
Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: E. Ábrahám, J. Davenport, P. Fontaine, (eds.): Proceedings of the 1st Workshop on Satisfiability Checking and Symbolic Computation (SC2),
Timisoara, Romania, 02-07-2016, published at http://ceur-ws.org

Satisfaction Meets Practice and Confidence

Tom Bienmüller

SVP Products

BTC Embedded Systems AG

Oldenburg, Germany

bienmueller@btc-es.de

Tino Teige

Chief Research Engineer Innovation & Technology

BTC Embedded Systems AG

Oldenburg, Germany

teige@btc-es.de

Abstract—The industrial application of formal methods and

in particular of software verification tools, e.g. based on

satisfiability checking and symbolic computation as being in the

main focus of the SC2 network, necessitates two main

requirements. The methods and tools, first, need to actually aim

at the problem class that occur in practice and, second, have to

guarantee a high level of confidence. In this position paper, we

raise two challenges in the domain of software verification:

1) enhancing the field of application of software verification tools

in practice by means of efficient support of IEEE-754-based

floating-point models and 2) enhancing confidence of software

verification tools by means of generating certificates for their

computed analysis results.

Keywords—formal specification; formal verification; model

checking; floating-point; proof certificates

I. INTRODUCTION

As an industrial associate partner of the SC
2
 network, we

certainly play a minor role in the academic research activities
performed in that network. Even though having a matching
academic background for this network, the benefit we see in
our participation lays merely in the contribution we can give:
show which topics are very close to the emerging needs real
end users have who successfully apply formal test and
verification tools already today. This could enable researchers
to align their focus of work. Furthermore, as we as a tool
vendor are close to real world applications, we can also
provide data on these models coming from practice, allowing
academic partners to validate the efficiency of their
approaches in a real world setting. The benefit for us is
obvious: getting in touch with leading researchers in a very
important domain and get insight into ideas and technologies
on how to answer to the emerging needs from end users.

II. BTC EMBEDDED SYSTEMS AG

BTC Embedded Systems AG (BTC-ES), a majority
shareholding of BTC Business Technology Consulting AG,
provides products and services for formal verification,
automated validation, and automated testing of embedded
systems software. BTC-ES products significantly reduce
required efforts for testing of embedded systems software, and
considerably increase the quality of the developed systems.
Additionally, BTC-ES offers on-site and off-site services
around the testing products and testing in general in order to
support customers in using the BTC-ES products successfully
and efficiently. BTC-ES cooperates with two larger
enterprises, dSPACE GmbH and IBM Rational Software.

These two partners and BTC-ES strive to providing products
and services for modeling, auto code generation, test
automation, and formal verification to customers. dSPACE
GmbH and BTC-ES support the tool chain Matlab®,
Simulink®, Stateflow® and dSPACE’s TargetLink®. IBM
Rational and BTC-ES provide solutions for the tool chains
concerning the modeling tools Statemate® and Rhapsody®
UML. Together with dSPACE GmbH, BTC-ES has a strong
focus on the automotive domain with key customers in
Germany and Japan. Due to the cooperation with IBM
Rational the BTC-ES products are also widespread across
several other domains, e.g. aerospace, defense, rail,
telecommunication and consumer. The core competences of
BTC Embedded Systems AG are:

 model-driven development process

 formal specification and verification of requirements

 automatic test case generation for models and
requirements

 automatic test case generation based on code

 automatic test case, trace, and vector execution

 model and code coverage

III. USE CASES

As tool provider for automated testing and formal
verification methods in safety critical development BTC-ES is
challenged to keep pace with the increasing demands from end
users. There are two major aspects relevant to the SC

2

network:

 enhanced C-Code language support derived from the
increasing use of IEEE-754-based floating-point
processors, and

 higher demands on the confidence in formal
verification tools in safety-critical development
projects.

