
CREWS Report Series 99 - 10

METHOD ENHANCEMENT WITH

SCENARIO BASED TECHNIQUES

Jolita Ralyté1, Colette Rolland1, Véronique Plihon2

1CRI, Université de Paris1- Sorbonne, 90, rue de Tolbiac, 75013 Paris
(ralyte, rolland)@univ-paris1.fr

2PRISM, Université de Versailles Saint-Quentin 45, av. des Etats-Unis, 78035 Versailles
Veronique.Plihon@prism.uvsq.fr

To appear in : Proceedings of CAISE 99, 11th Conference on

Advanced Information Systems Engineering Heidelberg, Germany

June 14-18, 1999

1

Method Enhancement with Scenario Based Techniques

Jolita Ralyté1, Colette Rolland1, Véronique Plihon2

1CRI, Université de Paris1- Sorbonne, 90, rue de Tolbiac, 75013 Paris
(ralyte, rolland)@univ-paris1.fr

2PRISM, Université de Versailles Saint-Quentin 45, av. des Etats-Unis, 78035 Versailles
Veronique.Plihon@prism.uvsq.fr

Abstract. Scenarios have proven useful to elicit, validate and document
requirements but cannot be used in isolation. Our concern in this paper is to
integrate scenario-based techniques in existing methods. We propose a set of
operators to support such an integration. This set is classified in two sub-sets:
the one dealing with the integration of the product models of the two initial
methods and the one concerned with the integration of their process models.
The operators are used to integrate the CREWS-L'Ecritoire approach with the
OOSE method. This leads to enhance the use case model construction of the
OOSE method with on one hand, the linguistic techniques for scenario
authoring and formalisation and on the other hand, the discovery strategies to
elicit requirements by scenario analysis of the CREWS-L'Ecritoire approach.

1 Introduction

The aim of analysis methods is to define the specification of a future system. In the
new generation of such analysis methods ([1], [2], [3]) scenario-based approaches
have been introduced to bridge the gap between the user view and the functional
view of the future system and therefore ensure that the future system will meet the
requirements of its users. In the CREWS1 project, four different scenario-based
approaches have been developed with the aim of supporting requirements
acquisition from real world scenes [4] and from natural language scenario
descriptions [5], [6] and requirements validation though scenario walkthrough [7]
and scenario animation [8]. The hypothesis of the project is that each of the
approaches might be useful in specific project situations which are not well tackled
by existing analysis methods and therefore, that it is worth looking for the
integration of such approaches in current methods. This shall lead to an
enhancement of the existing methods with scenario-based techniques.

In this paper we propose an approach for such a method extension. The CREWS
approach that we consider is the one allowing to "acquire requirements from natural
language scenario descriptions". In this approach (denoted CREWS-L’Ecritoire),

1 The work described in this paper is support by the European ESPRIT project CREWS

standing for "Co-operative Requirements Engineering With Scenarios".

2

the key concept is the couple (goal, scenario), where the goal is viewed as
"something that some stakeholder hopes to achieve in the future", whereas a
scenario is defined as "a possible behaviour limited to a set of purposeful
interactions taking place among several agents" [6]. The paper illustrates how the
CREWS-L’Ecritoire technique is integrated to the part of the OOSE method dealing
with the use case model definition.

The approach for method integration is based on the one hand, on a method meta-
model which conforms to the traditional view of a method been composed of a
product model and a process model and, on the other hand, of a set of operators
with associated rules to integrate product model elements and process model
elements.

The proposed approach is part of the Method Engineering domain [9], [10].
However whereas assembly approaches focused on the grouping of method
fragments belonging to methods which complement one the other [11], [12] we are
dealing with the problem of integrating methods which are partially overlapping. In
the case at hand, it is obvious that both the CREWS-L’Ecritoire approach and the
OOSE approach have the concept of "scenario" but with different meanings. Thus,
whereas situational method engineering deals with the assembly of disjoint method
fragments, our problem is closer to schema integration in the database area [13].

This paper is organised as follows. We present in the next section our method
meta model which is instantiated for both the OOSE method and the CREWS-
L’Ecritoire approach. Section 3 is dedicated to method integration dealing first with
the product models integration and then with the process models integration. In both
cases we present and exemplify the operators used to perform the integration.
Finally, in section 4 some conclusions are drawn.

2 The Method Meta Model

We represent a method as composed of two elements : the Product Model and the
Process Model. The product model represents the class of products obtained as
outputs of the use of the method in specific applications. The process model
represents the product development process.

2.1 Process Model

We view the process model as composed of two parts : Map and Guidelines. The
map provides a strategic view of the process telling what can be achieved (which
process intention) following which strategy. The guidelines define how to apply the
strategy to achieve the process intention. These three aspects are described in turn.

Map. A map is a labelled directed graph in which the nodes are the intentions and
the edges between intentions are the strategies (see [14] for more detail). The
ordering of intentions and strategies is non-deterministic. The edges in the graph are

3

directed and show which intentions can follow which one. Fig. 1 shows two
examples of maps for OOSE and CREWS-L'Ecritoire methods respectively.

