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ABSTRACT 

Changepoint problems are often encountered when series undergo 

abrupt changes or discontinuities. Detecting changepoints can 

signal useful actions towards sustainable developments. However 

the presence of changepoints have often been known to lead to 

failure of some regular assumptions. In theory much has not been 

done on which assumptions fail and to what extent will it affect 

the score functions of the likelihood asymptotic. In this work we 

concentrate on simulating the likelihood function using R to 

establish the failure of regular assumption due to the presence of 

changepoint. The failure of regular assumption is established 

using various score functions coded in R thereby making it 

possible to understand the statistical theory and the consequences 

of the failure of assumptions as a result changepoints.   
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• Computing methodologies ➝Simulation ➝Simulation 
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Keywords 
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1. INTRODUCTION 
Changepoints are referred to as discontinuities that can lead to 

non-linearity even in complex functions (Chen and Gupta, 2000). 

The causes of changepoints include; changes in locations of 

observations, equipment, measurement methods, environmental 

effects, regulations, standards and so on. Generally we need to 

investigate the potential presence of possible changes in the data 

set indicating data quality problems that should be resolved prior 

to any subsequent analysis. This will therefore signal signs for 

timely protection and knowing this could be highly advantageous 

in planning for the future. However Yang.et.al.(2006) noted that 

changes do occur even in the best regulated systems. They 

indicated that discrepancies in records, occasional disagreement 

between documentation and data, abnormal data entry, changed 

units of measurement and other problems require adequate 

attention. Most times we need to detect the number of 

changepoints, or jumps, and their locations whereas it is noted in 

Mainly(2001) that it is much easier if the point of change is 

known. This case is referred to as intervention analysis. In 

contrast when the point is unknown this leads to various 

complexities and non-linearity. 

Many applications of changepoints analysis exist. Relevant 

literature can be found in many fields including; Biology, Physics, 

Chemistry, Environmental Sciences and Climate Change, 

Engineering, Econometrics, Medicine, Behavioral Sciences, 

Political Science, Finance, Image Analysis, Security etc. The 

earliest works found seem to be those by Page(1954, 1955, 1957) 

where the cumulative sum(CUSUM) approach was used. 

Consequently  Jandhyala and MacNeil(1986) and Jandhyala 

et.al(1999) provided detailed reviews of many approaches to 

changepoint modelling. It is important to state that the large body 

of literature exists due to the fact that the standard theory breaks 

down where the time of change is unknown. Much has not been 

done in showing the breakdown of the standard theory as regards 

failure of regular assumption. More details in respect of standard 

theory on changepoint are available in Easterling and 

Peterson(1995), Chen and Gupta(2000), Lu et.al (2005),Hanesiak 

and Wang(2005) and Wang(2006). 

It is indicated in Obisesan.et.al(2013) that the data analysed were 

the physico-chemical properties of water samples obtained from 

two reservoirs in Oyo State Nigeria. The data were seen to contain 

some abrupt changes in behaviour. In the work various charts and 

diagrams were engaged in showing the positions and locations of 

changepoints and the likelihood function was written to show the 

single changepoint detection. However the theory on changepoint 

linking failure of assumption was not shown therefore this present 

work attempts to extend the likelihood theory to show the 

implications of failure of regular assumptions as a result of the 

presence of changepoint. 

 

2. STANDARD TECHNIQUES OF 

LIKELIHOOD ASYMPTOTICS 
To study the inference of changepoint problems such as to 

understand its non-standard nature it is important to review some 

properties of likelihood functions. The likelihood function for a 

scalar parameter   based on data            as a collection 

of independence observations is defined to be 

 ( | )   (   )  ∏ (    )

 

   

 

which is simply the joint density of the data, regarded as a 

function of the parameter (Rice, 2007). For convenience, we study 

the log-likelihood function  ( | )   ( ) and write 
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The maximum likelihood estimate of    ̂ which is a value of   

that minimizes the log-likelihood function. If the likelihood 

function is a differentiable function of   then  ̂ will be the root 
  ( )

  
    Moreover, for a local maximum we need 

   ( )

  
   at  ̂ 

The main assumptions here can be stated simply as 

Assumption 1 : The log-likelihood is a twice 

differentiable function. 

