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ABSTRACT 
The need for successful software projects has been a major area of 

discourse amongst researchers and software developers in 

academia and software industry respectively. Failure of software 

projects has been tied to flawed estimation at the early stages of 

software development life cycle. Recently, soft computing 

techniques such as Fuzzy logic models has been seen as an 

alternative to handle uncertainties and vagueness of input 

parameters to the early software estimation models. In order to 

analyze the various conditions which affect estimation accuracy of 

fuzzy-based models, a sample of 93 COCOMO NASA projects 

was used to develop two groups of fuzzy models. One was the 

controlled group while the other was the experimental group 

varying in conditions of model structure, linguistic variables, 

parameters of input and output variables. A comparative analysis 

of the Mean Magnitude of Relative Error (MMRE) and Prediction 

accuracy Pred(l) evaluation criteria for the models was made and 

findings recorded. Results from the experiments show that the 

performance of a fuzzy-based software cost estimation model 

utilizing Takagi-Sugeno inference, Gaussian/Sigmoid 

membership function with more number of input variables and 

linguistics variables is more efficient. 

 

CCS Concepts 
• Software and its engineering ➝Software system structures 

➝Software system models ➝Model-driven software 

engineering  • Computing methodology➝Artificial Intelligence 

Knowledge representation and reasoning➝Vagueness and 

fuzzy logic 

Keywords 
Fuzzy model, Software cost estimation (SCE), membership 

function (MF), Fuzzy Inference System, performance. 

1. INTRODUCTION 
Software engineering is the application of a systematic, 

disciplined, quantifiable approach to the development, operation 

and maintenance of software products [1]. A good software 

product passes through a process known as Software 

Development Life Cycle (SDLC) which ensures that a structured 

approach is followed from conception through development to 

maintenance and evaluation. This framework enables the planning 

of resources prior to development, helps understand the entire 

process and assists management to monitor and track the progress 

of software development. A key phase in the SDLC has suffered 

neglect from software practitioners which has always resulted in 

occurrence of software crisis. This phase is the feasibility study 

phase which is responsible for anticipation of future scenarios of 

software development. 

In a recent update of Standish Group study (2012) conducted for 

ComputerWorld, Standish examined 3,555 IT projects between 

2003 and 2012 that had labour costs of at least $10 million and 

found that only 6.4% of them were successful [36]. Notably 

questions have been raised in literature as to ‘why most software 

projects fail’ [2, 3, 4, 5, 6]. Flawed and inaccurate estimation of 

needed resources during the early stages of software development 

has been identified as one of the common factors why software 

projects fail [3, 5].  

Estimation is a process which uses prediction systems and 

intuition for resource and cost planning. It is controlled by cost 

realism, which does not always insist on exactness but lays equal 

emphasis on logic as much on the mathematical form of the 

prediction system [7].  

1.1 Software Cost Estimation (SCE) 
Software Cost Estimation (SCE) has been identified as one of the 

most crucial activities in managing software projects required 

during the early stages of software development life cycle [8, 9, 

10, 11]. It is the process of estimating the cost, work-effort, 

schedule and time required to develop and control a software 

project.  Software cost estimation aids in facilitating contract 

negotiations, generating project proposal. However, the process of 

estimation is uncertain in nature as it largely depends upon some 

attributes that are quite unclear during the early stages of 

development [12]. 

The entire process of software cost estimation is generally 

classified into two broad categories [13]: 

a. Expert Judgement: The technique aims at deriving 

estimates based on the experience of experts on similar 

projects. This technique is intuitive. 

b. Model-based technique: This technique is further 

subdivided into  

i. Models based on statistic: These models are 

based on linear regression. They are also 

known as algorithmic models. Early linear 

regression estimation models include 

Halstead, Bailey-Basili, Doty, Walston Felix 

and Constructive Cost model (COCOMO). 

ii. Models based on computational intelligence: 

These models solve nonlinear, time varying, 

correlated discontinuous complex 

probabilistic real-world problems. They 

provide feasible way to obtain either optimal 
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or suboptimal solutions [14]. Recent 

estimation models based on computational 

intelligence include fuzzy logic (FL), artificial 

neural network (ANN), particle swam 

optimization (PSO), genetic algorithm (GA) 

and genetic programming models. 