A. IEEE-754-Based Floating-Point Support

Even though not thoroughly established yet, production
application of formal verification techniques more and more
requests to efficiently support floating-point arithmetic for
basic operations such as addition and multiplication, but also
for complex operations such as square-root calculation,
exponential and trigonometric functions. Current and well-

established model checking techniques based on propositional
satisfiability (SAT) checking or binary decision diagrams can
deal with those floating-point operations, but the computation
performance is very much negatively impacted by the
necessity to reduce these operations to some Boolean decision
problem aka bit-blasting. Even though it is a good approach to
reuse the generic and well-established techniques for this type
of problem, the obvious drawback is that it can be a hard
problem for a Boolean solver to deal even with a small amount
of combined floating-point variables.

To illustrate the problem of bit-blasting for more complex
arithmetic floating-point functions like the exponential
function exp() as provided by the standard C library math.h,

consider the following rather small formula to be solved:

1.4 == exp(x)

with x being a 64-bit floating-point variable ranging in the
interval [-104.0, 89.0].

To solve above formula, one can apply cbmc1
, a bounded

model checker for C and C++ programs [1][2]. Before passing
the formula to cbmc, one has to cope with a suitable
definition of the function exp() which is not provided by
cbmc. We remark that the C standard does not precisely
define library functions like exp() but just gives a rough
description. The implementation of exp() in our experiment
consists of about 700 LOC including comments. Using cbmc
with a SAT solver as its backend, the C code is translated into
a SAT formula containing about quarter of a million variables
and more than a million of clauses, provoking a rather high
runtime of about 5 minutes.

In recent years there is a trend to extend SAT by dedicated
theories leading to the problem of satisfiability modulo
theories (SMT). The SMT community currently provides a
large set of theories accompanied with powerful SMT solvers.
Concerning above problem, the interval-based SMT solver
iSAT32

 [3][4] is a promising choice as it supports non-linear
real arithmetic involving complex mathematical functions like
exp(). Due to this built-in support, the internal formula
representation has no space penalty, yielding a very fast
solving time of above formula of fractions of a second. The
obvious drawback of the iSAT3 approach (currently) is the
lack of floating-point interpretations of these complex
mathematical functions, though some first steps towards
floating-point interpretation of basic operations were
undertaken most recently [5].

The SMT approach perfectly fits into the challenge we are
facing. Though there already are first attempts to standardize
the theory of floating-point arithmetic within the SMT
community [6][7], powerful tool support–in particular not
relying on bit-blasting–is still a challenging and ongoing task,
e.g. [8]. We strongly believe that strengthening the effort on
the development of efficient floating-point SMT solvers being
able to handle complex mathematical functions will be very
beneficial for our customers, in particular with regard to the

1
 http://www.cprover.org/cbmc

2
 https://projects.avacs.org/projects/isat3

increasing trend of using floating-point processors and
production code in industrial applications.

B. Confidence in Formal Verification Tools in Safety-Critical

Development Projects

In reactive embedded software development for
automotive applications, formal verification techniques such
as model checking reached a high technology readiness level

3
.

Off-the-shelf products implementing those techniques are
available and applied not only in pilot projects and research,
but also in production. This evolution comes along with
increasing demands in the technology confidence.
Furthermore, applying exhaustive formal verification
techniques are viewed under return on investment constraints,
obviously balancing efforts for formal verification with
traditional testing approaches. Besides that, as model checking
claims to be a “complete test”, it is assumed that all bugs in a
system under verification are detected using that technology.
More precisely, no witness trace showing a violation of a
formal requirement specification remains unrevealed. Even
though the techniques indeed are invented to give the ultimate
answer, this expectation leaves one important aspect out of
consideration: what about semantic bugs in the model checker
itself influencing that ultimate answer? Albeit it is well
understood that a software product of a size of a model
checker contains bugs itself, occurrences of such bugs in
production projects obviously have disproportionately
dramatic impact on both the quality of the system and the cost
to establish them, but also in the product’s confidence. Note
that we are not talking about tool crashes here, but about bugs
which are based on semantically wrong computations on a
system under verification: the model checking result is wrong.

Software products of this importance and impact require
dedicated measures to assure quality. Traditional software
quality assurance techniques such as systematic testing are
applied before shipping the product to end users. This kind of
offline quality assurance works well but it can of course not
exhaustively simulate the application at the end-user’s site.
This means that still some bugs in the tool may remain
undetected even though tremendous effort is spent for this
kind of offline quality assurance. The arising question
therefore is: what about the remaining bugs in model checkers
which are not detected offline to the end-user’s application?
How can we detect the occurrence of semantic bugs in a
model checker in some kind of online quality assurance in
parallel to the production operation?