Assumption 2 : The second derivative 
   ( )

  
   at  ̂ 

 

 

3. THE SCORE FUNCTION: SIMULATION 
Under Assumption 1, the first derivative is usually called the 

score function: 
    ( )

  
 

 [∑    (      ) 
   ]

  
 and is regarded as a 

function of   for fixed X This function plays a central role in 

maximum likelihood theory. We can also define the observed 

information as 

 ( )  
   ( )

     
  

    ∑   
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     (    )

   

 

   

 

which is a sum of   components. Also the Fisher information is 

defined as 

 ( )   { 
   ( )

   }     ( ) 

and  

 ( )   { 
  

   ∑    (    )

 

   

} 

Which can be written 

 ( )  ∑   {
      (    )

   }

 

   

 

    ( )     

Where   ( ) refers to single observation information. 

 

Now we show some characteristics of the score function when 

data are assumed generated from (    ) so that   (assumed true 

value of   is the parameter to be estimated. If we have an 

independent and identically distributed sample of size n, the log-

likelihood is written as 

 ( )  ∑    (  | )      

 

   

                                                            ( ) 

A careful illustration of the behavior of the score function is given 

in Figure 1. This allows the sampling variation of score function 

for different models (Normal, Poisson, Binomial and Cauchy) for 

samples of size      . Figure 1(a) shows 25 score function, 

each based on independent and identically distributed sample of 

size       from N(4, 1). Each function is exactly linear and the 

score varies around 10 at the true parameter       . Figure 

1(b) shows score function for 25 independent samples of size 10 

from a Poisson distribution with mean 4 (Each function looks 

approximately linear) and at the true parameter     the score 

function also varies around 0. Figure 1(c) shows score function of 

25 independent samples of size n=10 from binomial (10, 0.4) 

where       In Figure 1(d), the score function for Cauchy   
  distributions (also based on 25 independent samples of size 10) 

are rather irregular and fail to behave as the previous models 

(although the score function also varies around 0 at     but 

there is the potential for multiple roots to the score equation). This 

case indicates problems with a complicated likelihood. 
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Figure 1: Sampling variation of score functions for different 

distributions. 

 

In all examples in Figure 1, the score varies around zero at the 

true parameter value. We can show this is generally the case. 

Recall from Section 3 that the score function is the first derivative 

of the log-likelihood function where we set  (   )  
  ( )

  
, then 

at the true value of   which is    we have 

 

 ( (    ))   ∫  

 

  

(    )   ( |  )   

 ∫
   ( )

  |    

  ( | )  
 

  ( |  )  

 

 ∫
 

 ( |  )
 
  ( |  )

  |    

 

  ( |  )  

  ( |  )    

  
 

  
 ( |  )   

 

  
[ ]    

The major assumption here is needed to justify interchanging the 

order of differentiation and integration and can be stated in 

Assumption 3 as 

 

Assumption 3 : The range of integration does not depend on   

     

Therefore using the stated assumptions we have  ( (    ))    

as required. We have also find the variance of the score function} 

as 

 

 ( (    ))   (  (    ))   ( ( (    )))
 

  [  (    )] 

since  ( (    ))    as seen above. We can rewrite  (    ) as 

say 

 (    )  ∑{
     (    )

      

}  ∑  (  )

 

   

 

   

 

This implies that 

 ( (    ))    [∑  (  )

 

   

   (  (  ))] 

Now 

 (  (  ))

 ∫
     (    ) 

  
  (    )                                               ( )

 

  

 

and  (  (  ))   . Differentiating Equation 2 with respect to    

we have 

 

  
  (  (  ))  ∫

      

    
 

  

  (     )   



118 

 

Therefore 
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At    therefore we have 
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Since the score function is a sum of n independent random 

variables, the last equation above shows that 

 ( (    ))   (  (    ))
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      (     )

   
]
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Next we see how  (    ) behaves by studying 
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     we have 
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and also that (assuming     
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as       Hence     (    )    in probability as       

 

The discussion so far has dealt with the behavior of the score 

function at    the true parameter value. We now consider its 

behavior at other values of  . In general (we need to investigate a 

case that indicate the existence of changepoint) for   =    we find 

that there may be need for another assumption: 

 

Assumption 4: For        the density  (   ) differs from 

 (    ) on a set of non zero measure. 

