
22

Analytic Study of Fuzzy-based model for Software Cost
Estimation

John Chibuike Nwaiwu

Computer Science Department,
Federal University of Technology Akure, Nigeria

+2348030845700

johnnwaiwu@futa.edu.ng
1

Samuel Adebayo Oluwadare

Computer Science Department,
Federal University of Technology Akure, Nigeria

+2348034034202

saoluwadare@futa.edu.ng

ABSTRACT
The need for successful software projects has been a major area of

discourse amongst researchers and software developers in

academia and software industry respectively. Failure of software

projects has been tied to flawed estimation at the early stages of

software development life cycle. Recently, soft computing

techniques such as Fuzzy logic models has been seen as an

alternative to handle uncertainties and vagueness of input

parameters to the early software estimation models. In order to

analyze the various conditions which affect estimation accuracy of

fuzzy-based models, a sample of 93 COCOMO NASA projects

was used to develop two groups of fuzzy models. One was the

controlled group while the other was the experimental group

varying in conditions of model structure, linguistic variables,

parameters of input and output variables. A comparative analysis

of the Mean Magnitude of Relative Error (MMRE) and Prediction

accuracy Pred(l) evaluation criteria for the models was made and

findings recorded. Results from the experiments show that the

performance of a fuzzy-based software cost estimation model

utilizing Takagi-Sugeno inference, Gaussian/Sigmoid

membership function with more number of input variables and

linguistics variables is more efficient.

CCS Concepts
• Software and its engineering ➝Software system structures

➝Software system models ➝Model-driven software

engineering • Computing methodology➝Artificial Intelligence

Knowledge representation and reasoning➝Vagueness and

fuzzy logic

Keywords
Fuzzy model, Software cost estimation (SCE), membership

function (MF), Fuzzy Inference System, performance.

1. INTRODUCTION
Software engineering is the application of a systematic,

disciplined, quantifiable approach to the development, operation

and maintenance of software products [1]. A good software

product passes through a process known as Software

Development Life Cycle (SDLC) which ensures that a structured

approach is followed from conception through development to

maintenance and evaluation. This framework enables the planning

of resources prior to development, helps understand the entire

process and assists management to monitor and track the progress

of software development. A key phase in the SDLC has suffered

neglect from software practitioners which has always resulted in

occurrence of software crisis. This phase is the feasibility study

phase which is responsible for anticipation of future scenarios of

software development.

In a recent update of Standish Group study (2012) conducted for

ComputerWorld, Standish examined 3,555 IT projects between

2003 and 2012 that had labour costs of at least $10 million and

found that only 6.4% of them were successful [36]. Notably

questions have been raised in literature as to ‘why most software

projects fail’ [2, 3, 4, 5, 6]. Flawed and inaccurate estimation of

needed resources during the early stages of software development

has been identified as one of the common factors why software

projects fail [3, 5].

Estimation is a process which uses prediction systems and

intuition for resource and cost planning. It is controlled by cost

realism, which does not always insist on exactness but lays equal

emphasis on logic as much on the mathematical form of the

prediction system [7].

1.1 Software Cost Estimation (SCE)
Software Cost Estimation (SCE) has been identified as one of the

most crucial activities in managing software projects required

during the early stages of software development life cycle [8, 9,

10, 11]. It is the process of estimating the cost, work-effort,

schedule and time required to develop and control a software

project. Software cost estimation aids in facilitating contract

negotiations, generating project proposal. However, the process of

estimation is uncertain in nature as it largely depends upon some

attributes that are quite unclear during the early stages of

development [12].

The entire process of software cost estimation is generally

classified into two broad categories [13]:

a. Expert Judgement: The technique aims at deriving

estimates based on the experience of experts on similar

projects. This technique is intuitive.

b. Model-based technique: This technique is further

subdivided into

i. Models based on statistic: These models are

based on linear regression. They are also

known as algorithmic models. Early linear

regression estimation models include

Halstead, Bailey-Basili, Doty, Walston Felix

and Constructive Cost model (COCOMO).

ii. Models based on computational intelligence:

These models solve nonlinear, time varying,

correlated discontinuous complex

probabilistic real-world problems. They

provide feasible way to obtain either optimal

CoRI’16, Sept 7–9, 2016, Ibadan, Nigeria.

http://www.computerworld.com/s/article/9243396/Healthcare.gov_website_didn_t_have_a_chance_in_hell_

23

or suboptimal solutions [14]. Recent

estimation models based on computational

intelligence include fuzzy logic (FL), artificial

neural network (ANN), particle swam

optimization (PSO), genetic algorithm (GA)

and genetic programming models.

1.2 Software measurement
Measures provide a quantitative indication of amount, dimension,

capacity or size of a given attribute of a product. Metrics are a

quantitative measure of the degree to which a system, component

or process possesses a given attribute of a product. Measurement

is achieved as the result of the collection of a data point or more

data points. Software metrics can be defined as the continuous

application of measurement based techniques to software

development process and its products to supply meaningful and

timely management information, together with those techniques to

improve that process and its products [1]. However, metrics

ensure that we achieve a final product of high quality and

productivity. Metrics are categorized into the following:

a. Product metrics: They describe characteristics of the

product such as size, complexity, design features,

performance, efficiency, reliability and portability.

b. Process metrics: They describe the effectiveness and

quality of the processes that produce the product. These

include effort required in the process, time to produce

the product, effectiveness of defect removal during

development and maturity of process.

c. Project metrics: Project metrics describe the

characteristics of the project and its execution. They

include; number of software developers, staffing pattern

over life-cycle of the software, cost and schedule.