Start

actor-based discovery
strategy

normal case first
strategy

extend strategy

abstraction
strategy

completeness
strategy

Stop

Conceptualise
a Use Case

abstraction strategy
Elicit a

Use Case

The OOSE Map

alternative
discovery
strategy

composition
discovery
strategy

goal structure driven
strategy

Stop

template driven
strategy

Conceptualise
a Scenario

template driven
strategy

free prose
strategy

computer
supported strategy

manual strategy
completeness
strategy

linguistic
strategy

Write a
Scenario

initial goal
identification strategy

Elicit a Goal

Start

The CREWS-L’Ecritoire Map

Fig. 1. The OOSE Use Case Model map and the CREWS-L’Ecritoire map

As shown in Fig.1, a map consists of a number of sections each of which is a
triplet <i i,ij,sj> where i i is a source intention, i j is a target intention ant sij is a strategy
defining the way to go from the source to the target intention. There are two distinct
intentions called Start and Stop that represent the intentions to start navigating in the
map and to stop doing so. Thus, it can be seen that there are a number of paths in the
graph from Start to Stop. We assume requirements engineering processes to be
intention-oriented. At any moment, the requirements engineer has an intention, a
goal in mind that he/she wants to fulfil. To take this characteristic into account the
map identifies the set of intentions I that have to be achieved in order to solve the
problem at hand. An intention is expressed as a natural language statement
comprising a verb and several parameters, where each parameter plays a different
role with respect to the verb [15]. For example, the OOSE [1], [16] map (Fig. 1)
contains two intentions in addition to "Start" and "Stop" : "Elicit a Use Case" and
"Conceptualise a Use Case".

A strategy is an approach, a manner to achieve an intention. The strategy, as part
of the triplet <i i,ij,sj>, characterises the flow from the source intention i i to the target
intention i j and the way i j can be achieved. The map identifies the set of strategies S
which allows to construct different paths in the map.

The specific manner in which an intention can be achieved is captured in a
section of the map whereas the various sections having the same intention i i as a
source and i j as target show the different strategies that can be adopted for achieving
i j when coming from i i. Similarly, there can be different sections having i i as source
and i j1, ij2,ijn as targets. These show the different intentions that can be achieved
after the achievement of i i. The OOSE map is composed of six sections. The triplet

4

<Elicit a Use Case, Conceptualise a Use Case, Normal case first strategy> is an
example of the section in the OOSE map.

The few strategies available in the OOSE map reflects the sequential nature of
the process suggested by this method. There is for example, only one possibility to
start the Use Case model development which is embedded in the section <Start,
Elicit a Use Case, Actor based strategy>. OOSE indeed, proposes to identify the
actors of the system as a means to identify use cases. The two sections : <Elicit a
Goal, Conceptualise a Use Case, Normal case first strategy> and <Elicit a Goal,
Conceptualise a Use Case, Abstraction strategy> reflect the two OOSE
possibilities : to conceptualise each elicited use case by writing a normal case
scenario at first and then, writing all alternative and exceptional scenarios or
conceptualise a use case by reusing abstract use case descriptions. Then, when the
intentions Elicit a Use Case is achieved, three sections can be selected :
<Conceptualise a Use Case, Conceptualise a Use Case, Abstraction strategy> which
permits to conceptualise an abstract use case from a set of concrete use cases,
<Conceptualise a Use Case, Elicit a Use Case, Extension strategy> which permits
to identify an extension use case, and <Conceptualise a Use Case, Stop,
Completeness strategy> which terminates the development process if the obtained
use case model is complete.

As shown in the CREWS-L’Ecritoire [6], [14] method map (Fig. 1), there are
several flows between two intentions each corresponding to a specific strategy. For
example, there are two strategies to "Write a Scenario" and two others to
"Conceptualise a Scenario". In this sense the map offers multi-thread flows. There
might also be several strategies from different intentions to reach some intention.
For example, there are six strategies ("initial goal identification", "template driven",
"linguistic", "goal structure driven", "alternative discovery" and "composition
discovery") coming from different intentions to the intention "Elicit a Goal". In this
sense the map offers multi-flow paths to achieve an intention.

The CREWS-L’Ecritoire method map represents a process to conceptualise a set
of scenarios which describe functional system requirements. The complete set of
scenarios obtained by this method covers the set of use cases that could be obtained
when using the OOSE method. However as illustrated above, the CREWS-
L’Ecritoire method map provides more strategies to achieve the process intentions
and therefore, offers more flexibility in the scenario conceptualisation process. As
depicted in Fig. 1, goal elicitation can be followed by the elicitation of another goal
or by scenario writing. Three strategies: "linguistic", "goal structure driven" and
"template driven" are proposed to elicit a new goal. Scenario writing is supported by
two strategies, namely the "template driven strategy" and the "free prose strategy".
The first proposes to write a scenario following a template whereas following the
second strategy, the scenario author writes in full prose. Style and content guidelines
are proposed in this case to support the scenario writing. Scenario writing can be
followed by the scenario conceptualisation. The map proposes two possibilities to
conceptualise scenarios : manually (manual strategy) or in a computer supported
manner (computer supported strategy). Finally, scenario conceptualisation can be
followed by the elicitation of new goals using two different strategies : "alternative

5

discovery strategy" and "composition discovery strategy", or the termination of the
development process by verifying the completeness of the obtained model
"completeness strategy". The elicitation of new goals using "alternative discovery
strategy" permits to identify all alternative goals to a given one. The set of
corresponding scenarios contains one normal case scenario and all alternative and
exceptional scenarios and therefore composes one use case. The elicitation of the
new goals using "composition discovery strategy" permits to identify the
complementary goals to a given one and therefore helps identifying the family of
use cases for a given system.