1.2 Software measurement 
Measures provide a quantitative indication of amount, dimension, 

capacity or size of a given attribute of a product. Metrics are a 

quantitative measure of the degree to which a system, component 

or process possesses a given attribute of a product. Measurement 

is achieved as the result of the collection of a data point or more 

data points. Software metrics can be defined as the continuous 

application of measurement based techniques to software 

development process and its products to supply meaningful and 

timely management information, together with those techniques to 

improve that process and its products [1]. However, metrics 

ensure that we achieve a final product of high quality and 

productivity. Metrics are categorized into the following: 

a. Product metrics: They describe characteristics of the 

product such as size, complexity, design features, 

performance, efficiency, reliability and portability. 

b. Process metrics: They describe the effectiveness and 

quality of the processes that produce the product. These 

include effort required in the process, time to produce 

the product, effectiveness of defect removal during 

development and maturity of process. 

c. Project metrics: Project metrics describe the 

characteristics of the project and its execution. They 

include; number of software developers, staffing pattern 

over life-cycle of the software, cost and schedule. 

1.3 Performance Evaluation 
Performance evaluation of estimates had always been a critical 

stage in software development. Thus, proper and accurate the 

evaluation criteria of software projects become, the better the 

software cost estimation models. The mostly used software cost 

estimation (SCE) criteria are listed in [15] but for the purpose of 

this study we will be making use of the first three because of their 

continued relevance in most literature. 

a. Magnitude of Relative Error (MRE): An MRE criterion 

is value error estimated for each of the projects 

compared to the actual. 

b. Mean Magnitude of Relative Error (MMRE): MMRE is 

used as the criteria error of the mean value of the 

project. 

c. Percentage Relative Error Deviation (PRED(l)): 

PRED(l) criterion is used in order to estimate the 

accuracy of the models. 

 

MRE is evaluated as follows (for the i-th observation) 
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Pred(l) is calculated as follows for n observations 
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where n is the total number of projects and l is the number of 

projects with MRE less than or equal to l. However, a model 

estimate with low MMRE has a better performance index than one 

with high MMRE. A model with high Pred(l) has a better 

performance than one with a low Pred(l). A model with high VAF 

is better than one with a low VAF. Alternatively, a model 

showing low VARE has more accuracy than one with high 

VARE. Likewise a model having low MARE is preferable to one 

with high MARE. 

1.4 Related works 
Various fuzzy-based models for software cost estimation have 

been proposed by researchers in [9, 10, 11, 12, 13, 15, 16, 17, 18, 

19, 20, 21]. The issue of the compatibility of COCOMO with the 

fuzzy logic showed that the accuracy of estimation is very 

sensitive to the changes in inputs. Results showed that the ‘fuzzy’ 

intermediate COCOMO 81 model tolerates imprecision in its 

inputs (cost drivers) and consequently generates more gradual 

outputs (cost) [37]. In the paper [38], it was reported that fuzzy 

logic based prediction systems could produce further better 

estimates provided that various parameters and factors pertaining 

to fuzzy logic are carefully set. The paper demonstrated that the 

prediction accuracy of a fuzzy logic based effort prediction system 

is highly dependent on the system architecture, the corresponding 

parameters, and the training algorithms. A soft computing 

approach (fuzzy) for software cost estimation was presented in 

[39]. The paper described an enhanced soft computing model for 

the estimation of software cost and time estimation. Evaluation of 

the model was based on MMRE and PRED(25) criteria and 

validated on NASA 93 projects dataset. The experimental results 

show that the proposed software effort estimation model shows 

better estimation accuracy than the COCOMO model. Also, an 

output with more terms or fuzzy sets provided a better 

performance due to the high granularity demanded from the 

results. Work by Jorgensend et al in [22] did a systematic review 

of software development cost studies. Their work reviewed 304 

software cost estimation papers and classified the papers 

according to estimation approach, research approach, research 

topic, data set and study context. Performance evaluation of 

software effort estimation [23] was done using Fuzzy analogy 

based on complexity. Comparative analysis of fuzzy models was 

done based on membership functions in [24] and fuzzy inference 

engine type in [25] respectively. This paper seeks to extend the 

work in [8] by analysing fuzzy-based software cost estimation 

models in areas of inference structure, membership function, input 

variables, linguistic variables and defuzzification techniques in 

order to evaluate more factors that affect estimation accuracy. In 

order to analyze the various conditions which affect estimation 

accuracy of fuzzy-based models, a sample of 93 COCOMO 

NASA projects is used to develop two groups of fuzzy models. 