1.3 Performance Evaluation
Performance evaluation of estimates had always been a critical

stage in software development. Thus, proper and accurate the

evaluation criteria of software projects become, the better the

software cost estimation models. The mostly used software cost

estimation (SCE) criteria are listed in [15] but for the purpose of

this study we will be making use of the first three because of their

continued relevance in most literature.

a. Magnitude of Relative Error (MRE): An MRE criterion

is value error estimated for each of the projects

compared to the actual.

b. Mean Magnitude of Relative Error (MMRE): MMRE is

used as the criteria error of the mean value of the

project.

c. Percentage Relative Error Deviation (PRED(l)):

PRED(l) criterion is used in order to estimate the

accuracy of the models.

MRE is evaluated as follows (for the i-th observation)

| |

 (1)

MMRE is evaluated as follows (for n observations)

 ∑

 (2)

Pred(l) is calculated as follows for n observations

 ()

 ∑ {

 (3)

where n is the total number of projects and l is the number of

projects with MRE less than or equal to l. However, a model

estimate with low MMRE has a better performance index than one

with high MMRE. A model with high Pred(l) has a better

performance than one with a low Pred(l). A model with high VAF

is better than one with a low VAF. Alternatively, a model

showing low VARE has more accuracy than one with high

VARE. Likewise a model having low MARE is preferable to one

with high MARE.

1.4 Related works
Various fuzzy-based models for software cost estimation have

been proposed by researchers in [9, 10, 11, 12, 13, 15, 16, 17, 18,

19, 20, 21]. The issue of the compatibility of COCOMO with the

fuzzy logic showed that the accuracy of estimation is very

sensitive to the changes in inputs. Results showed that the ‘fuzzy’

intermediate COCOMO 81 model tolerates imprecision in its

inputs (cost drivers) and consequently generates more gradual

outputs (cost) [37]. In the paper [38], it was reported that fuzzy

logic based prediction systems could produce further better

estimates provided that various parameters and factors pertaining

to fuzzy logic are carefully set. The paper demonstrated that the

prediction accuracy of a fuzzy logic based effort prediction system

is highly dependent on the system architecture, the corresponding

parameters, and the training algorithms. A soft computing

approach (fuzzy) for software cost estimation was presented in

[39]. The paper described an enhanced soft computing model for

the estimation of software cost and time estimation. Evaluation of

the model was based on MMRE and PRED(25) criteria and

validated on NASA 93 projects dataset. The experimental results

show that the proposed software effort estimation model shows

better estimation accuracy than the COCOMO model. Also, an

output with more terms or fuzzy sets provided a better

performance due to the high granularity demanded from the

results. Work by Jorgensend et al in [22] did a systematic review

of software development cost studies. Their work reviewed 304

software cost estimation papers and classified the papers

according to estimation approach, research approach, research

topic, data set and study context. Performance evaluation of

software effort estimation [23] was done using Fuzzy analogy

based on complexity. Comparative analysis of fuzzy models was

done based on membership functions in [24] and fuzzy inference

engine type in [25] respectively. This paper seeks to extend the

work in [8] by analysing fuzzy-based software cost estimation

models in areas of inference structure, membership function, input

variables, linguistic variables and defuzzification techniques in

order to evaluate more factors that affect estimation accuracy. In

order to analyze the various conditions which affect estimation

accuracy of fuzzy-based models, a sample of 93 COCOMO

NASA projects is used to develop two groups of fuzzy models.

One is the controlled group while the other is the experimental

group varying in conditions of model structure, linguistic

variables, parameters of input and output variables. A comparative

analysis of the Mean Magnitude of Relative Error (MMRE) and

Prediction accuracy Pred(l) evaluation criteria for the models is

carried out and findings recorded.

2. SOFTWARE COST ESTIMATION

TECHNIQUES

2.1 Traditional estimation models

Early algorithmic models which include COCOMO [26], Bailey-

Basili [27] Doty, Halstead, Walston [28] models respectively, has

24

been developed for the estimation of cost and effort of software

projects. Boehm [26] explored software engineering from an

economic point of view, thus coming up with a Constructive Cost

model. Software Life-Cycle Management (SLIM) developed by

Putnam [29] accepts number of lines of code as a major input.

Albrecht’s Function Points [30] measures the amount of

functionality in a system as described by a specification.

2.1.1 COCOMO
The COCOMO I [31] model is a regression-based software cost

estimation model, developed by Boehm and the most cited of all

traditional cost estimation models [27, 28, 29, 30]. COCOMO II

was developed to improve on the limitation of COCOMO I. The

model equation for estimating effort in the COCOMO II model is

shown in Equation (4) below. The model includes several

software attributes such as: 17 Effort Multipliers (EMs), 5 Scale

Factors (SFs), Software Size (SZ), and Effort estimation that are

used in the Post Architecture Model.

