checker’s result “is true with almost absolute certainty”. 
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