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Abstract. We provide a general framework for pattern structures by investigat-
ing adjunctions between posets and their morphisms. Our special interest is the
impact of pattern morphisms on the induced concept lattices. In particular we are
interested in conditions which are sufficient for the induced residuated maps to
be injective, surjective or bijective. One application is that every representation
context of a pattern structure has a formal concept lattice that is induced by a
certain pattern morphism.

1 Introduction

Pattern structures within the framework of formal concept analysis have been intro-
duced in [3]. Since then they have turned out to be a useful tool for analysing various
real-world applications (cf. [3—7]). Our paper extends the concept of representation
contexts and interprets them via morphisms, closely related to o-projections as recently
introduced and investigated in [2]. In [8], we disussed the meaning of projections of
pattern structures, realizing the importance of residual projections. As a matter of fact,
our generalization of representation contexts of pattern structures gives rise to residual
projections.



2 Preliminaries

The fundamental order theoretic concepts of our paper are nicely presented in the book
on Residuation Theory by T.S. Blythe and M.F. Janowitz (cf. [1]).

Definition 1 (Adjunction). Let P = (P, <) and L. = (L, <) be posets; furthermore let
f:P— Landg:L — P be maps.

(1) The pair (f,g) is an adjunction w.r.t. (P,L) if fx <y is equivalent to x < gy for
all x e P and y € L. In this case, we will refer to (P,LL, f,g) as a poset adjunction.

(2) f is residuated from P to L if the preimage of a principal ideal in 1L under f is
always a principal ideal in P, that is, for every y € L there exists x € P s.t.

fHreL|t<y}={seP|s<x}.

(3) gisresidual from IL to P if the preimage of a principal filter in P under g is always
a principal filter in 1L, that is, for every x € P there exists y € L s.t.

g YseP|x<s}={reL|y<t}.

(4) The dual of L is given by L°P = (L,>) with >:= {(x,t) € Lx L | t < x}. The pair
(f,g) is a Galois connection w.r.t. (P,LL) if (f,g) is an adjunction w.r.t. (P,L°P).

The following well-known facts are straightforward (cf. [1]).
Proposition 1. Let P = (P,<) and L = (L, <) be posets.

(1) Amap f: P — Lis residuated from P to L iff there exists amap g : L — P s.t. (f,g)
is an adjunction w.r.t. (P,1L).

(2) Amap g: L — P is residual from IL to P iff there exists amap f: P — L s.t. (f,g)
is an adjunction w.r.t. (P,1L).

(3) If (f,g) and (h,k) are adjunctions w.r.t. (P,IL) with f = h or g = k then f = h and
g=k

(4) If fis a residuated map from P to 1L, then there exists a unique residual map
from L to P s.t. (f,f) is an adjunction w.r.t. (P, L). In this case, T is called the
residual map of f.

(5) If g is a residual map from L to P, then there exists a unique residuated map g~
fromPtoLs.t. (g7,8) is an adjunction w.r.t. (P, L). In this case, g~ is called the
residuated map of g.

(6) A residuated map f from P to L is surjective iff fo f+ = idy iff f7 is injective.

(7) A residuated map f from P to L is injective iff fo f+ = idy iff f is surjective.

Definition 2. Let P = (P,<) be a poset and T < P. Then

(1) The restriction of P onto T is given by P|T := (T, < n(T x T)), which clearly is a
poset too.

(2) The canonical embedding of P|T into P is given by the map T — P,t — t.

(3) T is a kernel system in PP if the canonical embedding T of P|T into P is residuated.
In this case, the residual map ¢ of T will also be called the residual map of T in P.
The composition K := T o @ is referred to as the Kernel operator associated with T
inP.



(4) Dually, T is a closure system in P if the cannonical embedding t of P|T into
P is residual. In this case, the residuated map W of T will also be called the
residuated map of T in P. The composition Yy := T o\ is referred to as the closure
operator associated with T in IP.

(5) A map x : P — P is a Kernel operator on P if s < x is equivalent to s < kx for all
sekPandxeP.

Remark: In this case, kP forms a kernel system in P, the kernel operator of which
is K.

(6) Dually, a map y: P — P is a closure operator on P if x < t is equivalent to yx <t
forallxe Pandt e yP.