 () ∑ ∏

 (4)

where a = 2.94 and b = 0.9. Other algorithmic models include:

Halstead Model Equation

 5.1
*2.5 KLOCEffort (5)

Bailey-Basili Model Equation

 16.1
*73.05.5 KLOCEffort (6)

Doty Model Equation

 04.1
*288.5 KLOCEffort (7)

Algorithmic models posses the following shortcomings;

i. They make assumptions about the form of the prediction

function.

ii. They need to be adjusted or calibrated to local

circumstances.

iii. They are practically model-intractable.

iv. They can’t handle the vagueness and uncertainty present

in the input parameters to the model.

v. The output from this set of models is almost crisp values

which often lead to overconfidence in accuracy and

precision of estimate.

vi. Software cost estimation is a complex non-linear

stochastic problem. These models can’t model non-

linear and complex problems.

2.2 Fuzzy Logic
Fuzzy logic is an extension of multi-valued logic that models

effectively how the human brain reasons. A systematic use of

fuzzy logic in software cost estimation is a necessity when the

available information is imprecise, incomplete or not totally

reliable [32].

A fuzzy model is a mapping between input and output spaces

described using conditional propositions and inference engine.

Fuzzy systems have two distinguishing features.

a. They implore non-linear mapping between input and

output vectors and can be accurately described using

mathematical formulae.

b. They are also knowledge-based driven expressed in

linguistic terms. These are known as intuitive systems.

However, humans can make inferences in an imprecise

environment and that is where fuzzy logic comes handy

[40].

2.2.1 Fuzzy sets and linguistic variables
The theory of fuzzy sets introduces a paradigm which extends the

concept of the crisp set, allowing objects to partially belong to a

set [33]. A fuzzy set is given below

 S = {(x, µS (x)) x Є U, µS (x): U → [0, 1] (8)

The space U represents the universe of discourse and the function

µS(x) is called the membership function.

A linguistic variable can be defined as a variable that takes its

value as terms defined by words in natural language. These terms

are described by fuzzy sets defined in the universe of discourse in

which the variable is defined. The number of linguistic variable

was among the conditions that were varied during the experiments

while others remain constant to analyze the effect on performance

of estimate.

2.2.2 Fuzzy inference system (FIS)
Fuzzy Inference System (FIS) is based on the generalization of the

classical inference rules to fuzzy logic. There are two basic FIS

[33] namely;

a. Mamdani fuzzy inference system

It is formed by the following four components: A fuzzy rule

base formed by a set of logical implications having the form

described in Rule 1.

IF X1 is Aj,1 and ... and Xm is Aj,m THEN Y is Bj(Rule 1)

where the propositions X1 is Aj,1,..., Xm is Aj,m; Y is Bj are all

defined in the fuzzy sets Aj,1,..., Aj,m, Bj A fuzzy inference

engine is defined using the sup-star operation. A fuzzifier

operator and defuzzifier operator completes the system.

b. Takagi-Sugeno fuzzy inference system

It is formed by the following components: A fuzzy rule base

formed by a set of logical implications having the following

form:

IF f(X1 is Aj,1,...,Xm is Aj,m) then y = gj(x*1,...,x*n)

 (Rule 2)

where x*1,...,x*n are crisp values on the input universes, X1

is Aj,1,...,Xm is Aj,m are fuzzy propositions defined on the

same input universes by the fuzzy sets Aj,1,...,Aj,m, f(.) is a

logical function, y is a crisp value on output universe and g(.)

is a crisp function that implies the value of y when the inputs

x*1,...,x*n satisfy the premise. An algorithm of reasoning

which is a modified version of Mamdani FIS completes the

system.

In summary, the Tagaki-Sugeno FIS method divides the input

spaces in fuzzy subspaces and next builds a relation between input

variables into each subspace. In the experiments, two groups of

fuzzy models were used; one generated using the Mamdani and

the other using the Takagi-Sugeno FIS type.

2.2.3 Fuzzy membership functions
The only condition a membership function must really satisfy is

that it must vary between 0 and 1. The function can be an arbitrary

curve whose shape can be defined as a function that suits from the

point of view of speed, efficiency and ease of use. The

membership function maps an element, say X, to a membership

value between 0 and 1. The eleven membership functions in fuzzy

logic are derived from several basic functions namely;

a. piece-wise linear functions

b. Gaussian distribution function

25

c. sigmoid curve

d. quadratic and cubic polynomial curves

These membership functions (MFs) include: trapezoid (trapmf),

triangular (trimf), Gaussian (gaussmf), generalized bell (gbellmf),

combination of Gaussian (gauss2mf), sigmoid (sigmf), pi-shaped

(pimf), product of sigmoid (psigmf), difference between two

sigmoid (dsigmf), s-shape (smf and z-shape (zmf). In this study,

we carried out experiments using five membership functions

(namely triangular, trapezoid, Gaussian, generalized bell and

product of sigmoid) while keeping all other conditions constant.

2.2.4 Defuzzification
It is the mapping from a fuzzy set (aggregate output fuzzy set),

say S, defined on the universe of discourse, say U, to a crisp value

x*ЄU. The defuzzifier’s main function is to ascertain an object x*

that best represents the fuzzy set S. The aggregate of a fuzzy set

includes a range of output values which must be defuzzified in

order to achieve a single output value from the set. Five

defuzzification techniques available include: smallest of

maximum, largest of maximum, middle of maximum (the average

of the maximum value of the output set), centroid and bisector.