To sum up, a map is a navigational structure in the sense that it allows the
application engineer to determine a path from Start intention to Stop intention. The
requirements engineer selects dynamically the next intention and /or strategy among
the several possible ones offered by the map. The guidelines associated to the map
help the engineer in his/her choice. Guidelines are presented in the next section.

Guidelines. Three kinds of guidelines are attached to the map: "Intention
Achievement Guideline" (IAG), "Intention Selection Guideline" (ISG) and "Strategy
Selection Guideline" (SSG). An IAG helps to fulfil the intention selected by the
requirements engineer, whereas ISG and SSG help him/her to progress in the map
and to select the right section. For every section <i i,ij,sij> in the map there exists one
IAG. The IAG supports the requirements engineer in the achievement of intention ij

according to the strategy sij. This IAG corresponding to the section <Elicit a Use
Case, Conceptualise a Use Case, Normal case first strategy> from the OOSE map is
shown in Fig. 2. It provides an operational means to fulfil the intention
"Conceptualise a Use Case".

IAG: <(Use case objective), Conceptualise a use case with normal case first strategy>

<(Use case objective),
Write a normal case scenario >

<(Use case objective ,
Normal case scenario),

Identify an exceptional scenario objective>*

<(Exceptional scenario objective),
Write an exceptional scenario >

Fig. 2. The example of the intention selection guideline

A number of actions must be performed on the product under development to
satisfy this intention. The IAG decomposes the initial intention into a set of sub-
intentions which themselves may be decomposed till intentions executable through
actions on the product are reached. The structure of the guidelines is presented in
[14]. It is based on the NATURE contextual approach [17] and its corresponding
enactment mechanism [18].

Given two intentions i i, ij, there exists a SSG that determines the set of possible
strategies sij1, sij2, ..sijn applicable to i j and guides the selection of an sijk thereby
leading to the selection of the corresponding IAG. For example, given the two
intentions "Elicit a Goal" and "Write a Scenario" from Fig. 1, the SSG <(Goal),
Progress to (Write a Scenario)> is shown in Fig. 3. This SSG presents to the
requirements engineer two strategies "template driven" and "free prose". The
engineer picks up the strategy the most appropriate to the situation at hand. Thus,

6

one of two possible sections in the map is selected. Since a unique IAG is associated
with each section, the SSG determines this (Fig. 3).

SSG: <(Goal), Progress to (Write a Scenario)>

IAG: <(Goal),
Write a scenario with template driven strategy>

IAG: <(Goal),
Write a scenario in free prose>

a1 a2

a1: Scenario author has to be a scenario writing expert, he/she has to fill a linguistic template.
a2: Scenario author writs scenario in free prose. A set of style and content guidelines are
 provided to support scenario writing.

Fig. 3. The example of the strategy selection guideline

For a given intention ii, the ISG identifies the set of intentions (ij1, ij2,..., ijn) that
can be achieved in the next step and helps selecting the corresponding set of either
IAGs or SSGs. The former is valid when there is only one section between i i and i j

whereas the latter occurs when there are several sections between i i and i j. For
example, for the intention "Elicit a Goal" (Fig. 1) the ISG identifies two possible
next intentions "Write a Scenario" and "Elicit a Goal". The ISG then determines
whether there is only one section between the source and the selected target
intention or whether there are several sections. In the former case, the IAG
associated with the section is used by the enactment mechanism to achieve the
target intention. In the second case, the SSG is invoked to determine the strategy to
be used in the situation which leads to the determination of an IAG and subsequent
enactment.

ISG : <(Goal), Progress from (Elicit a Goal)>

SSG : <(Goal), Progress to (Write a Scenario)>SSG : <(Goal), Progress to (Elicit a Goal)>

Fig. 4. The example of the intention selection guideline

In our example, if the intention "Write a Scenario" is selected as target intention,
the ISG determines that there are two sections between the source and target
intentions. The SSG helps to decide which of these strategies shall be used. Thus,
the corresponding IAG is determined and the intention "Write a Scenario" is
achieved. If the intention "Elicit a Goal" is selected as target intention, the ISG
determines that there are tree strategies allowing to fulfil this intention and the
corresponding SSG is determined (Fig. 4).

2.2 Product Model

The product model is composed of a set of concepts which have properties and
can be related through links. We shall use the following notations:
• A concept has name ci and a set of properties (pi1, pi2, ... pin). Thus it will be

denoted ci(pi1, pi2, ... pin). For sake of brevity, it is possible to denote a concept
only by its name ci. A set of concepts in the product model is described by C.

7

• The concepts in the product model are related through the links. A link has a label
l ij , it is an association, a composition or an is-a link. The link is a part of the
triplet <ci, cj, li> where ci is a source concept, cj is a target concept and l ij is a link
between these two concepts. A set of the links in the product model is denoted by
L. Therefore, the product model is PM ⊆ C * C * L .
The product models of the OOSE method and of the CREWS-L'Ecritoire method

are shown in Fig. 5 and Fig. 6 respectively using ER like notations. "Actor(Actor
Name, Description)" is an example of the concepts in the OOSE method. The link
between the "Actor" and the "Use Case Model" in OOSE product model is denoted
<Use Case Model, Actor, composed_of>.