Remark: In this case, QP forms a closure system in P, the closure operator of which

is Y.
The following known facts will be needed for the sequel (cf. [1]) .
Proposition 2. Let P = (P,<) and L = (L, <) be posets.

(1) If f is a residuated map from P to 1L then f preserves all existing suprema in P,
that is, if s € P is the supremum (least upper bound) of X S P in P then fs is the
supremum of fX in L.

In case P and 1L are complete lattices, the reverse holds too: If a map f from P to
L preserves all suprema, that is,

Sf(supp X) =supy, fX forall X C P,

then f is residuated.

(2) If g is a residual map from L to P, then g preserves all existing infima in 1, that is,
if t € L is the infimum (greatest lower bound) of Y S L in L then gt is the infimum
of gY inP.

In case P and 1L are complete lattices, the reverse holds too: If a map g from L to P
preserves all infima, that is,

Sf(infp Y) =infy, gY forallY C L,

then g is residual.
(3) For an adjunction (f,g) w.r.t. (P,L) the following hold:

(al) fis an isotone map from P to L.

(a2) fogof=f

(a3) fPis a kernel system in 1L with f o g as associated kernel operator on L. In
particular, L — P,y — fgy is a residual map from LL to L| fP.

(bl) g is an isotone map from LL to P.

(b2) gofog=¢g

(b3) gL is a closure system in P with g o f as associated closure operator on P. In
particular, P — gL,x — gfx is a residuated map from IP to P|gL.



3 Adjunctions and Their Concept Posets

Definition 3. Let ?:= (P,S,0,0%) and Q := (Q, T, t,t") be poset adjunctions. Then
a pair (o, B) forms a morphism from P to Q if (P,Q, o0, ¢ ) and (S, T, B, B ) are poset
adjunctions satisfying

toa=foo

Remark: This implies o7 ot+ = 0 o B, that is, the following diagrams are commu-

tative:

o ot
IT+
T

Q

|

—
B B
Next we illustrate the involved poset adjunctions:
o
P Q
at
c ot T Tt
B
S T
B+

Definition 4 (Concept Poset). For a poset adjunction P = (P,S,0,0™") let
B?:={(p,s)ePxS|op=srcts=p}
denote the set of (formal) concepts in P. Then the concept poset of P is given by
Be:= (P xS)|Be,

that is, (po,so) < (p1,s51) holds iff po < p1 iff so < s1, for all (po,so),(p1,51) € BP. If
(p,s) is a formal concept in P then p is referred to as extent in P and s as intent in P.

From [9] we point out Theorem 1:

Theorem 1. Let (., 8) be a morphism from a poset adjunction P = (P,S,0,0%) to a
poset adjunction Q = (Q,T,7,7T). Then

(B?7BQ’7 ¢’ ¢-"_)



is a poset adjunction for
®:B? — BQ,(p,s) = (17 Bs, Bs)

and
®*:BQ— B?,(¢,1) = (atg,007q).

o

P Q

BQ T

B

Theorem 2. Under the conditions of the previous theorem the following hold:

(1) If o is surjective then @ is surjective too.
(2) If B is injective then ® is injective too.
(3) If a is surjective and B is injective then ® is an isomorphism from B®P to BQ..

Proof. (1) Assume that ¢ is surjective, that is, co @™ = idp. Then for all (p,s) € B2,
the second component of (PoPT)(p,s)is foaTg= taatq= tq=s. This yields
Po Pt =idgg, that is, P is surjective.

(2) The first component of (@+ o ®P)(p,s) is ot t+Ps = t+B T Bs = T+s = p. There-
fore, @+ o @ = idgyp, which yields @ being injective.

(3) If « is surjective and 3 is injective, than @ and @™ are naturally inverse by (1) and
(2), that is, @ is an isomorphism from B2 to BQ.

O

4 The Impact of Pattern Morphism on Concept Lattices

Definition 5. A triple G = (G,D, ) is a pattern setup if G is a set, D = (D,C) is a
poset, and 8 : G — D is a map. In case every subset of 0G := {8g | g € G} has an
infimum in D, we will refer to G as pattern structure. Then the set

Cg := {infp 6X | X € G}

forms a closure system in D and furthermore Cg := D|Cg forms a complete lattice.