One is the controlled group while the other is the experimental 

group varying in conditions of model structure, linguistic 

variables, parameters of input and output variables. A comparative 

analysis of the Mean Magnitude of Relative Error (MMRE) and 

Prediction accuracy Pred(l) evaluation criteria for the models is 

carried out and findings recorded. 

2. SOFTWARE COST ESTIMATION 

TECHNIQUES 

2.1 Traditional estimation models 

Early algorithmic models which include COCOMO [26], Bailey-

Basili [27] Doty, Halstead, Walston [28] models respectively, has 
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been developed for the estimation of cost and effort of software 

projects. Boehm [26] explored software engineering from an 

economic point of view, thus coming up with a Constructive Cost 

model. Software Life-Cycle Management (SLIM) developed by 

Putnam [29] accepts number of lines of code as a major input.  

Albrecht’s Function Points [30] measures the amount of 

functionality in a system as described by a specification.  

2.1.1 COCOMO 
The COCOMO I [31] model is a regression-based software cost 

estimation model, developed by Boehm and the most cited of all 

traditional cost estimation models [27, 28, 29, 30]. COCOMO II 

was developed to improve on the limitation of COCOMO I. The 

model equation for estimating effort in the COCOMO II model is 

shown in Equation (4) below. The model includes several 

software attributes such as: 17 Effort Multipliers (EMs), 5 Scale 

Factors (SFs), Software Size (SZ), and Effort estimation that are 

used in the Post Architecture Model. 

    (  )         ∑       ∏    
  
   

 
        (4) 

where a = 2.94 and b = 0.9. Other algorithmic models include: 

Halstead Model Equation 

      5.1
*2.5 KLOCEffort    (5) 

Bailey-Basili Model Equation 

   16.1
*73.05.5 KLOCEffort   (6) 

Doty Model Equation 

   04.1
*288.5 KLOCEffort    (7) 

Algorithmic models posses the following shortcomings; 

i. They make assumptions about the form of the prediction 

function. 

ii. They need to be adjusted or calibrated to local 

circumstances. 

iii. They are practically model-intractable.  

iv. They can’t handle the vagueness and uncertainty present 

in the input parameters to the model. 

v. The output from this set of models is almost crisp values 

which often lead to overconfidence in accuracy and 

precision of estimate.  

vi. Software cost estimation is a complex non-linear 

stochastic problem. These models can’t model non-

linear and complex problems. 

2.2 Fuzzy Logic 
Fuzzy logic is an extension of multi-valued logic that models 

effectively how the human brain reasons. A systematic use of 

fuzzy logic in software cost estimation is a necessity when the 

available information is imprecise, incomplete or not totally 

reliable [32].  

A fuzzy model is a mapping between input and output spaces 

described using conditional propositions and inference engine. 

Fuzzy systems have two distinguishing features. 

a. They implore non-linear mapping between input and 

output vectors and can be accurately described using 

mathematical formulae. 

b. They are also knowledge-based driven expressed in 

linguistic terms. These are known as intuitive systems. 

However, humans can make inferences in an imprecise 

environment and that is where fuzzy logic comes handy 

[40]. 

2.2.1 Fuzzy sets and linguistic variables 
The theory of fuzzy sets introduces a paradigm which extends the 

concept of the crisp set, allowing objects to partially belong to a 

set [33]. A fuzzy set is given below 

 S = {(x, µS (x)) x Є U, µS (x): U → [0, 1]         (8) 

The space U represents the universe of discourse and the function 

µS(x) is called the membership function. 

A linguistic variable can be defined as a variable that takes its 

value as terms defined by words in natural language. These terms 

are described by fuzzy sets defined in the universe of discourse in 

which the variable is defined. The number of linguistic variable 

was among the conditions that were varied during the experiments 

while others remain constant to analyze the effect on performance 

of estimate. 