3. DESIGN OF EXPERIMENTS

3.1 Generation of fuzzy model
The dataset used in this work was sourced from [34] which

consist of 93 NASA projects. This dataset consists of one kilo

lines of code attribute, fourteen COCOMO I effort drivers and one

actual effort (in man-months) attribute. In the experiments, the

schedule constraint effort driver was excluded from the fuzzy

models because it showed a U-shaped correlation to actual effort.

In order to generate the fuzzy model from the data available, the

following steps were taken [35].

a. Select a Fuzzy Inference System (FIS)

b. Define the input and output variables’ mode.

c. Define the linguistic variables and values.

d. Set the type of the membership functions for input

variables and output variable.

e. The data is now translated into a set of IF-THEN rules

written in the fuzzy rule editor.

f. A certain model structure is created and parameters of

input and output variables can be tuned to get the

desired output.

Table 1 below shows the input variables to the fuzzy model used

in this study.

Table 1: List of Effort drivers and description

S/N Effort

drivers

Description

1 RELY Required Software Reliability

2 DATA Database size

3 CPLX Process Complexity

4 TIME Time Constraint for CPU

5 STOR Main memory constraint

6 VIRT Machine volatility

7 TURN Turnaround time

8 ACAP Analyst Capability

9 AEXP Application experience

10 PCAP Programmers capability

11 VEXP Virtual machine experience

12 LEXP Language experience

13 MODP Modern programming practice

14 TOOL Use of software tools

The various experimental groups of models in this study are

described below.

3.2 Experimental group with varying fuzzy

inference system
The controlled conditions for experiment 1 include: input and

output variable, linguistic variable and value, membership

function and defuzzification technique respectively. This

experimental group utilized triangular membership, five linguistic

variables (very low, low, nominal, high, very high), centroid

defuzzification technique and fourteen effort drivers including

Kilo line of code size (KLOC). The varied condition is in

inference type as shown below.

a. Model with Mamdani inference system (Experiment

model 1a)

b. Model with Tagaki-Sugeno inference system

(Experiment model 1b)

3.3 Experimental group with varying

defuzzification technique
The controlled conditions for experiment 2 include number of

input variables (fourteen effort drivers including Kilo line of code

size (KLOC)), membership function (triangular), inference type

(Mamdani inference) and five linguistic variables (very low, low,

nominal, high, very high) respectively. The varied condition is in

the defuzzification type as shown below.

a. Model with centroid defuzzification technique

(Experiment model 2a)

b. Model with bisector defuzzification technique

(Experiment model 2b)

c. Model with Middle of Maximum (MOM)

defuzzification technique (Experiment model 2c)

d. Model with Largest of Maximum (LOM)

defuzzification technique (Experiment model 2d)

e. Model with Smallest of Maximum (SOM)

defuzzification technique (Experiment model 2e)

3.4 Experimental group with varying

membership functions
The defuzzification technique implored here is the middle of

maximum (MOM). Membership function is the varied condition

in this setup as described below.

a. Model with triangular membership function

(Experiment model 3a)

b. Model with trapezoid membership function (Experiment

model 3b)

c. Model with Gaussian membership function (Experiment

model 3c)

d. Model with generalized bell membership function

(Experiment model 3d)

e. Model with sigmoid membership function (Experiment

model 3e)

3.5 Experimental group with varying linguistic

variables
In this setup, the controlled conditions for experiment 4 are

product of sigmoid membership function, number of input

variables (fourteen effort drivers including Kilo line of code size

(KLOC)), inference type (Mamdani inference) and defuzzification

technique (middle of maximum) respectively. The varied

condition is linguistic variable. For experimental model 4a, five

linguistic variables (very low, low, nominal, high, very high) are

26

used while three linguistic variables (low, nominal, high) are used

in experimental model 4b respectively.

a. Model with increased linguistic variables (Experiment

model 4a)

b. Model with reduced linguistic variables (Experiment

model 4b)

3.6 Experimental group with varying number

of input variables
All other conditions remained the same as in experiment 4a above

except for the number of input variables to the model. For

experiment 5b, ‘main memory constraint’ and ‘time constraint for

CPU’ input variables were merged together prior to fuzzification

because both had the same correlation coefficient respectively

with effort. The same also was done for ‘analyst capability’ and

‘programmer capability’. The correlation coefficient between

effort and these named drivers was approximately 0.35. Also

‘required software reliability’ and ‘process complexity’ were

combined together because both had approximately same

correlation (0.2) to development effort (output). Thus, the number

of input variables in experiment model 5b reduced to twelve.

a. Model with increased number of input variables

(Experiment model 5a)

b. Model with reduced number input variables

(Experiment model 5b)

3.7 Evaluation criteria
For this study, we made use of three evaluation criteria due to

their widespread relevance in most related literature. They include

a) Magnitude of Relative Error (MRE)

b) Mean Magnitude of Relative Error (MMRE)

c) Prediction accuracy criteria (PRED)

There expressions are explained in equations 1 to 3.

4. EXPERIMENTAL RESULTS AND

ANALYSIS
Below shows the results from the validation of the experimental

models using one third of the project data.

Table 2: Estimated efforts (in man-months) of Experiment 1

models

Proj.

No.