If G =(G,D,6) and H = (H,E,€) each is a pattern setup, then a pair (f,®) forms a
pattern morphism from G to H if f : G — H is a map and @ is a residual map from D
to E satisfying @ o8 = €o f, that is, the following diagram is commutative:



y

In the sequel we show how our previous considerations apply to pattern structures.

Theorem 3. Ler (f,®) be a pattern morphism from a pattern structure G = (G,D, )
to a pattern structure H = (H,E ¢).
To apply the previous theorem we give the following construction:
f gives rise to an adjunction (a,a*) between the power set lattices 26 := (2¢,C) and
2= (2H ) via
a:2¢ 521 X fx

and

at:2H 520y 7y,

Further let ¢~ denote the residuated map of ¢ w.rt. (E,D), that is, (E,D, 0™, Q) is a
poset adjunction. Then, obviously, (D°P EP @, @) is a poset adjunction too.

For pattern structures the following operators are essential:

©:29 5 D, X — infp 86X
*:D-2%d—{geG|dCc g}
°: 2" L E.Zinfg €Z
*“:E—-2" e {heH|eC eh)

It now follows that (¢, @) forms a morphism from the poset adjunction
? = (20D, %)

to the poset adjunction
Q= (2H7Eop’lﬂ 7. )

In particular, (fX)® = @(X°) holds for all X € G.

We receive the following diagram of adjunctions:



Dep EoP

¢

For the following we recall that the concept lattice of G is given by BG := B®P and the
concept lattice of H is BH :=BQ,
Then Theorem 1 yields that the quadruple (BG,BH, &, P™) is an adjunction for

@ :BG—BH,(X,d)— ((pd)", 0d)

and
@' :BH > BG,(Ze)~ (f'Z,(f'2)°).

26 = 2f
<o Eg L BH o
DeP E°P

9

By Theorem 2 the following hold:

(1) If f is surjective then @ is surjective too.
(2) If @ is injective then D is injective too.
(3) If f is surjective and @ is injective then @ is an isomorphism from BG to BH.

Theorem 4. Let G = (G,D,0) and # = (H,E,€) be pattern structure. And let G* =
(G,Cg,0°%) be the pattern structure induced by G via §° : G — Cg, g — 8g. It follows
BG* = BG. Further let (f, @) be a pattern morphism from G* to H. Then with the
notation introduced in the previous theorem, the map © from BG to B#H is residuated.
If f is surjective then so is @, if ¢ is injective then so is @. If f is surjective and @ is
injective then @ is an isomorphism from BG to BH.



Definition 6. The representation context of a pattern structure G = (G,D,8) w.rt. a
subset M of D is given by K(G,M) := (G,M,I) with I := {(g,m) e GXxM | mE 0g}.

Theorem 5. Ler G = (G,ID, 8) be a pattern structure and let M be a subset of D.

The pattern structure associated with the representation context K(G,M) is given by
H = (G,2M &) withe : G —2M g 5g where } d :={me M |mEd} for all d € D.
In particular, the concept lattice of K(G,M) is given by BK(G,M) = B#.

Using the notation from the previous theorem, (idg, ®) is a pattern morphism from G*
to H for ¢ : C5 — 2M x L x. Furthermore, the map ® from BG to BH = BK(G,M)
is a residuated surjection. In case M is join-dense w.r.t. Cg (that is, @ is injective), D is
an isomorphism from BG to BK(G,M).

XH—X
. &4 P X°
(Cg —_— 2M
dr— bd
26 id 20
o BG ——L2 - BK(g.M) | o

Remark: Based on the paradigm of concept morphisms, the previous theorem extends
and sheds new light on theorem 1 of [3]. We generalize the definition of representation
context introduced in [3] by allowing an abitrary subset M of patterns of the underlying
pattern structure G as attribute set of the representation context K(G,M). It then turns
out that K(G,M) has a formal concept lattice which is induced by a morphism on G*.
More explicitly, there is a morphism on G* to the pattern structure of K(G,M) which
induces a residuated surjection from the concept lattice of G to the concept lattice of
K(G,M). In case M is join-dense w.r.t. G , the morphism between the concept lattices
is an isomorphism (see also Theorem 1 of [3]). Our extension of the concept of repre-
sentation context gives rise to various constructions of o-projections (as introduced in

[2]) on G°.
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