Actor

executes

supports

Use Case
Model

Scenario

Concrete
Use Case

Abstract
Use Case#

composed
of

composed of composed of extends

is a

is a

1,N 1,N

0,N

2,N
1,1 1,1

1, N

1,1

1,11,N

0,N 0,N

0,N

1,1

Description

Normal Scenario Exeptional Scenario

UseCase
Description

uses

Use Case

Objective
ActorName

Extension

Fig. 5. The OOSE Use Case product model.

OR

Goal

AND

is a
Normal Scenario

ExceptionalScenario

Flow of Actions AtomicAction

composed of

described by

Agent

from

to
1,1 1,N

1,N
1,1

State

initial state1,1

1,1

1,N

1,Nfinal state

IdGoal
Verbe
Target
Direction
Way
Beneficiary

1,N

1,N

Action

Requirement
Chunk

Scenario

is a

Fig. 6 : The CREWS-L’Ecritoire product model.

The OOSE product model is centred on the concept of a use case. A use case is
composed of a set of scenarios. It can be either concrete of abstract. It can also be
extended by extensions which are themselves considered as use cases. The actor
interacting with the system is related to the use case. Finally, the use case model is
a collection of use cases with their associated actors.

8

The CREWS-L’Ecritoire product model is centred on the concept of a
requirement chunk, i.e. the coupling of a goal to be achieved and a scenario
explaining how the system will interact with the agents to achieve the goal. The
description of a scenario is based on the notion of action and agent. The definition
of a scenario in the CREWS-L’Ecritoire product model is more detailed than the
definition provided in the OOSE product model. We will see in the next section how
this two product models can be integrated.

3 Method Integration

The integration of two methods consist in integrating their product and process
models. We deal with these two aspects in turn. Clearly the goal in the example at
hand is to take advantage of the authoring facilities and goal discovery strategies of
the CREWS-L’Ecritoire approach which do not exist in the current OOSE method
and vice versa, to import in the integrated method the OOSE abstraction and extend
strategies which have no equivalent in CREWS-L’Ecritoire. Therefore, by
integrating the two methods, the resulting method will represent an enhancement of
each isolated one. We shall present in turn the operators for Product and Process
integration. For sake of space, rules to check the consistency and completeness are
not included.

3.1 Product Integration

Product Integration Operators. Let C be a set of concepts, L a set of links and PM
a product model, where PM ⊆ C* C * L. The set of operators is as follows:
• ADD_CONCEPT : PM *C → PM; ADD_CONCEPT(pm, ci) = pm ∪ ci. Adding a

concept consists in creating a new concept in the product model. Such an addition
is sometimes required to make the integration of two concepts possible. Adding a
concept in the product model requires to add at least one link connecting this
concept to a concept of the product model.

• ADD_LINK : PM * C *C * L → PM; ADD_LINK(pm, ci, cj, lij) = pm ∪ <ci, cj,
l ij>. This operator creates an association, a composition or an is-a link between
two concepts of the product model. It is absolutely needed that the concepts
which are going to play the role of the source and target of the link exist in the
product model prior to the creation of the link.

• ADD_PROPERTY : PM * C → PM; ADD_PROPERTY(pm, ci(pi1, pi2,..., pin), pik) =
pm ∪ ci(pi1, pi2,..., pik,..., pin). This operator permits to add a new property to an
existing concept.

• DELETE_CONCEPT : PM * C → PM; DELETE_CONCEPT(pm, ci(pi1, pi2,...,
pin)) = pm \ ci(pi1, pi2,..., pin). This operator removes a concept ci(pi1, pi2,..., pin) from
the schema. Deleting a concept consists in deleting the concept ci and all its
properties pi1, pi2,..., pin. The concept can be removed from the product model only
if all links which were connecting them concept to other concepts have been
removed.

9

• DELETE_LINK : PM * C * C * L → PM; DELETE_LINK(pm, <ci, cj, lij>) = pm\
<ci, cj, lij>. This operator removes a relationship <ci, cj, lij> from the product
model. If one of the related concepts does not have any more links to other
concepts, this concept must be removed from the product model or another link
must be added to relate this concept to the rest of the schema.

• DELETE_PROPERTY : PM * C → PM; DELETE_PROPERTY(pm, ci (pi1, pi2,...,
pik,..., pin), pik) = pm ∪ ci (pi1, pi2,..., pin). This operator removes a property pik of a
concept ci.

• OBJECTIFY : PM * C * C* L * C *L * L → PM; OBJECTIFY(pm, <ci, cj, lij>, ck,
l ik, lkj) = pm \ <ci, cj, lij> ∪ <ci, ck, lik> ∪ <ck, cj, lkj>. The OBJECTIFY operator
transforms a relationship <ci, cj, lij> into an concept ck and two new links
connecting this concept with the two other concepts.

• RENAME_CONCEPT: PM * C → PM; RENAME_CONCEPT(pm, ci, ci

1) = pm |
ci = ci

1. This operator changes the name of a concept. This operator is useful in
the integration of two overlapping product models.

• RENAME_LINK: PM * C * C * L * L → PM; RENAME_LINK(pm, <ci, cj, lij>,
l ij

1) = pm ∪ <ci, cj, lij = l ij

1>. This operator changes the name of a link. If two
concepts are related by two links having the same name, one of the links must be
renamed.