The question of online quality assurance during real
production application of model checkers is essentially the
same as the question that the system under verification has
been translated correctly to a model checkers input plus
correct implementation of the model checking algorithms. In
terms of a model checker, the above question can also be
reduced to answer the following two queries:

1) Is a detected counter-example a genuine counter-
example of the system under verification?

3
 https://en.wikipedia.org/wiki/Technology_readiness_level

http://www.cprover.org/cbmc
https://projects.avacs.org/projects/isat3
https://en.wikipedia.org/wiki/Technology_readiness_level

2) How can be made sure that claiming absence of a
counter-example is a trustful answer that a counter-
example indeed does not exist?

Intuitively, 1) is quite easy to answer. If a counter-example
is generated, then this counter-example can be viewed as
simulation trace. A simulation trace contains both stimulus
and computed values of the representation in the model
checker. Replaying that trace on the original system under
investigation by checking if some stimulus indeed leads to the
computed reactions as stated in the trace allows to safely judge
whether the counter-example is a genuine one also showing
malfunction of the original design

4
.

Giving an answer to 2) is much harder. No counter-
example is generated which would allow for straight-forward
validation of the model checker’s outcome. Alternatively, one
could argue to simply let a second, different model checker
answer the same inquiry in parallel to the first one. Upon
successful application of the second model checker, diversity
arguments could be applied: whenever two different model
checkers return the same result then the probability of a wrong
result is very low. That is true and theoretically the problem is
solved with this argumentation. However and in particular in
real world applications, there could be some constraints
hindering the approach of really being applicable:

 As we are in a proprietary setting: is there a second
model checker available at all?

 Even if there is a second model checker available, is
that model checker able to produce the same result in
terms of complexity?

 Would an end user accept a potential run time and
space increase?

An alternative approach might be based on formal proofs
of absence of bugs, preferably on the original software layer.
When reducing the original formal requirement specification
to (state or line) reachability in a program then we aim at a
certificate of unreachability (of the corresponding state or
line). The definition of such certificates desirably should not
rely on any concrete analysis technique and should be
revisable by a small stand-alone proof checker. This ultimate
goal seems to be a very challenging and hardly investigated
scientific topic but would have a very big impact on the
confidence level of the system under verification and on
formal verification methods in general due to the possibility of
validating verification results online on customer site.

Let us roughly consider a typical verification tool chain as
depicted in Fig. 1: the original C program is instrumented
according to the formal requirement specification, e.g., by
introducing a new Boolean observer variable which is set to
true if and only if the given requirement becomes violated.
Thereafter, the C program is typically translated into some
internal language in order to perform several transformation
steps into a syntactically simpler form. Some usual rules are
inlining of function calls, flattening of structural data types,

4
 Here, we abstract from bugs in simulators enabling to replay

a counter-example on the original system under investigation.

reducing to the cone of influence, unwinding internal loops,
and rewriting to single assignment code.

Fig. 1. Typical verification tool chain starting with a C program and a
specification and leading to a corresponding SAT formula (left) and idea of

lifting back a potential proof certificate from the SAT to the C layer (right).

When employing an SMT and/or SAT solver as the
backend engines of the analysis tool chain, the code is finally
translated into an SMT and/or SAT formula. It usually holds
that the SMT/SAT formula is unsatisfiable if and only if the
state where the observer variable is true is unreachable (for
some bounded search depth).

Whenever it turns out that the SMT/SAT formula is
unsatisfiable, we know that the given formal requirement is
fulfilled–at least in theory. In practice however the verification
tool chain mentioned above is a very complex collection of
software being prone to error. Efficient SMT and SAT solvers
in particular are highly optimized, even on bit level. In order
to enhance trustworthiness of an unreachability result of the
overall verification tool chain, it is desirable to generate a
certificate which facilitates a separate validation of the result,
namely independent from the actual model checking software.

