
CREWS Report 98-28

An Integration of Scenario-Based Requirements
Elicitation and Validation Techniques

by

Peter Haumer*, Patrick Heymans**, Klaus Pohl*

(*): Lehrstuhl Informatik V, RWTH Aachen
Ahornstraße 55, 52056 Aachen, Germany

+49 (0)241 80 21 501
{haumer,pohl}@informatik.rwth-aachen.de

(**): Institut d'Informatique, University of Namur
Rue Grandgagnage 21, B-5000 Namur, Belgium

phe@info.fundp.ac.be

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 2 –

An Integration of Scenario-Based Requirements

Elicitation and Validation Techniques

Peter Haumer*, Patrick Heymans** and Klaus Pohl*

(*) Lehrstuhl Informatik V, RWTH Aachen
Ahornstraße 55, 52056 Aachen, Germany
{haumer,pohl}@informatik.rwth-aachen.de

(**): Institut d'Informatique, University of Namur
Rue Grandgagnage 21, B-5000 Namur, Belgium

phe@info.fundp.ac.be

Abstract
Scenarios are widely used in industry to support requirements elicitation and validation.
Tool support is a prerequisite for effective use and management of scenarios.

In this paper we propose to integrate two scenario-based techniques developed in the
ESPRIT Project CREWS. One supports the elicitation of a goal model from real-world
scenarios. The other allows to validate a formal system specification by playing instance-
level scenarios against it. Interestingly, the two of them complement each other in various
respects.

We outline the benefits obtained by integration and present how we performed it at the
conceptual and technical levels. The resulting integrated environment has been validated
on a small case study in the manufacturing domain.

1 Introduction

Scenario-based approaches are widely used within industry [28]. Research literature offers an in-
creasing number of scenario-related methods, models and notations which highlight the consideration
of concrete examples during requirements engineering. The most popular form of scenarios is proba-
bly Jacobson’s OOSE approach [16] and various extensions, e.g. [24] or [6]. To get a better under-
standing of the diversity of scenarios and their usage, the ESPRIT Reactive Research Project CREWS1

has developed a scenario classification framework [25] based on a comprehensive literature survey.
The framework was used to classify eleven prominent approaches. As the classification indicates, the
scenario-based approaches vary in form, purpose, content, and lifecycle. To complement the more
research-oriented classification framework, the CREWS team has undertaken 15 site visits to indus-
trial projects in four European countries. As the results indicate the usage of scenarios during require-
ments engineering is much richer than anticipated from the literature survey [28].

One main shortcoming identified in the survey was the lack of adequate tool support for scenario
applications and management. In the CREWS project we have developed scenario-based techniques
and tools for requirements elicitation and validation.

1 CREWS: Cooperative Requirements Engineering with Scenarios, ESPRIT Reactive Long Term Research 21.903

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 3 –

In this paper we present an integration of two scenario-based techniques. One focuses on require-
ments elicitation based on captured real world scenes, the other focuses on requirements validation
through the animation of formal specifications.

In Sect. 2 we outline our integration and describe the advantages gained. The individual techniques
are sketched in Sect. 3 (elicitation) and Sect. 4 (validation), respectively. The conceptual and technical
integration of the two existing tool environments is described in Sect. 5. Besides the data integration
achieved through an IRDS-based repository and the definition of several reusable integrated process
parts, an integration of the environments was achieved by adapting the PRIME (PRocess-Integrated
Modelling Environment) framework proposed in [22].

We finally report on a trial application of the integrated environment in the manufacturing domain
(Sect. 6) and provide conclusions and outlook on future work (Sect. 7).

2 Overall Approach

Following Jackson [15], we consider that the components of a composite system are the elements of
the environment into which a new machine has to be introduced. In this respect, Jackson attributes two
kinds of properties to a composite system:

♦ properties that the environment intrinsically possesses, in spite of the machine to be introduced
(the so-called indicative properties) and

♦ properties that we hope the environment will satisfy after the introduction of the machine (called
optative properties). Properties of both kinds are expressed in terms of the components of the
composite system, that is the environment of the future system.

Consequently, a model always has an indicative portion, referring to properties of the sole envi-
ronment, and an optative portion, referring to properties of the environment that the system should
enforce.

The RE team typically starts by defining a model of the environment, which comprises a descrip-
tion of the existing system. They then progressively and repeatedly change the model by identifying
new indicative and optative properties (future requirements) and improving their definitions.