2.2.2 Fuzzy inference system (FIS) 
Fuzzy Inference System (FIS) is based on the generalization of the 

classical inference rules to fuzzy logic. There are two basic FIS 

[33] namely; 

a. Mamdani fuzzy inference system 

It is formed by the following four components: A fuzzy rule 

base formed by a set of logical implications having the form 

described in Rule 1.  

IF X1 is Aj,1 and ... and Xm is Aj,m THEN Y is Bj(Rule 1) 

where the propositions X1 is Aj,1,..., Xm is Aj,m; Y is Bj are all 

defined in the fuzzy sets Aj,1,..., Aj,m, Bj  A fuzzy inference 

engine is defined using the sup-star operation. A fuzzifier 

operator and defuzzifier operator completes the system. 

b. Takagi-Sugeno fuzzy inference system 

It is formed by the following components: A fuzzy rule base 

formed by a set of logical implications having the following 

form: 

IF f(X1 is Aj,1,...,Xm is Aj,m) then y = gj(x*1,...,x*n) 

                          (Rule 2) 

where x*1,...,x*n  are crisp values on the input universes, X1 

is Aj,1,...,Xm is Aj,m are fuzzy propositions defined on the 

same input universes by the fuzzy sets Aj,1,...,Aj,m, f(.) is a 

logical function, y is a crisp value on output universe and g(.) 

is a crisp function that implies the value of y when the inputs 

x*1,...,x*n satisfy the premise. An algorithm of reasoning 

which is a modified version of Mamdani FIS completes the 

system. 

In summary, the Tagaki-Sugeno FIS method divides the input 

spaces in fuzzy subspaces and next builds a relation between input 

variables into each subspace. In the experiments, two groups of 

fuzzy models were used; one generated using the Mamdani and 

the other using the Takagi-Sugeno FIS type. 

2.2.3 Fuzzy membership functions 
The only condition a membership function must really satisfy is 

that it must vary between 0 and 1. The function can be an arbitrary 

curve whose shape can be defined as a function that suits from the 

point of view of speed, efficiency and ease of use. The 

membership function maps an element, say X, to a membership 

value between 0 and 1. The eleven membership functions in fuzzy 

logic are derived from several basic functions namely; 

a. piece-wise linear functions 

b. Gaussian distribution function 
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c. sigmoid curve 

d. quadratic and cubic polynomial curves 

These membership functions (MFs) include: trapezoid (trapmf), 

triangular (trimf), Gaussian (gaussmf), generalized bell (gbellmf), 

combination of Gaussian (gauss2mf), sigmoid (sigmf), pi-shaped 

(pimf), product of sigmoid (psigmf), difference between two 

sigmoid (dsigmf), s-shape (smf and z-shape (zmf). In this study, 

we carried out experiments using five membership functions 

(namely triangular, trapezoid, Gaussian, generalized bell and 

product of sigmoid) while keeping all other conditions constant. 

2.2.4 Defuzzification 
It is the mapping from a fuzzy set (aggregate output fuzzy set), 

say S, defined on the universe of discourse, say U, to a crisp value 

x*ЄU. The defuzzifier’s main function is to ascertain an object x* 

that best represents the fuzzy set S. The aggregate of a fuzzy set 

includes a range of output values which must be defuzzified in 

order to achieve a single output value from the set. Five 

defuzzification techniques available include: smallest of 

maximum, largest of maximum, middle of maximum (the average 

of the maximum value of the output set), centroid and bisector.  

3. DESIGN OF EXPERIMENTS 

3.1 Generation of fuzzy model 
The dataset used in this work was sourced from [34] which 

consist of 93 NASA projects. This dataset consists of one kilo 

lines of code attribute, fourteen COCOMO I effort drivers and one 

actual effort (in man-months) attribute. In the experiments, the 

schedule constraint effort driver was excluded from the fuzzy 

models because it showed a U-shaped correlation to actual effort. 

In order to generate the fuzzy model from the data available, the 

following steps were taken [35]. 

a. Select a Fuzzy Inference System (FIS) 

b. Define the input and output variables’ mode. 

c. Define the linguistic variables and values. 

d. Set the type of the membership functions for input 

variables and output variable. 

e. The data is now translated into a set of IF-THEN rules 

written in the fuzzy rule editor. 

f. A certain model structure is created and parameters of 

input and output variables can be tuned to get the 

desired output. 