• RENAME_PROPERTY: PM * C → PM; RENAME_PROPERTY(pm, ci(pi1, pi2,...,
pik,..., pin), pik

1) = pm ∪ ci (pi1, pi2,..., pik= pik

1,..., pin). This operator changes the
name of a property of a concept ci from pik i to pik

1. If the integrated concept has
two properties with the same name and different semantics, one of these
properties must be renamed. If these properties have the same name and the same
semantic one of these properties must be removed.

• SPECIALISE : PM * C * C * C → PM; SPECIALISE(pm, ci, ck, cl) = pm ∪ ck ∪ cl

∪ <ck, ci, is-a> ∪ <cl, ci, is-a>. This operator specialises the concept ci into two
new concepts ck and cl. The two concepts ck and cl that play the role of sub-type
for ci are created first and then, the is-a links between ci and ck and between ci and
cl are created. In this definition we make the hypothesis that the concepts ck and cl

do not exist yet in the product model.
• GENERALISE : PM * C * C * C → PM; GENERALISE(pm, ci, cj, ck) = pm ∪ ck

∪ <ci, ck, is-a> ∪ <cj, ck, is-a>. This operator permits to generalise two concepts
ci and cj. into a new concept ck. A new concept ck is created first and then, two Is-
A links are created. One of them connects ci with the generalised concept ck and
the second one connects cj with the generalised concept ck. Common properties of
ci and cj are deleted from these concepts and added to the concept ck.

• MERGE: PM * C * PM * C *PM * C → PM; MERGE(pm1,c1, pm2,c2, pm3,c3) =
pm3 ∪ c3. The MERGE operator integrates two concepts c1 and c2 from different
product models pm1 and pm2 respectively into a third one called c3 in the
integrated product model pm3. The concepts c1 and c2 must have the same name
prior to their integration. The properties and the links of each merged concept are
kept in the new concept.

10

Example. The application of the product integration operators to the integration of
OOSE and CREWS - L’Ecritoire product models is shown in Fig. 7. Some of the
concepts of the integrated product model are directly derived from the initial
product models, while others are the result of the application of the operators. We
comment some examples of concept integration in the following.

Use Case
Family

OR

AND
is a

Normal Scenario

Exceptional
Scenario

composed of

described by

Actor

from

to

Concrete Use Case

#

extends

is a
uses

Informal
Goal

Goal

Use Case
Model

satisfies

Description

is a

is a

executes

supports

is a

composed of

composed of

State

initial state

final state

IdGoal
Verbe
Target
..

Use Case

Requirement
Chunk

Formal
Goal

Scenario

Action

Abstract Use Case

Flow of Actions AtomicAction

Extension

Fig. 7. The integrated product model.

The "Actor" concept in the OOSE product model (Fig. 5) and the "Agent"
concept in the CREWS-L'Ecritoire product model (Fig. 6) have the same semantic
but different names. We can rename one of these concepts and then merge them into
a new concept in the product model of the integrated method (IM).
• RENAME_CONCEPT (CREWS-L'Ecritoire, Agent, Actor)
• MERGE((CREWS-L'Ecritoire, Actor), (OOSE, Actor), (IM, Actor))

The concept of "Use case" exists only in the OOSE method. However the set of
scenarios related through "OR" relationships in the CREWS-L’Ecritoire approach is
equivalent. The operator OBJECTIFY allows us to transform the "OR" relationship
between two "RC" concepts into a new concept called "Use Case".
• OBJECTIFY(CREWS-L'Ecritoire, <RC, RC, OR>, Use Case)

Therefore, the "Use Case" concept in the integrated method is obtained by
merging the "Use Case" concept from the OOSE method and the "Use Case"
concept from the CREWS-L’Ecritoire method.
• MERGE((CREWS-L'Ecritoire, Use Case), (OOSE, Use Case), (IM, Use Case))

A similar reasoning than the one applied above to the CREWS-L'Ecritoire "OR"
relationship leads to the reification of the "AND" relationship as the concept of "Use
case Family". The transformation is as follows :
• OBJECTIFY(CREWS-L'Ecritoire, <RC, RC, AND>, Use Case Family)

Finally, the concept of a "Use Case Model" is part of the OOSE method but does
not exist explicitly in the CREWS-L’Ecritoire product model. However there is a
relationship between the use case model and the use case family which leads to add
a new Is-A link in the integrated model between the concept "Use Case Model" and
the concept "Use Case Family" .

11

• ADD_LINK(IM, < Use case Family, Use Case Model, is-a>)
The concept of "Scenario" belongs to both product models. Merging the two

concepts leads to create a new concept whose properties are the union of the
properties of both concepts. All the links relating these concepts with the rest of the
product model are kept in the new product model. The same operation is applied on
the concepts "Normal Scenario" and "Exceptional Scenario".
• MERGE((CREWS-L'Ecritoire, Scenario), (OOSE, Scenario), (IM, Scenario))

However, the analysis of the properties and the relationships of the obtained
"Scenario" concept shows that the role of the "Description" property on the one
hand and the link "described-by" with the concept "Action" and the links "initial-
state", and "final-state" with the concept "State" on the other hand, have the same
meaning. As a matter of fact, in the CREWS-L'Ecritoire method, a scenario has a
set of actions and a final and an initial state. Thus, keeping all these features in the
integrated concept of scenario would introduce redundancy. This suggested to us to
delete the property "Description" from the "Scenario" concept.
• DELETE_PROPERTY (IM, Scenario (Description), Description)