2.1 Overview on the Integration
In the following, we outline the integration of techniques for improving the modelling of indicative
and optative properties (see Fig. 1 for an overview). Each individual technique is depicted as a box
being able to perform its own tool- and method-supported activities.

Requirements
Validation

by
Cooperative

Animation

Requirements
Elicitation

from
Real-World Scenes

use information

trigger

trigger

use information

(3)
extending current state model

with optative properties

(1) (2)

(4)
operationalising extended

model to conceptual model

The elicitation technique (box ① of Fig. 1; see Sect. 3 for details) identifies indicative properties
of existing systems and their environments based on examples observed and recorded in real world

Fig. 1: Overview of Integrated Approach

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 4 –

usage situations. It provides support for producing hierarchical goal models from the examples cap-
turing the rationale behind the observed systems. While doing this, fine-grained traceability interrela-
tions between the abstract goals and fragments of the real world examples are established. These will
be used in the elicitation as well as in the integrated technique.

Due to the fact that conceptual models are often too complicated and written using notations
stakeholders like domain experts rarely understand, we also support cooperative validation of con-
ceptual models (box ②; see Sect. 4 for details). This is performed by role-playing stakeholders who
elaborate possible behaviours of the model as interactive animations. During the animation several
behavioural paths can be explored in an experimental manner. The result is a set of animation traces
representing examples for the conceptual model enacted during the animation.

During the ongoing RE process performed by various stakeholders, the indicative properties identi-
fied during elicitation will be extended and changed to fulfil additional optative properties (box ③).
This process, which is not considered to be supported by the work presented in this paper, leads from
the current state to a desired state model.

The desired state goal model resulting from this process is then concretised by operationalisation
(box ④). The results from this phase are (i) the indicative properties which remain the same with re-
spect to the existing reality (i.e. those pertaining to the environment and to the subset of the current
system’s properties that should not change) and (ii) the optative properties identified by goal-oriented
analysis. How to go from goals to a more fine-grained representation of properties in a conceptual
model is not a topic of this paper as well. For this, we rely on other research and, in particular, to what
is reported in [7]. More specifically, if the target model is to be written using the Albert II language
(see Sect. 4.1) we refer to [9].

The requirements engineering process however, is not as streamlined as described so far. Rather,
during elicitation the requirements engineering team has, for example, the desire to animate parts of
the current state model to check and improve the accuracy of the abstractions. During validation, the
team might want to backtrack to real world scenes from the elicitation process to better understand and
explain indicative properties during animation. Therefore, the integration must provide ways for one
technique to trigger activities of the other. When activities of the other technique are triggered, these
can either be performed locally, i.e. using actions the standalone technique offers or they can use
newly defined integrated activities in which one technique uses information provided by the other.
(E.g., elicitation uses animation traces, animation uses real world examples etc.) Triggering validation
from elicitation and vice versa is what we call elicitation-validation cycles.

2.2 Expected Benefits of the Integration
The integration of the two techniques outlined above improves the support offered to the requirements
engineering team for scenario-based elicitation and validation in four main ways:

Real world scenes provide explanation during animation. Real world examples can be retrieved for
explanation purposes of abstract concepts in the animation. For instance, during animation a client
user has to make a decision about which action to perform next. The descriptions of the offered actions
are unclear to him. In a situation like this, he is able to inspect real world scenes (e.g. captured on
videotape) which show him example situations in the existing system for each action.

Animation of current state model allows to check accuracy and consistency of abstractions. Al-
though Abstraction Guides provide support for the conceptualisation of real world observations, it still
depends on the requirements engineer’s subjective interpretation of the real world aspect he wants to
capture. To check and discuss his abstractions with other stakeholders he can, on the one hand, use
real world scene fragments which have been linked to the concepts by the Abstraction Guides, but on
the other hand he is able to animate the current state model. While Abstraction Guides provide direct
access to recorded example situations of the real world for a concept the animation additionally allows
to explore different variants of the example not performed during observation. This can be useful for
the analysis team to uncover forgotten cases but also when it was not possible (too expensive, time
consuming etc.) to perform and/or observe them. It is also easier to just play around with the current
state model in the animation to explore if those use cases have been captured. People who might be

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 5 –

distributed over wide areas in the real world application can perform the animation with their normal
roles allocated in a single room and discuss their actions right away.