Table 1 below shows the input variables to the fuzzy model used 

in this study. 

Table 1: List of Effort drivers and description 

S/N Effort 

drivers 

Description 

1 RELY Required Software Reliability 

2 DATA Database size 

3 CPLX Process Complexity 

4 TIME Time Constraint for CPU 

5 STOR Main memory constraint 

6 VIRT Machine volatility 

7 TURN Turnaround time 

8 ACAP Analyst Capability 

9 AEXP Application experience 

10 PCAP Programmers capability 

11 VEXP Virtual machine experience 

12 LEXP Language experience 

13 MODP Modern programming practice 

14 TOOL Use of software tools 

The various experimental groups of models in this study are 

described below. 

3.2 Experimental group with varying fuzzy 

inference system  
The controlled conditions for experiment 1 include: input and 

output variable, linguistic variable and value, membership 

function and defuzzification technique respectively. This 

experimental group utilized triangular membership, five linguistic 

variables (very low, low, nominal, high, very high), centroid 

defuzzification technique and fourteen effort drivers including 

Kilo line of code size (KLOC). The varied condition is in 

inference type as shown below. 

a. Model with Mamdani inference system (Experiment  

model 1a) 

b. Model with Tagaki-Sugeno inference system 

(Experiment model 1b) 

3.3 Experimental group with varying 

defuzzification technique 
The controlled conditions for experiment 2 include number of 

input variables (fourteen effort drivers including Kilo line of code 

size (KLOC)), membership function (triangular), inference type 

(Mamdani inference) and five linguistic variables (very low, low, 

nominal, high, very high) respectively. The varied condition is in 

the defuzzification type as shown below. 

a. Model with centroid defuzzification technique 

(Experiment model 2a) 

b. Model with bisector defuzzification technique 

(Experiment model 2b) 

c. Model with Middle of Maximum (MOM) 

defuzzification technique (Experiment model 2c) 

d. Model with Largest of Maximum (LOM) 

defuzzification technique (Experiment model 2d) 

e. Model with Smallest of Maximum (SOM) 

defuzzification technique (Experiment model 2e) 

3.4 Experimental group with varying 

membership functions 
The defuzzification technique implored here is the middle of 

maximum (MOM). Membership function is the varied condition 

in this setup as described below. 

a. Model with triangular membership function 

(Experiment model 3a) 

b. Model with trapezoid membership function (Experiment 

model 3b) 

c. Model with Gaussian membership function (Experiment 

model 3c) 

d. Model with generalized bell membership function 

(Experiment model 3d) 

e. Model with sigmoid membership function (Experiment 

model 3e) 

3.5 Experimental group with varying linguistic 

variables 
In this setup, the controlled conditions for experiment 4 are 

product of sigmoid membership function, number of input 

variables (fourteen effort drivers including Kilo line of code size 

(KLOC)), inference type (Mamdani inference) and defuzzification 

technique (middle of maximum) respectively. The varied 

condition is linguistic variable. For experimental model 4a, five 

linguistic variables (very low, low, nominal, high, very high) are 
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used while three linguistic variables (low, nominal, high) are used 

in experimental model 4b respectively. 

a. Model with increased linguistic variables (Experiment 

model 4a) 

b. Model with reduced linguistic variables (Experiment 

model 4b) 

3.6 Experimental group with varying number 

of input variables 
All other conditions remained the same as in experiment 4a above 

except for the number of input variables to the model. For 

experiment 5b, ‘main memory constraint’ and ‘time constraint for 

CPU’ input variables were merged together prior to fuzzification 

because both had the same correlation coefficient respectively 

with effort. The same also was done for ‘analyst capability’ and 

‘programmer capability’. The correlation coefficient between 

effort and these named drivers was approximately 0.35. Also 

‘required software reliability’ and ‘process complexity’ were 

combined together because both had approximately same 

correlation (0.2) to development effort (output). Thus, the number 

of input variables in experiment model 5b reduced to twelve. 

a. Model with increased number of input variables 

(Experiment model 5a) 

b. Model with reduced number input variables 

(Experiment model 5b) 

3.7 Evaluation criteria 
For this study, we made use of three evaluation criteria due to 

their widespread relevance in most related literature. They include  

a) Magnitude of Relative Error (MRE) 

b) Mean Magnitude of Relative Error (MMRE) 

c) Prediction accuracy criteria (PRED) 

There expressions are explained in equations 1 to 3. 