Finally, the notion of "Goal" in the CREWS-L'Ecritoire method represents the
objective of the use case in a similar way the property "Objective" in the OOSE
method does. Therefore, the "Objective" must be replaced by the concept "Informal
Goal" because its structure is different from the "Goal" structure in the CREWS-
L'Ecritoire method. These two concepts cannot be merged into one single concept.
To avoid ambiguities, it was decided to rename the concept "Goal" into "Formal
Goal" and then, to generalise the concepts "Formal Goal" and "Informal Goal" into
the concept "Goal".
• ADD_CONCEPT (IM, Informal Goal)
• ADD_LINK (IM, <Use Case, Informal Goal, Has>)
• RENAME_CONCEPT (IM, Goal, Formal Goal)
• GENERALISE (IM, Informal Goal, Formal Goal, Goal)

2.2 Process Integration

Process Integration Operators. The integration of the process models consists in
integrating their maps and adapting the corresponding guidelines accordingly. Let I
be a set of intentions and S a set of strategies. The map is Map ⊆ I * I * S . The set
of operators for integrating maps is as follows:
• RENAME_INTENTION : Map * I * I → Map; RENAME_INTENTION(m, ii, ij) =

m | ii = i j

• RENAME_SECTION : Map* I * I * S * S → Map; RENAME_ SECTION(m, <ii,
i j, sij>, sij

1) = m | <ii, ij, sij = sij

1>
These two operators allow to unify the terminology of two overlapping maps by

renaming some intentions or strategies of each map. Two intentions from different
maps having the same target product must be unified; however, the two intentions
must have the same name before their integration. The RENAME_INTENTION
operator allows to choose the more appropriate intention name. The same kind of

12

operation must be performed on two sections from different maps having the same
source and same target intentions. If the corresponding IAGs have the same
situations (input products) and produce the same target products in the same
manner, these sections shall be unified and renamed.
• ADD_SECTION : Map * I * I * S → Map; ADD_ SECTION(m, ii, ij, sij) = m ∪

<i i, ij, sij>. This operator allows us to add a new section in the map. More
precisely, it permits to introduce a new strategy between two existing intentions.
The addition of a new section consists in adding a new IAG which defines a new
way to achieve the target intention following the new strategy. If there are
already several sections having the same input and output intentions, the SSG
allowing to select one of these sections is modified accordingly. In the contrary,
if the added section is the only one between these two intentions, the ISG of the
source intention must be modified.

• REMOVE_ SECTION: Map * I * I * S → Map; REMOVE_ SECTION(m, <ii, ij,
sij>) = m \ <i i, ij, sij>. This operator permits to delete one section from the map if
its strategy is not relevant in the integrated map or if this section will be replaced
by a more appropriate one. The removing of the section from the map consists in
removing the corresponding IAG. If there are several sections having the same
input and output intentions, the corresponding SSG must be modified. If the
removed strategy was the only strategy available between these two intentions,
the corresponding ISG must be modified.

• ADD_INTENTION : Map * I → Map; ADD_INTENTION(m, i) = m ∪ i. This
operator permits to add a new intention in the map. The addition of a new
intention in the map implies to add at least one input and one output strategy.
Therefore, two sections at least must be added in the map.

• REMOVE_INTENTION : Map * I → Map; REMOVE_INTENTION(m, i) = m \ i.
This operator allows to remove an intention from the integrated map if this
intention is not appropriate or if it is replaced by another one. As the intention
might be connected to several other intentions of the map, this operator can be
applied only if all sections connecting this intention with other intentions have
been removed before. The ISGs concerning this intention are modified.

• MERGE_SECTION : Map * I *I * S * Map * I *I * S * Map * I *I * S → Map;
MERGE_SECTION (m1, <i 1i, i1j, s1ij>, m2, <i 2i, i2j, s2ij>, m3, <i 3i, i3j, s3ij>) = m3 ∪
<i 3i, i3j, s3ij>. This operator allows to merge two sections originating from
different maps into one section of the integrated map. The merge of two sections
is possible if these sections have the same input and the same output intentions
and if the strategies have the same name. The merge of two sections consists in
selecting the more complete IAG or to merge the two IAGs into an integrated
IAG. In the first case one of two IAGs is selected, in the second case a new IAG is
defined.

• MERGE_INTENTION: Map * I * Map * I * Map * I → Map; MERGE_
INTENTION(m1, i1, m2, i2, m3, i3) = m3 ∪ i3. This operator allows to merge two
intentions from different maps having the same name. All the sections having this
intention as source or target intention are preserved and the corresponding ISG is
modified. The both MERGE operators are especially useful in the integration of

13

two overlapping maps. They allow to integrate two maps without the addition of
a new intention or a new section.

• SPLIT_SECTION : Map * I * I * S * S * S → Map; SPLIT_SECTION(m, <ii, ij,
sij>, sij

1, sij

2) = m \ <i i, ij, sij> ∪ <i i, ij, sij

1> ∪ <i i, ij, sij

2>. This operator allows to
decompose a section into two parallel sections. It is applicable in the case where
the strategy of this section provides two different tactics to satisfy the target
intention. The two obtained sections have the same source intention and the same
target intention. The IAG of this section is decomposed into two IAGs and the
SSG is modified or a new SSG is created if it does not existed before.
It shall be noticed that the presented lists of operators for both product and

process models integration might be not exhaustive ones.