Size

in

KLOC

Actual

Effort

Model

1a

Model

1b

8 66.6 352.8 192 0.5

28 48.5 239 192 250

38 90 444 198 250

10 20 72 192 250

40 16 114 192 0.5

50 78 571.4 473 417

60 350 720 802 750

 70 151 432 4130 465

90 233 8211 5920 5250

14 100 215 203 250

54 219 2120 2580 2500

84 24 430 470 500

16 100 360 203 250

46 423 2400 2590 2500

56 227 1181 1580 1500

66 150 882 817 750

76 162 756 4130 750

17 150 324 229 250

87 70 1645.9 1580 1500

23 29.5 120 192 250

43 282.1 1368 1590 1500

53 101 750 802 750

63 90 162 198 250

25 38 210 192 250

65 137 636 808 750

85 165 4178.2 5140 4280

32 35.5 192 192 250

59 980 4560 4080 4000

79 60 409 470 500

81 32 1350 1580 1500

68 240 192 198 250

The MMRE of experimental model 1a and 1b were 0.4958 and

0.082 while the prediction accuracy, Pred (30) were 67.74% and

70.96% respectively.

Table 3: Estimated efforts (in man-months) of Experiment 2

models

Prj

No

Actual

Effort

Model

2a

Model

2b

Model

2c

Model

2d

Model

2e

8 352.8 192 165 124 248 0

28 239 192 165 124 248 0

38 444 198 165 124 248 0

10 72 192 165 124 248 0

40 114 192 165 124 248 0

50 571.4 473 413 124 248 0

60 720 802 825 784 825 743

70 432 4130 4130 4130 4130 4130

90 8211 5920 6190 7080 8250 3960

14 215 203 165 124 248 0

54 2120 2580 2560 2520 2560 2480

84 430 470 413 124 248 0

16 360 203 165 124 248 0

46 2400 2590 2560 2520 2810 2230

56 1181 1580 1570 1490 1490 1490

66 882 817 825 825 1070 578

76 756 4130 4130 4130 4130 4130

17 324 229 248 206 413 0

87 1645.9 1580 1570 1490 1490 1490

23 120 192 165 124 248 0

43 1368 1590 1570 1570 1820 1320

53 750 802 825 784 825 743

63 162 198 165 124 248 0

25 210 192 165 124 248 0

65 636 808 825 784 908 660

85 4178.2 5140 5280 5830 8250 3300

32 192 192 165 124 248 0

59 4560 4080 4040 4040 4040 4040

79 409 470 413 124 248 0

81 1350 1580 1570 1490 1490 1490

68 192 198 165 124 248 0

The MMRE and Pred(30) of experimental models 2a, 2b, 2c, 2d,

2e respectively were 0.4958, 0.4233, 0.2623, 0.6377, 0.1215 and

67.74%, 67.74%, 48.38%, 54.83%, 38.70% respectively.

27

Table 4: Estimated efforts (in man-months) of Experiment 3

models

Proj

No.

Actua

l

Effort

Model

3a

Model

3b

Model

3c

Model

3d

Model

3e

8 352.8 124 82.5 371 289 289

28 239 124 124 248 248 289

38 444 124 124 248 248 248

10 72 124 82.5 248 248 248

40 114 124 124 248 248 248

50 571.4 124 424 495 248 495

60 720 784 825 784 743 701

70 432 4130 4130 784 701 578

90 8211 7080 6030 5900 5240 5690

14 215 124 124 289 248 248

54 2120 2520 2640 2520 2520 2430

84 430 124 513 495 495 454

16 360 124 124 289 248 248

46 2400 2520 2640 2520 2520 2430

56 1181 1490 1650 1490 1490 1400

66 882 825 825 784 743 701

76 756 4130 4130 784 743 743

17 324 206 206 289 248 330

87 1646 1490 1650 1490 1490 1400

23 120 124 82.5 248 248 248

43 1368 1570 1650 1530 1490 1400

53 750 784 825 743 743 743

63 162 124 124 289 248 248

25 210 124 124 248 248 248

65 636 784 825 743 743 743

85 4179 5830 5820 5550 5510 5690

32 192 124 124 248 248 289

59 4560 4040 4170 4000 4000 3960

79 409 124 513 495 495 495

81 1350 1490 1650 1490 1490 1400

68 192 124 82.5 289 248 248

From Table 4, the MMRE values for model 3a, 3b, 3c, 3d, 3e

were 0.2623, 0.3176, 0.2549, 0.1894 and 0.2 respectively. The

prediction accuracy were 48.38%, 54.83%, 70.96%, 67.74% and

67.74% respectively.

Table 5: Estimated efforts (in man-months) of Experiment 4

models

Proj.

No.

Size in

KLOC

Actual

Effort

Model

4a

Model

4b

8 66.6 352.8 289 495

28 48.5 239 289 578

38 90 444 248 495

10 20 72 248 495

40 16 114 248 578

50 78 571.4 495 578

60 350 720 701 495

70 151 432 578 578

90 233 8211 5690 4620

14 100 215 248 495

54 219 2120 2430 1530

84 24 430 454 578

16 100 360 248 495

46 423 2400 2430 2020

56 227 1181 1400 2020

66 150 882 701 578

76 162 756 743 578

17 150 324 330 536

87 70 1645.9 1400 2020

23 29.5 120 248 495

43 282.1 1368 1400 1980

53 101 750 743 578

63 90 162 248 495

25 38 210 248 495

65 137 636 743 578

85 165 4178.2 5690 4620

32 35.5 192 289 578

59 980 4560 3960 6190

79 60 409 495 578

81 32 1350 1400 2020

68 240 192 248 495

Experimental model 4a and 4b had MMRE values of 0.20 and

0.8291 respectively while their prediction accuracy, Pred (30),

were 67.74% and 29.03% respectively.