4. EXPERIMENTAL RESULTS AND 

ANALYSIS 
Below shows the results from the validation of the experimental 

models using one third of the project data. 

 

Table 2: Estimated efforts (in man-months) of Experiment 1 

models 

Proj. 

No. 

Size 

in 

KLOC 

Actual 

Effort 

Model 

1a 

Model 

1b 

8 66.6 352.8 192 0.5 

28 48.5 239 192 250 

38 90 444 198 250 

10 20 72 192 250 

40 16 114 192 0.5 

50 78 571.4 473 417 

60 350 720 802 750 

 70 151 432 4130 465 

90 233 8211 5920 5250 

14 100 215 203 250 

54 219 2120 2580 2500 

84 24 430 470 500 

16 100 360 203 250 

46 423 2400 2590 2500 

56 227 1181 1580 1500 

66 150 882 817 750 

 

76 162 756 4130 750 

17 150 324 229 250 

87 70 1645.9 1580 1500 

23 29.5 120 192 250 

43 282.1 1368 1590 1500 

53 101 750 802 750 

63 90 162 198 250 

25 38 210 192 250 

65 137 636 808 750 

85 165 4178.2 5140 4280 

32 35.5 192 192 250 

59 980 4560 4080 4000 

79 60 409 470 500 

81 32 1350 1580 1500 

68 240 192 198 250 

 

The MMRE of experimental model 1a and 1b were 0.4958 and 

0.082 while the prediction accuracy, Pred (30) were 67.74% and 

70.96% respectively.  
 

Table 3: Estimated efforts (in man-months) of Experiment 2 

models 

Prj 

No 

Actual 

Effort 

Model 

2a 

Model 

2b 

Model 

2c 

Model 

2d 

Model 

2e 

8 352.8 192 165 124 248 0 

28 239 192 165 124 248 0 

38 444 198 165 124 248 0 

10 72 192 165 124 248 0 

40 114 192 165 124 248 0 

50 571.4 473 413 124 248 0 

60 720 802 825 784 825 743 

70 432 4130 4130 4130 4130 4130 

90 8211 5920 6190 7080 8250 3960 

14 215 203 165 124 248 0 

54 2120 2580 2560 2520 2560 2480 

84 430 470 413 124 248 0 

16 360 203 165 124 248 0 

46 2400 2590 2560 2520 2810 2230 

56 1181 1580 1570 1490 1490 1490 

66 882 817 825 825 1070 578 

76 756 4130 4130 4130 4130 4130 

17 324 229 248 206 413 0 

87 1645.9 1580 1570 1490 1490 1490 

23 120 192 165 124 248 0 

43 1368 1590 1570 1570 1820 1320 

53 750 802 825 784 825 743 

63 162 198 165 124 248 0 

25 210 192 165 124 248 0 

65 636 808 825 784 908 660 

85 4178.2 5140 5280 5830 8250 3300 

32 192 192 165 124 248 0 

59 4560 4080 4040 4040 4040 4040 

79 409 470 413 124 248 0 

81 1350 1580 1570 1490 1490 1490 

68 192 198 165 124 248 0 

 

The MMRE and Pred(30) of experimental models 2a, 2b, 2c, 2d, 

2e respectively were 0.4958, 0.4233, 0.2623, 0.6377, 0.1215 and 

67.74%, 67.74%, 48.38%, 54.83%, 38.70% respectively. 
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Table 4: Estimated efforts (in man-months) of Experiment 3 

models 

Proj 

No. 