Example. The application of the operators for integration of the OOSE map and the
CREWS-L‘Ecritoire map is presented in Fig. 8.

alternative
discovery
strategy

composition
discovery
strategy

goal structure
driven
strategy

template
driven
strategy

template driven
strategy free prose

strategy

computer supported
strategy

manual strategy

linguistic strategy

Write a
Scenario

initial goal
identification strategy

actor-based discovery strategy

normal case first
strategy

extend strategy

abstraction
strategy

completeness
strategy

Stop

Conceptualise
a Use Case

abstraction strategy
Elicit a Goal

Start

Conceptualise
a Scenario

integration
strategy

Fig. 8. The integrated map

In the first step of the integration process an effort shall be done to unify the
terminology used in the two maps. We need to verify if there are two concepts
(intentions or/and strategies) in the different maps having the same name, or similar
semantic and thus rename one of the two concepts. We need also to unify the names
of concepts having the same semantics but different names. In the case at hand, the
intentions "Elicit Goal" from the CREWS-L‘Ecritoire map and "Elicit Use Case"
from the OOSE map have different names but are similar in nature. The two
intentions refer in fact to the functionality's that the system must provide to its users.
The latter emphasises the term "use case" whereas the former prefers to put the light
of the "goal" corresponding to the function. Thus, we rename the intention "Elicit a
Use Case" of the OOSE map as "Elicit a Goal" and then apply the MERGE
operator :
• RENAME_INTENTION(OOSE, Elicit Use case, Elicit Goal)
• MERGE_INTENTION((OOSE, Elicit Goal), (CREWS-L'Ecritoire, Elicit Goal),

(IM, Elicit Goal))
 The intentions "Start" and "Stop" should be also merged in the integrated map:

14

• MERGE_INTENTION((OOSE, Start), (CREWS-L'Ecitoire, Start), (IM, Start))
• MERGE_INTENTION ((OOSE, Stop), (CREWS-L'Ecitoire, Stop), (IM, Stop))

The intention obtained by applying the operator MERGE_INTENTION preserves
all sections from the OOSE map and all sections from the CREWS-L'Ecritoire map
having the same intention as a source intention. A new ISG is constructed for each
application of this operator. For example, the merge of "Elicit a Goal" intentions
implies the construction of a new ISG which contains the corresponding ISG from
the CREWS-L'Ecritoire map and is completed by the progression to the use case
conceptualisation, which corresponds to the sections coming from the OOSE map.

The merge of the "Start" intentions does not lead to a new ISG, because in the
two maps, the sections from "Start" have the same target intention, namely "Elicit a
Goal". In this case a new SSG is constructed guiding the selection of one of the two
strategies (one strategy from the OOSE map and one strategy of CREWS-L'Ecritoire
map).

In the current situation, the integrated map proposes two different results : a set of
conceptualised scenarios and a set of use cases. In the integrated map we must
obtain only one result. The addition of a new section allowing to integrate a set of
scenarios into a use case can be the solution of our problem. Therefore, we add a
new section with an "integration strategy" which connects the intention
"Conceptualise a Scenario" with the intention "Conceptualise a Use Case". This
section performs the integration of scenarios obtained using the CREWS-L’Ecritoire
process into use cases equivalent to the use cases obtained using the OOSE process.
The corresponding IAG providing the guidelines to integrate a set of scenarios into a
use case must be defined. Moreover, the section <Conceptualise a Scenario, Stop,
Completeness strategy> must be removed from the integrated map and the ISG
defining the progress from the intention "Conceptualise a Scenario" is modified :
the possibility to progress to the "Stop" intention is removed and the possibility to
flow to the intention "Conceptualise a Use Case" is added. The following operators
are applied on the integrated map :
• ADD_SECTION (IM, <Conceptualise a Scenario, Conceptualise a Use Case,

Integration strategy>)
• REMOVE_ SECTION (IM, <Conceptualise a Scenario, Conceptualise a Use

Case, Completeness strategy>)
As the objective of the integration of two maps is to enhance the OOSE process,

the section <Elicit a Goal, Conceptualise a Use Case, Normal case first strategy>
can be removed from the resulting map. This section is replaced by the CREWS-
L’Ecritoire <goal elicitation, scenario conceptualisation> process which provides
richer guidelines than the IAG of the section <Elicit a Goal, Conceptualise a Use
Case, Normal case first strategy>.
• REMOVE_ SECTION(IM, <Elicit a Goal, Conceptualise a Use Case, Normal

case first strategy>)
The application of this operator implies to delete the corresponding SSG because

there is now only one section coming from the intention "Elicit Goal" to the
intention "Conceptualise a Use Case".

15

Discussion on the Map Integration. The representation of the process model by a
map and a set of guidelines allows us to provide a strategic view of processes. This
view tells what can be achieved (the intention) and which strategy can be employed
to achieve it. We separate the strategic aspect from the tactical aspect by
representing the former in the method map and embodying the latter in the
guidelines. By associating the guidelines with the map, a smooth integration of the
strategic and the tactical aspects is achieved.

Traditional stepwise process models have difficulty to handle the dynamically
changing situation of a process. The map contributes to solve this problem by
constructing the process model dynamically. Therefore, it is easier to represent a
process allowing several different ways to develop the product by a map and a set of
guidelines than by a set of steps. In the former approach, each step can be performed
in several different manners. In the map it is represented by an intention to achieve
and a set of strategies. Each strategy describes a different manner to achieve the
intention.