Table 6: Estimated efforts (in man-months) of Experiment 5

models

Proj.

No.

Size in

KLOC

Actual

Effort

Model

5a

Model

5b

8 66.6 352.8 289 289

28 48.5 239 289 289

38 90 444 248 248

10 20 72 248 248

40 16 114 248 248

50 78 571.4 495 495

60 350 720 701 701

70 151 432 578 578

90 233 8211 5690 5570

14 100 215 248 248

54 219 2120 2430 2430

84 24 430 454 454

16 100 360 248 248

46 423 2400 2430 2430

56 227 1181 1400 1400

66 150 882 701 701

76 162 756 743 743

17 150 324 330 330

87 70 1645.9 1400 1400

23 29.5 120 248 248

43 282.1 1368 1400 1400

53 101 750 743 743

63 90 162 248 248

25 38 210 248 248

65 137 636 743 743

85 165 4178.2 5690 4800

32 35.5 192 289 289

59 980 4560 3960 3920

79 60 409 495 743

81 32 1350 1400 1400

68 240 192 248 248

Models 5a and 5b had MMRE values of 0.2 and 0.2119

respectively. Their prediction accuracy were 67.74% and 64.51%

respectively.

28

4.1 Performance Evaluation

Figure 1: Prediction accuracy for model 1a and 1b

Figure 2: Mean magnitude relative error for models 1a and 1b

Figure 3: Prediction accuracy for models 2a, 2b, 2c, 2d and 2e

Figure 4: Mean magnitude relative error for models 2a, 2b,

2c, 2d and 2e.

Figure 5: Prediction accuracy for models 3a, 3b, 3c, 3d and 3e

Figure 6: Mean magnitude relative error for models 3a, 3b,

3c, 3d and 3e

Figure 7: Prediction accuracy for models 4a and 4b

Figure 8: Mean magnitude relative error for models 4a and 4b

66

68

70

72

a b

P
re

d
ic

ti
o

n

A
cc

u
ra

cy
 (

%
)

Experimental model 1

Pred(30) for Model 1

a

b

0

0.2

0.4

0.6

a b

M
M

R
E

Experimental model 1

MMRE for Model 1

a

b

0

20

40

60

80

a b c d e

P
re

d
ic

ti
o

n

A
cc

u
ra

cy
 (

%
)

Experimental model 2

Pred(30) for Model 2

a

b

c

d

e

0

0.5

1

a b c d e

M
M

R
E

Experimental model 2

MMRE for Model 2

a

b

c

d

e

0

50

100

a b c d e

P
re

d
ic

ti
o

n

A
cc

u
ra

cy
 (

%
)

Experimental model 3

Pred(30) for Model 3

a

b

c

d

e

0

0.2

0.4

a b c d e

M
M

R
E

Experimental model 3

MMRE for Model 3

a

b

c

d

0

20

40

60

80

a b

P
re

d
ic

ti
o

n

A
cc

u
ra

cy
 (

%
)

Experimental model 4

Pred(30) for Model 4

a

b

0

0.5

1

a b

M
M

R
E

Experimental model 4

MMRE for Model 4

a

b

29

Figure 9: Prediction accuracy for models 5a and 5b

Figure 10: Mean magnitude relative error for models 5a and

5b

From figures 1 and 2, it is observed that in experiment 1 models,

inference type had a great effect on performance of the fuzzy

model. The model with Takagi-Sugeno inference performed better

than the model with Mamdani inference in terms of mean

magnitude relative error (0.0820 against 0.4958) and prediction

accuracy (70.96% against 67.74%) respectively. Figures 3 and 4

shows that, no one choice of defuzzification technique enjoyed

absolute preference in both evaluation criteria. While the models

with centroid (67.74%) and bisector (67.74%) defuzzification

technique show better predictive accuracy than the models with

largest of maximum (54.83%), middle of maximum (48.38%),

and smallest of maximum (38.7%) respectively. Alternatively, the

models with smallest of maximum (0.1215) and middle of

maximum (0.2623) defuzzification technique shows better results

of mean magnitude relative error than models with bisector

(0.4233), centroid (0.4958) and largest of maximum (0.6377)

defuzzification technique respectively.

In terms of prediction accuracy from figure 5, the model with

Gaussian membership function (70.96%) shows promising results

than models with generalized bell (67.74%), product of sigmoid

(67.74%), trapezoid (54.83%) and triangular (48.38%)

membership functions respectively. From figure 6, it could be

observed that generalized bell membership function shows better

results of MMRE (0.1894) than product of sigmoid (0.2),

Gaussian (0.2549), triangular (0.2623) and trapezoid (0.3176)

membership functions respectively.

Another important observation from experiment 4 is that the

number of linguistic variable used in a fuzzy model has effect on

its performance. As seen in figures 7 and 8, the model with more

linguistic variables (five) performed better in terms of MMRE

(0.2) and prediction accuracy (67.74%) than the one with lesser

(three) linguistic variable of MMRE of 0.8291 and prediction

accuracy of 29.03%.