Actua

l 

Effort 

Model 

3a 

Model 

3b 

Model 

3c 

Model 

3d 

Model 

3e 

8 352.8 124 82.5 371 289 289 

28 239 124 124 248 248 289 

38 444 124 124 248 248 248 

10 72 124 82.5 248 248 248 

40 114 124 124 248 248 248 

50 571.4 124 424 495 248 495 

60 720 784 825 784 743 701 

70 432 4130 4130 784 701 578 

90 8211 7080 6030 5900 5240 5690 

14 215 124 124 289 248 248 

54 2120 2520 2640 2520 2520 2430 

84 430 124 513 495 495 454 

16 360 124 124 289 248 248 

46 2400 2520 2640 2520 2520 2430 

56 1181 1490 1650 1490 1490 1400 

66 882 825 825 784 743 701 

76 756 4130 4130 784 743 743 

17 324 206 206 289 248 330 

87 1646 1490 1650 1490 1490 1400 

23 120 124 82.5 248 248 248 

43 1368 1570 1650 1530 1490 1400 

53 750 784 825 743 743 743 

63 162 124 124 289 248 248 

25 210 124 124 248 248 248 

65 636 784 825 743 743 743 

85 4179 5830 5820 5550 5510 5690 

32 192 124 124 248 248 289 

59 4560 4040 4170 4000 4000 3960 

79 409 124 513 495 495 495 

81 1350 1490 1650 1490 1490 1400 

68 192 124 82.5 289 248 248 

 

From Table 4, the MMRE values for model 3a, 3b, 3c, 3d, 3e 

were 0.2623, 0.3176, 0.2549, 0.1894 and 0.2 respectively. The 

prediction accuracy were 48.38%, 54.83%, 70.96%, 67.74% and 

67.74% respectively. 

 

Table 5: Estimated efforts (in man-months) of Experiment 4 

models 

Proj. 

No. 

Size in 

KLOC 

Actual 

Effort 

Model 

4a 

Model 

4b 

8 66.6 352.8 289 495 

28 48.5 239 289 578 

38 90 444 248 495 

10 20 72 248 495 

40 16 114 248 578 

50 78 571.4 495 578 

60 350 720 701 495 

70 151 432 578 578 

90 233 8211 5690 4620 

14 100 215 248 495 

54 219 2120 2430 1530 

84 24 430 454 578 

16 100 360 248 495 

46 423 2400 2430 2020 

56 227 1181 1400 2020 

66 150 882 701 578 

76 162 756 743 578 

17 150 324 330 536 

87 70 1645.9 1400 2020 

23 29.5 120 248 495 

43 282.1 1368 1400 1980 

53 101 750 743 578 

63 90 162 248 495 

25 38 210 248 495 

65 137 636 743 578 

85 165 4178.2 5690 4620 

32 35.5 192 289 578 

59 980 4560 3960 6190 

79 60 409 495 578 

81 32 1350 1400 2020 

68 240 192 248 495 

 

Experimental model 4a and 4b had MMRE values of 0.20 and 

0.8291 respectively while their prediction accuracy, Pred (30), 

were 67.74% and 29.03% respectively.  

 

Table 6: Estimated efforts (in man-months) of Experiment 5 

models 

Proj. 

No. 

Size in 

KLOC 

Actual 

Effort 

Model 

5a 

Model 

5b 

8 66.6 352.8 289 289 

28 48.5 239 289 289 

38 90 444 248 248 

10 20 72 248 248 

40 16 114 248 248 

50 78 571.4 495 495 

60 350 720 701 701 

70 151 432 578 578 

90 233 8211 5690 5570 

14 100 215 248 248 

54 219 2120 2430 2430 

84 24 430 454 454 

16 100 360 248 248 

46 423 2400 2430 2430 

56 227 1181 1400 1400 

66 150 882 701 701 

76 162 756 743 743 

17 150 324 330 330 

87 70 1645.9 1400 1400 

23 29.5 120 248 248 

43 282.1 1368 1400 1400 

53 101 750 743 743 

63 90 162 248 248 

25 38 210 248 248 

65 137 636 743 743 

85 165 4178.2 5690 4800 

32 35.5 192 289 289 

59 980 4560 3960 3920 

79 60 409 495 743 

81 32 1350 1400 1400 

68 240 192 248 248 

   
Models 5a and 5b had MMRE values of 0.2 and 0.2119 

respectively. Their prediction accuracy were 67.74% and 64.51% 

respectively.  
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4.1 Performance Evaluation 
 

 
Figure 1: Prediction accuracy for model 1a and 1b 

 

 

 
Figure 2: Mean magnitude relative error for models 1a and 1b 

 

 
Figure 3: Prediction accuracy for models 2a, 2b, 2c, 2d and 2e 

 

 
Figure 4: Mean magnitude relative error for models 2a, 2b, 

2c, 2d and 2e. 