Animation initiates focused elicitation from real world scenes. Traceability relationships can also
be used for further analysis of the real world scenes. E.g., when problems are discovered, like missing
data or functionality in the current state model, tracing back the originating real world scenes leads to
a focused elicitation of the missing knowledge if it was captured.

Animation initiates focused capture of real world scenes. As stated above, animation can be used to
validate the accuracy and completeness of the current state model. The real world scene based creation
of the abstract models can be driven by several elicitation and validation cycles for evolutional model
improvement. One aspect of these cycles is that animation can lead to the discovery of open issues of
the current state model, which have to be re-tackled, for instance by another site visit and recording of
information. The discovered problems in the animation can be used as a starting point for a focused
site visit for resolving the unclear issues.

3 Elicitation of Conceptual Models Based on Real World Scenes

McMenamin and Palmer [19] argue that one has to consider the history and functionality of the exist-
ing system when building a new system (see also Gause and Weinberg [11]). There are two main rea-
sons for this: a) the new system has to provide to a large degree the functionality of the old system;
b) one can learn a lot from the success stories and pitfalls of the existing system; thereby to make fail-
ures twice could be avoided. The quality of conceptual models (and this is especially valid for the
quality of current state models) heavily depends on the successful stakeholder involvement in the re-
quirements engineering process. To achieve better involvement of different stakeholders the use of
rich media (e.g. video, pictures, screen dumps, speech etc.) to record and discuss current system usage
is proposed, e.g. by participatory design techniques [2], [4], [17].

Because the material gathered during an observation session can contain information about many
system usages, we propose to pre-structure this material into what we call coherent real world exam-
ples (RWE). A real world example is a collection of all the different material collected using different
types of media that represents one system usage. However, several different examples of system
usages can represent different incarnations of one task fulfilling one specific goal. We therefore elicit
and relate goals to the examples (and parts of the examples) because goal models focus on a more
abstract level why certain system properties are constructed rather than how [1]. When the whys be-
hind the existing system are understood one can go on modelling critical or problematic details using
more concrete modelling languages (e.g. UML Static Structure Diagrams [23], Message Sequence
Charts [14] etc.).

Existing System

RReal WWorld SScenes
Observations of System Usage
(pictures, scans, video, text, ...)

RReal WWorld
EExample

structured

Conceptual
Model of Current Reality

Model Component
RReal WWorld

EExample FFragment

extracted
from

part of

related to by
typed dependency links

used to define

validated against

captured

Abstraction Guides

Fig. 2: Abstraction Guides

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 6 –

To systematically support these activities we introduced so called Abstraction Guides (cf. Fig. 2 for
an overview), which support the requirements engineer in the definition of a current state model based
on real world examples. For Abstraction Guides real world examples are used for two main purposes:
First, new concepts are elicited from them. Further, the elicited concepts are validated against other
real world examples. In both cases, the Abstraction Guides support the typed interrelation of concepts
of the current state model with corresponding fragments of the RWE which caused their definition
respectively which were used for their validation.

R(+):1

(-):

S

(+):

(-):

R S

(+):

(-):

R S

G0
Support information exchange

for production management

G1
Support production

order transfer

G2
Support production

time reports

G1.1
Orders are scheduled

Attains

Fig. 3 shows a simple example of our tool environment. In the left window of the screen dump one
can see two videos from which the left one represents an RWE showing a complete example captured
solely on videotape. The right video represents a fragment (RWEF) of the left one. It has been cut out
of the example by marking a temporal beginning and ending point and is now displayed as an individ-
ual object. The RWEF has been linked to a model component; in this case a goal of a hierarchical goal
model, using a dependency of type Attains. The link type Attains expresses that the analyst
interprets the fragment as an example of how the related goal is fulfilled. Likewise, we support for
goal models the link type Fails, which expresses the direct opposite to Attains, namely that the
example shows how a goal is failed (cf. [18] for discussion on further link types).

As explained above, the Attains relationship of Fig. 3 could have been established during two
possible activities following two different objectives: (1) the linked goal has been created because of
the example (elicitation objective); or (2) the goal has been compared against the example (validation
objective). In a typical analysis session however, validation and elicitation are often heavily inter-
twined. Whenever the analyst encounters problems in validating a conceptual model against the RWEs
it leads to the elicitation of new or alternative concepts.