Also from figures 9 and 10, the model with increased number of

input variables to the fuzzy model (fifteen) outperformed the one

with lesser input variables (twelve) in terms of lower MMRE and

better prediction accuracy respectively.

5. CONCLUSION AND FUTURE

RESEARCH
This paper explored the various factors that enhance high

performance of fuzzy-based models for software development

cost estimation. From the comparative analysis of fuzzy models

used in the experiments, it could be observed that using Tagaki-

Sugeno inference type is preferred than Mamdani inference type

for a fuzzy-based software cost estimation model. Also, increasing

the number of linguistic variables and input variables to the fuzzy

model has positive results on performance. Generalized bell,

sigmoid and Gaussian membership functions performs better than

triangular and trapezoid membership functions for this area of

software engineering application.

The choice of a suitable defuzzification technique depends on

whether smaller or larger projects are being modelled. While

centroid and bisector defuzzification technique would favour

modelling of medium software projects effort, smallest of

maximum and largest of maximum defuzzification technique

would show favourable results for small projects and large

projects respectively. It is unlikely to achieve a fuzzy model

which can give 100% Pred(30) but by suitably adjusting the

values of the parameters in fuzzy inference system (FIS),

estimated effort could be optimized.

Future research will involve a comparative study of fuzzy models

using data from in-house software projects and also investigating

the performance of fuzzy models with customized membership

functions.

6. ACKNOWLEDGEMENTS
Special thanks to lecturers and postgraduate students of Computer

Science department, Federal University of Technology Akure,

Nigeria for their various inputs and suggestions to the success of

this work, most especially Dr. (Mrs.) B. A. Ojokoh.

7. REFERENCES
[1] Agarwal B. B., Tayal S. P., Gupta M., 2009. Software

engineering and testing. Jones and Bartlett publishers, ISBN

978-0-7637-8302-0.

[2] Dorsey P., 2000. Top 10 Reasons Why Systems Projects Fail.

Dulcian Inc, www.ksg.havard.edu [Accessed November 13,

2015].

[3] Charette R. N., 2005. Why Software Fails. IEEE Spectrum,

http://spectrum.ieee.org/computing/software/why-software-

fails [Accessed November 13, 2015].

[4] Agbons O-L. A., 2013. Combating and preventing failed

Projects in Nigeria. Project Management in Nigeria;

Challenges and Prospects, 3rd International Project

Management Professionals Conference, Lagos, Nigeria. Pp 6-

7.

[5] Putnam D., and Putnam-Majarian C. T., 2015. The Most

Common Reasons Why Software Projects Fails. InfoQ

Article July 2015. http://www.infoq.com/articles/software-

failure-reasons [Accessed October 30, 2015].

[6] Calleam Consulting Ltd., 2015. Why Do Projects Fail; A

resource article. International Project Leadership Academy,

www.calleam.com/WTPF/?page_id=1445 [Accessed

November 13, 2015].

[7] Ravindranath C. P., 2003. Software Metrics: A Guide to

Planning, Analysis and Application. CRC Press Inc. Boca

Raton, FL, ISBN: 0849316618.

60

65

70

a bP
re

d
ic

ti
o

n

A
cc

u
ra

cy
 (

%
)

Experimental model 5

Pred(30) for Model 5

a

b

0.19

0.2

0.21

0.22

a b

M
M

R
E

Experimental model 5

MMRE for Model 5

a

b

30

[8] Maleki I., Ebrahimi L., Jordati S., Ramesh, I., 2014. Analysis

of Software Cost Estimation Using Fuzzy Logic.

International Journal in Foundations of Computer Science &

Technology (IJFCST), Vol. 4, No. 3.

[9] Ziauddin N., Shahid K., Shafiullah K., Jamal A. N., 2013. A

Fuzzy Logic based Software Cost Estimation Model.

International Journal of Software Engineering and its

Applications, Vol. 7, No. 2.

[10] Ravishankar S. and Latha P., 2012. Software Cost Estimation

using Fuzzy Logic. International Conference on Recent

Trends in Computational Methods, Communication and

Controls (ICON3C), Proceedings published in International

Journal of Computer Applications (IJCA).

[11] Mittal A., Parkash K. and Mittal H., 2010. Software Cost

Estimation Using Fuzzy Logic. ACM SIGSOFT Software

Engineering, Vol. 35, No. 1, pp. 1-7.

[12] Ashita M., Varun P., Anupama K., 2013. An Analysis of

Fuzzy Approaches for COCOMO II. International Journal of

Intelligent Systems and Applications, Vol. 5, pp. 68-75.

[13] Lopez-Martin C., Isaza C., Chavoya A., 2012. Software

development effort prediction of industrial projects applying

a general regression neural network. Empir Software Eng.

Pp 738-756. DOI 10.1007/s10664-011-9192-6.

[14] Tirimula R. B., Satchidananda D., Rajib M., 2012.

Computational Intelligence in Software Cost Estimation: An

Emerging Paradigm. ACM SIGSOFT Software Engineering

Notes, Vol. 37, No. 3.

[15] Isa M., Laya E., Saman J., Iraj R., 2014. Analysis of

Software Cost Estimation Using Fuzzy Logic. International

Journal in Foundations of Computer Science & Technology

(IJFCST), Vol. 4, No. 3.