One natural approach is to generate a certificate on the
SMT/SAT solver level and then to lift this certificate back
through all the intermediate translation and transformation
layers up to the original code level as indicated in Fig. 1.
Though there is an extensive work on certificates of
unsatisfiability for SAT formulas (based on resolution proofs
of unsatisfiability, e.g. [9]), it seems that certificates of
unreachability for imperative programming languages like C is
hardly investigated. We believe that certification of
verification results will become a major topic in future, in
particular when establishing formal methods and their
trustworthiness in industry.

IV. CONCLUSION

As industrial associate partner of the SC
2
 network we

described some major challenges which we believe to be very
important to be addressed in order to bring formal verification
alive in broad production application in automotive embedded
software development.

First, with raising attractiveness of IEEE-754 floating-
point processors in the automotive domain, adjusted model
checking techniques will be needed. Here SMT solving
avoiding bit-blasting holds a lot of promise, not only for basic
floating-point operations but also for complex ones like
exponential function, square-root, etc. We strongly believe
that SMT is the right choice to approach this new problem
class as we obtained promising results here already also in
cooperations with other academic partners of the SC

2
 network.

Second, application of model checkers in broad software
production dramatically increases the demand of confidence in
the applied tool suites. Obviously, errors in one of a chain of
tools used for developing and testing, in particular, safety
critical software may have tremendous impact in efforts and
costs on end-user’s side for quality assurance. In worst case,
the bug is not detected at all leading to issues in the produced
system, the car, later on with effects hopefully not causing
harm to human beings.

For model checkers, the worst case scenario is semantic
bugs: the model checker’s analyzed semantics of a system
under verification differs from the semantics of the original
design, leading to wrong verification results. Returning a
wrong witness trace for a formal requirement violation is the
easy scenario here–this can simply be tackled by subsequent
simulation against the original semantics. But what is about a
model checker returning no counter witness, claiming that
there is no bug in the system under verification with respect to

an inquired formal requirement? We believe that providing
evidence for results a model checker produces is very
beneficial when talking about bringing formal verification into
production. This is why we propose to think about some kind
of proof certificates, which enable to probe whether a model
checker’s result “is true with almost absolute certainty”.

ACKNOWLEDGMENT

This work was supported by the H2020-FETOPEN-2016-
2017-CSA project SC² (712689).

REFERENCES

[1] Daniel Kroening, Michael Tautschnig: CBMC - C Bounded Model
Checker - (Competition Contribution). TACAS 2014: 389-391

[2] Peter Schrammel, Daniel Kroening, Martin Brain, Ruben Martins, Tino
Teige, Tom Bienmüller: Successful Use of Incremental BMC in the
Automotive Industry. FMICS 2015: 62-77

[3] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, Tobias
Schubert: Efficient Solving of Large Non-linear Arithmetic Constraint
Systems with Complex Boolean Structure. JSAT 1(3-4): 209-236 (2007)

[4] Karsten Scheibler, Bernd Becker: Implication Graph Compression inside
the SMT Solver iSAT3. MBMV 2014: 25-36

[5] Karsten Scheibler, Felix Neubauer, Ahmed Mahdi, Martin Fränzle, Tino
Teige, Tom Bienmüller, Detlef Fehrer, Bernd Becker: Accurate ICP-
Based Floating-Point Reasoning. FMCAD 2016 (to be published).

[6] Philipp Rümmer, Thomas Wahl: An SMT-LIB Theory of Binary
Floating-Point Arithmetic. SMT 2010.

[7] Martin Brain, Cesare Tinelli, Philipp Rümmer, Thomas Wahl: An
Automatable Formal Semantics for IEEE-754 Floating-Point Arithmetic.
ARITH 2015: 160-167

[8] Martin Brain, Vijay D’Silva, Alberto Griggio, Leopold Haller, Daniel
Kroening: Deciding floating-point logic with abstract conflict driven
clause learning. Formal Methods in System Design 45(2): 213-245
(2014)

[9] Lintao Zhang, Sharad Malik: Validating SAT Solvers Using an
Independent Resolution-Based Checker: Practical Implementations and
Other Applications. DATE 2003: 10880-10885