Integrating maps is easier than integrating the stepwise process models,
especially in the case where the process models overlap. The enhancement of a
stepwise process model by another one requires to construct a new process model.
On the contrary, the enhancement of a map by an another map does not require to
modify all guidelines. Only the guidelines involved in the overlapping parts are
modified.

3 Conclusion and Future Work

In this paper we have proposed and illustrated an approach for integrating a
scenario-based technique into an existing industrial method. The approach is built
upon :
− a set of operators to integrate the product aspects of the two methods on one

hand, and to integrate their process aspects in the other hand and,
− a set of rules to check whether if the integrated method is consistent or not.

The motivation for developing such an approach was twofold : first, scenarios
have proven useful to requirements engineering but cannot be used in isolation and,
secondly, existing methods which cover the entire system life cycle might be
enhanced by integrating scenario-based techniques in the requirements engineering
step. The paper has shown how to enhance the use case model construction of the
OOSE method by integrating the goal discovery and scenario authoring features of
the CREWS-L'Ecritoire approach. Vice-versa the rest of the analysis and design
process of the OOSE method remains usable.

The approach needs to be validated and improved in other cases. Our goal is to
do so in the first place, by integrating the four CREWS scenario-based techniques
one with the other and with the OOSE method. We are currently working on the
development of a computerised support for facilitating such an integration and to
connect this facility with the method base query facilities presented in [19].

16

Acknowledgements : the authors would like to thank the CREWS project members
for their contributions to the development of the ideas presented in the paper.

References

1. I. Jacobson, M. Christerson, P. Jonsson and G. Oevergaard, Object Oriented Software
Engineering: a Use Case Driven Approach. Addison-Wesley, 1992.

2. Rational Software Corporation, "Unified Modelling Language version 1.1". Available at
http://www.rational.com/uml/documentation.html, 1998.

3. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented
Modeling and Design. Prentice Hall, 1991.

4. P. Haumer, K. Pohl, K. Weidenhaupt, Requirements Elicitation and Validation with real
world scenes. IEEE Transactions on Software Engineering, Vol. 24, N°. 12, Special Issue
on Scenario Management, December. 1998.

5. C. Rolland, C. Ben Achour, Guiding the construction of textual use case specifications.
Data & Knowledge Engineering Journal Vol. 25 N° 1, pp. 125-160, (ed. P. Chen, R.P. van
de Riet) North Holland, Elsevier Science Publishers. March 1997.

6. C. Rolland, C. Souveyet, C. Ben Achour, Guiding Goal Modelling Using Scenarios. IEEE
Transactions on Software Engineering, special issue on Scenario Management, 1998.

7. A. G. Sutcliffe, Scenario-based Requirements Analysis. Requirements Engineering
Journal, Vol (3) N° 1, (ed. P. Loucopoulos, C. Potts), Springer Verlag. 1998.

8. E. Dubois, P. Heymans, Scenario-Based Techniques for supporting the Elaboration and
the Validation of Formal Requirements, Submitted to RE Journal, 1998.

9. M. Saeki, K. Wen-yin, Specifying Software Specification and Design Methods.
Proceedings of Conference on Advanced Information Systems Engineering, CAISE'94,
Lecture Notes in Computer Science 811, Springer Verlag, pp. 353-366, Berlin, 1994.

10.C. Rolland, N. Prakash, A proposal for Context-Specific Method Engineering, IFIP TC8
Working Conference on Method Engineering, Atlanta, Gerorgie, USA, 1996.

11.S. Brinkkemper, M. Saeki, F. Harmsen, Assembly Techniques for Method Engineering.
Proceedings of the 10th Conference on Advanced Information Systems Engineering,
CAiSE’98. Pisa Italy, 8-12 June, 1998.

12.X. Song, A Framework for Understanding the Integration of Design Methodologies. In:
ACM SIGSOFT Software Engineering Notes, Vol. 20, N°1, pp. 46-54, 1995.

13.M. Bouzeghoub, I. Comyn, View Integration by Semantic Unification and Transformation
of Data Structures, Proceedings of the Conference on Requirements Engineering, RE'90,
Lausanne, 1990.

14.C. Rolland, N. Prakash, A. Benjamen, A multi-model view of process modelling. To
appear in the RE journal, 1999.

15.N. Prat, Goal formalisation and classification for requirements engineering. Proceedings
of the Third International Workshop on Requirements Engineering: Foundations of
Software Quality REFSQ’97, Barcelona, pp. 145-156, June 1997.

16.I. Jacobson, The use case construct in object-oriented software Engineering. In ‘Scenario-
based design: envisioning work and technology in system development’, John M. Carroll
(ed.), John Wiley and Sons, 309-336, 1995.

17.G. Grosz, C. Rolland, S. Schwer, C. Souveyet, V. Plihon, S. Si-Said, C. Ben Achour, C.
Gnaho, Modelling and Engineering the Requirements Engineering Process : an overview
of the NATURE approach. Requirements Engineering Journal 2, pp. 115-131, 1997.

17

18.S. Si-Said, C. Rolland, G. Grosz, MENTOR :A Computer Aided Requirements
Engineering Environment. Proceedings of CAiSE'96, Crete, GREECE, May 1996.

19.C. Rolland, V. Plihon, J. Ralyté, Specifying the reuse context of scenario method chunks.
Proceedings of the 10th Conference on Advanced Information Systems Engineering,
CAiSE’98. Pisa Italy, 8-12 June, 1998.