Note that  ( (   ))    unless 
  

  
   for all x (which itself 

contradicts Assumption 4). 

 

Then for an arbitrary value         

 ( ((   )))

 ∫ (   ) ( |  )   

  ∫
 

 ( |  )
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  ( |  )                                 ( ) 

Now consider 
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    ( |  )
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   *
    ( |  )

  
+           *
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+  is finite for all  . Therefore 

for a case where         we have  ( ((   )))  

 *
    ( |  )

  
+     and  [     (   )]  

 

  
  *

    ( |  )

  
+    

and so     (   )    *
    ( |  )

  
+     Therefore as     the 

function   ( )        (   ) tends to a deterministic function 

with root    

 

4. SIMULATION CODE WITH R. 
In this section the R code used in simulating the likelihood 

functions for the Normal and Poison distributions are stated as run 

from the prompt. The Binomial and Cauchy distributions follow 

similar way. After simulating from the distributions the likelihood 

functions are plotted to show the distribution of the parameter. It 

is clear from the code that the expected value of the score function 

moves around 0. 

set.seed(3) 

n<- 10 

#............................... Normal Score Functions: 

  t0<- 4 

  x<- rnorm(n,t0) 

  theta<- seq(t0/2,t0*2,len=40) 

  stheta<- n*(mean(x)-theta) 

 

par(mfrow=c(1,2)) 

plot(theta,stheta,type='n', 

     xlab=expression(theta),ylab='Score',cex=.6) 

  lines(theta,stheta,lwd=.4) 

  title(expression('(a) Normal n=10')) 

  text(6.5,5.5,expression(paste('true ',theta,'=4'))) 

  abline(v=t0,h=0) 

 

for(i in 1:20){ 

  x<- rnorm(n,t0) 

  stheta<- n*(mean(x)-theta) 

  lines(theta,stheta,lwd=.1) 

} 

 

 

# ............................... Poisson Score Functions: 

t0<- 4 

x<- rpois(n,t0) 

theta<- seq(t0/2,t0*2,len=40) 

stheta<- -n + sum(x)/theta 

 

plot(theta,stheta,type='n',xlab=expression(theta), 

     ylab='Score',ylim=c(-5,15),cex=.6) 

for(i in 1:20){ 

  x<- rpois(n,t0) 

  stheta<- -n + sum(x)/theta 

  lines(theta,stheta,lwd=.1) 

} 
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abline(v=t0,h=0) 

title(expression('(b) Poisson n=10')) 

 

5. Consistency of Maximum Likelihood 

Estimators 
We now consider whether  ̂ is a constant estimator of  Using a 

Taylor expansion for  ( ) around   , we have 

 ( )   (  )   (    )
  

  |    
 

For some     (    ) and so we can write  

(    )   
 ( )   (  )

 ( )
  |  

 

In particular, when    ̂ then we have (nothing that  ( ̂)   ) 

 ̂      
 (  )

 ( )
  |  

                                                     ( ) 

Which can be rewritten as 

 ̂      
    (  )

    
 ( )
  |  

                                            ( ) 

 

Note that the numerator of Equation 6 approaches 0 as     If 

we assume that the denominator is guaranteed nonzero, then 

Equation 6 implies that        and therefore  ̂    . This 

requires the following assumption which can be seen as a 

strengthened version of Assumption 2. 

 

Assumption 5:  
  

  
 is non- zero in an interval containing    . 

 

6. Limiting Distribution of  ̂ 
As well as demonstrated the consistency of the maximum 

likelihood estimator  ̂, Equation 5 allows us to establish its 

distribution when n is large. Recall again that 

 ( (  ))   (  (    ))       [
     (   )

   ]
     

 

Moreover,  (  ) is a sum of independent and identically 

distributed contributions. Hence from the central limit theorem we 

have asymptotically, 
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Hence we write  
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between   ̂ and   . Also, if 
     

   
 ifs a continuous in   then as  
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In the case, the final term in Equation 7    and we have  

 

( ̂    )√   
     

   
|  

   

which has a standard normal distribution asymptotically. 