 

 
Figure 5: Prediction accuracy for models 3a, 3b, 3c, 3d and 3e 

 

 
Figure 6: Mean magnitude relative error for models 3a, 3b, 

3c, 3d and 3e 

 

 
Figure 7: Prediction accuracy for models 4a and 4b 

 

 
Figure 8: Mean magnitude relative error for models 4a and 4b 
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Figure 9: Prediction accuracy for models 5a and 5b 

 

 
Figure 10: Mean magnitude relative error for models 5a and 

5b 

 

From figures 1 and 2, it is observed that in experiment 1 models, 

inference type had a great effect on performance of the fuzzy 

model. The model with Takagi-Sugeno inference performed better 

than the model with Mamdani inference in terms of mean 

magnitude relative error (0.0820 against 0.4958) and prediction 

accuracy (70.96% against 67.74%) respectively. Figures 3 and 4 

shows that, no one choice of defuzzification technique enjoyed 

absolute preference in both evaluation criteria. While the models 

with centroid (67.74%) and bisector (67.74%) defuzzification 

technique show better predictive accuracy than the models with 

largest of maximum (54.83%),  middle of maximum (48.38%), 

and smallest of maximum (38.7%) respectively. Alternatively, the 

models with smallest of maximum (0.1215) and middle of 

maximum (0.2623) defuzzification technique shows better results 

of mean magnitude relative error than models with bisector 

(0.4233), centroid (0.4958) and largest of maximum (0.6377) 

defuzzification technique respectively. 

In terms of prediction accuracy from figure 5, the model with 

Gaussian membership function (70.96%) shows promising results 

than models with generalized bell (67.74%), product  of sigmoid 

(67.74%), trapezoid (54.83%) and triangular (48.38%) 

membership functions respectively. From figure 6, it could be 

observed that generalized bell membership function shows better 

results of MMRE (0.1894) than product of sigmoid (0.2), 

Gaussian (0.2549), triangular (0.2623) and trapezoid (0.3176) 

membership functions respectively. 

Another important observation from experiment 4 is that the 

number of linguistic variable used in a fuzzy model has effect on 

its performance.  As seen in figures 7 and 8, the model with more 

linguistic variables (five) performed better in terms of MMRE 

(0.2) and prediction accuracy (67.74%) than the one with lesser 

(three) linguistic variable of MMRE of 0.8291 and prediction 

accuracy of 29.03%.  

Also from figures 9 and 10, the model with increased number of 

input variables to the fuzzy model (fifteen) outperformed the one 

with lesser input variables (twelve) in terms of lower MMRE and 

better prediction accuracy respectively. 

5. CONCLUSION AND FUTURE 

RESEARCH 
This paper explored the various factors that enhance high 

performance of fuzzy-based models for software development 

cost estimation. From the comparative analysis of fuzzy models 

used in the experiments, it could be observed that using Tagaki-

Sugeno inference type is preferred than Mamdani inference type 

for a fuzzy-based software cost estimation model. Also, increasing 

the number of linguistic variables and input variables to the fuzzy 

model has positive results on performance. Generalized bell, 

sigmoid and Gaussian membership functions performs better than 

triangular and trapezoid membership functions for this area of 

software engineering application.  

The choice of a suitable defuzzification technique depends on 

whether smaller or larger projects are being modelled. While 

centroid and bisector defuzzification technique would favour 

modelling of medium software projects effort, smallest of 

maximum and largest of maximum defuzzification technique 

would show favourable results for small projects and large 

projects respectively. It is unlikely to achieve a fuzzy model 

which can give 100% Pred(30) but by suitably adjusting the 

values of the parameters in fuzzy inference system (FIS), 

estimated effort could be optimized.  

Future research will involve a comparative study of fuzzy models 

using data from in-house software projects and also investigating 

the performance of fuzzy models with customized membership 

functions. 
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