[16] Hamdy A., 2012. Fuzzy Logic for Enhancing the Sensitivity

of COCOMO Cost Model. Journal of Emerging Trends in

Computing and Information Sciences, Vol. 3, No. 9, pp.

1292-1297.

[17] Balakrishna A. and Rama-Krishna T. K., 2012. Fuzzy and

Swarm Intelligence for Software Effort Estimation.

Advances in Information Technology and Management

(AITM), Vol. 2, No. 1, pp. 246-250.

[18] Agarwa R., Alam Q. and Sarwar S., 2012. Efficient

Estimation of Software System using Fuzzy Technique.

International Journal of Electronics and Computer Science

Engineering, Vol. 1, No. 3, pp. 1006-1012.

[19] Swarup K. N. V. R., Mandala A., Chaitanya M. V., Prasad G.

V. S. N. R. V., 2011. Fuzzy logic for Software Effort

Estimation Using Polynomial Regression as Firing Interval.

International Journal Computer Technology Application,

vol. 2, no. 6, pp. 1843-1847.

[20] Prasad R. P. V. G. D., Sudha K. R. and Rama S. P., 2011.

Application of Fuzzy Logic Approach to Software Effort

Estimation. International Journal of Advanced Computer

Science and Applications (IJACSA), Vol. 2, No. 5, pp. 87-

92.

[21] Sharma V. and Verma H. K., 2010. Optimized Fuzzy Logic

Based Framework for Effort Estimation in Software

Development. IJCSI International Journal of Computer

Science issues, Vol. 7, Issue 3, No. 2, pp. 30-39.

[22] Jorgensend M., and Shepperd M., 2007. A Systematic

Review of Software Development Cost Estimation Studies.

IEEE transactions on Software Engineering, Vol. 33, No. 1.

[23] Malathi S. and Sridhar S., 2012. Performance evaluation of

Software Effort Estimation using Fuzzy Analogy based on

Complexity. International Journal of Computer Applications

(IJCA), Vol. 40, No. 3, pp. 32-37.

[24] Jha P. and Patnaik K. S., 2012. Comparative Analysis of

COCOMO 81 using Various Fuzzy Membership Functions.

International Journal of Computer Applications (IJCA), Vol.

58, No. 14, pp. 220-227.

[25] Garcia-Diaz N., Lopez-Martin C., Chavoya A., 2013. A

comparative Study of two Fuzzy logic models for software

development effort estimation. The 2013 Iberoamerican

Conference on Electronics Engineering and Computer

Science, Procedia Technology 7, pp. 305-314.

[26] Boehm B. W., 1981. Software Engineering Economics.

Englewood Cliffs, NJ, Prentice-Hall.

[27] Bailey J. W., and Basili, 1981. MetaModel for Software

Development Resource Expenditure. Proceedings of

International Conference on Software Engineering.

[28] Walston C. E., and Felix, A. P., 1977. A Method of

Programming Measurement and Estimation. IBM Systems

Journal, Vol. 16, No. 1.

[29] Putnam, L. H., 1978. A General Empirical Solution to the

Macro Software Sizing and Estimation Problem. IEEE

Transaction on Software Engineering, Vol. 4, No. 4.

[30] Albrecht A. .,, and Gaffney J., 1983. Software Function,

Source Lines of Code, and Development Effort Prediction: a

Software Science Validation. IEEE Transaction on Software

Engineering, Vol. 9, No. 6.

[31] Boehm, B. W., 2000. Software Cost estimation with

COCOMO II, Prentice Hall.

[32] Ruan D., D’hondt P., Fantoni P. F., Cock M. D., Nachtegael

M., and Kerre E. E., (eds), 2006. Applied Artificial

Intelligence. Proceedings of the 7th International FLINS

Conference Genova, Italy.

[33] Claudio B., Cesare F., Riccardo R., (eds) 1998. Fuzzy Logic

Control: Advances in Methodology. Proceedings of the

International Summer School, Ferraro, Italy.

[34] PROMISE repository. 2006. PROMISE Software

Engineering Repository data set.

http://promise.site.uottawa.ca/SERepository.

[35] Braz M., and Vergilio S., 2004. Using Fuzzy Theory for

Effort Estimation of Object-Oriented Software. Proceedings

of the 16th IEEE International Conference on Tools with

Artificial Intelligence, ICTAI 2004.

[36] Standish Group, (2012). CHAOS Report, West Yarmouth

MA. The Standish Group International Inc.

[37] Idri, A., Abran, A., and Kjiri, L., (2000). COCOMO Cost

Model Using Fuzzy Logic. 7th International Conference on

Fuzzy Theory & Technology, Atlantic City, New Jersey,

February 27- March 3, 2000.

[38] Zeeshan, M., and Moataz A. A., (2009). Software

development effort prediction: A study on the factors

impacting the accuracy of fuzzy logic systems. Information

and Software Technology, Vol. 52.

[39] Attarzadeh, I., and Ow, S. H., (2010). Soft Computing

Approach for Software Cost Estimation. International

Journal of Software Engineering (IJSE), Vol. 3, No. 1.

[40] MathWorks, (2015). Fuzzy Logic Toolbox: User’s Guide.

The MathWorks Inc.