 

7. Limiting Chi-Square Distributions: 

Likelihood Ratio Statistic 
 

Now we discuss the basic test statistic used for testing hypothesis 

using the principles of likelihood functions. Suppose that l(.) is the 

log-likelihood established from the probability density f . then the 

consistency of  ̂ implies that we can write 

 (  )   ( ̂)  ( ̂    ) 
 ( ̂)  

( ̂    )
 

 
    ( 

 ) 

Where    is between    and   . 

 

Then representing the likelihood ratio statistic with    

 ( ( ̂)    (  )) gives  

    ( ̂     )  
 ( ̂)   ( ̂     )

 
  (   )  

and since   ( ̂)    by definition we can write that 
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   (  )
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It is clear that the first part of Equation 8 is asymptotically the 

square of a standard normal random variable and it is therefore a 

  
  distribution in addition, the last two ratios 

  (  )

  (  )
 and 

  (  )

   (  )
 

tend to 1 using similar arguments to those applied in the previous 

subsection. In the same direction, we can obtain the    

distribution for a case when   is vector (without proof) in that as 

above we write     [ ( ̂)   (  )]  ( ̂    )
   (  )( ̂  

  )  It is therefore noted that   ( ) has an approximate chi-square 

distribution on p degree(s) of freedom for repeated sampling of 

data from the model. We can write   ( )      
   

 



120 

 

7.1 The two-mean model 
In Obisesan et.al(2013), the development of changepoint detection 

was based on Hinkley(1970) work. Hinkley(1970) considered 

sequences of random variables and discussed the point at which 

the probability distribution changes using a normal distribution 

with changing mean. The asymptotic distribution of the maximum 

likelihood estimate discussed in this paper is particularly relevant 

to change-point. The author indicated the simplest model over a 

whole range of data as     ( )                as usual 

where  ( )is a mean function and    refer to error terms. Hinkley 

(1970) computed the asymptotic distribution in the normal case 

when $\theta_0$ and $\theta_1$ are unknown. The asymptotic 

dsitribution is found to be the same when the mean levels are 

known. The two-mean model to be considered supposes that there 

exist a mean   ( ) and mean   ( )              and     
        respectively. He also computed the asymptotic 

distribution of the likelihood estimate of the change-point 

  ̂(where    and    are known and   is unknown) is obtained 

from a sample        by simply maximizing the likelihood 

function of the form 

 

 (       )  ∏ (     ) ∏  (     )

 

     

 

   

 

which can be written in form of log likelihood as  
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                ( ) 

Moreover, many cases arise when the mean levels are not known. 

The log-likelihood of the observed sequence (       ) is 
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If we assume that   is known therefore the maximum likelihood 

estimators               respectively are  ̂  
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Particularly for convenience.  Hinkley (1970)  substituted       

as known so that Equation 10 becomes  

 (          
 |        )
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  ∑ (     )
 

 

     

 }                  (  ) 

Assuming that    is unknown and putting the maximum 

likelihood estimates of    and    back into the log-likelihood in 

Equation 11 and re-arranging the emerging sums of squares 

conditional on t Equation 11 was used to estimate changepoint of 

water pollution in Eleyele and Asejire reservoirs in Nigeria. This 

confirms the application of the likelihood theory of changepoint. 

More on the applications are discussed in  Obisesan(2011, 2015). 

8. RESULTS 
 

In this work it has been shown that changepoint arises as a 

result of failure of some regular assumptions specifically in this 

case Assumptions 1 and Assumptions 4 may fail. This work has 

justified using simulation in the theory of likelihood function for 

the score functions to show the change in parameter allowing 

changepoint to occur. The work also justifies the application of 

changepoint detection as used in Obisesan et.al(2013). The use of 

R has therefore made it possible to show the failure of regular 

assumption. 

 

9. CONCLUSION 
Single changepoint detection has been discussed in the framework 

of the failure of regular assumptions that have not been commonly 

noticed. Likelihood function was used to merge the two-mean 

levels and various score functions were simulated using the 

successful statistical computing language R. The theoretical 

implications of failure of regular assumptions were discussed and 

the failed assumption identified using R . This work has therefore 

provided a basis for using computational statistics methods in 

solving a mathematical problem. 
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