Consequently, the established structure imposes on the one hand access paths upon the real world
examples; i.e. a set of real world example fragments typed by the incident links is gained from initially
totally unstructured multimedia material. On the other hand, the goal model is annotated by a set of
real world evidences that are close to the perception of the involved stakeholders. This structure can
now be used for2

- explanation of the current state model with the real world examples, which caused their creation in
a navigational manner, for people not trained in conceptual modelling or to ease the training of
people joining the project, but also to assure a better model understanding for all stakeholders
during the whole system development lifecycle;

- comparison of different real world scenes in respect to the goals they fulfil. We are able to support
comparison of different real world examples using the goal model which describes the objectives
to be achieved by the system;

- reviewing of conceptual models by other stakeholders in a structured way helping the reviewer in
justifying and commenting on the abstraction made by the model builder and comparison of mul-
tiple viewpoints created during reviewing and further refinement by different stakeholders.

2 see [18] for details on all topics as well as further applications

Fig. 3: Interrelating an RWEF with a Model Component

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 7 –

4 Cooperative Animation of Formal Models

Because a model is usually too abstract, it is almost impossible to get a detailed understanding of the
model by simply reading it, even extremely carefully. This situation is reinforced if the application
domain is the one of complex/critical systems. Having a way for the stakeholders to experience and
visualise behaviours defined by the model is therefore a crucial issue in validation. This is what ani-
mation is intended to provide. The language supported by our animator (Albert II) and the animator
itself are in turn briefly presented below.

4.1 The Albert II Language
An Albert II model is used to express (indicative and/or optative) properties of a composite system.
The adopted modelling paradigm is an agent-oriented one: classes of components of the composite
system are modelled as agents which can be hierarchically grouped into societies. Agents can perform
actions and have state components denoting either physical or informational characteristics. Actions
can be used to denote exchanges of information between components and/or how components can
affect each other’s state components. An Albert II model is also made of a series of constraints aiming
at restricting the number of admissible behaviours to the intended ones (depending on the indicative
and optative properties that one wants to model). In order to provide more guidance to the analyst,
these constraints are written by instantiating predefined constraint patterns. Each of the latter is useful
in expressing a specific kind of property: preconditions, effects of actions, actions compositions, in-
variants, visibilities, etc. The editing of an Albert II formal description is supported by the CAT-Edit
Tool (which has been designed within the CAT project). It basically provides a graphical editing envi-
ronment, syntax checking facilities and a client-side interface for invoking more elaborate checks.

In order to be reasoned on automatically (amongst other things, to be animated), the language is
given its formal semantics by an established mapping of its constructs to an underlying real-time tem-
poral logics called Albert-KERNEL. For a detailed description of the Albert II language, see [10].

Regarding method support for writing Albert II descriptions, we have investigated progressive
formalisation using intermediate semi-formal description like MSCs [8] and E-R diagrams [29], [25].

4.2 Animation of an Albert II Model and Tool Support
Albert II specifications are class-level descriptions: they describe abstract properties of classes of
components of a system. The Albert II animator [12] helps to construct instance-level behaviours step-
by-step in a distributed and co-operative way. Each participant is assigned some agent instances he
will manipulate during the animation (each stakeholder animates the components he is the most com-
petent to validate). The simulation of the overall behaviour of the composite system results from tasks
that the stakeholders perform in cooperation, allowing to validate interactions between components.
The manipulation of agent instances is performed by the participants through a graphical client-side
application, called agent manager. Each such application allows to browse through the already con-
structed behaviours to create and observe the action occurrences taking place at definite steps; simi-
larly, agent managers allow to create and observe state component values of the agent instances3 in the
various steps (see Fig. 4). Browsing through steps is done using the backward and forward arrows.

The role of the animation server (which supports the task of the coordinator user) is to conduct an
animation by centralising the various requests issued by the stakeholders and to build a new global
state of the system (made of all the local instances’ states). Noteworthy is that the resulting state may
be inadmissible with respect to the specification. This results in a dead-end branch which cannot be
further investigated. Such states are especially marked both in the agent managers and on the co-
ordinator’s display. The other possible origin of a dead-end branch is when some stakeholder has de-
cided to stop building the current state transition either because he was prevented to perform some
event or because some events he performed in previous stages now have unforeseen consequences.
Any time an anomaly is discovered, an error message is displayed in the agent managers. In order to
facilitate revisions, traceability within the animator allows such error messages to refer directly to the

3 Actually, only initial states can be constructed by the users. Since Albert II’s underlying formal semantics has a frame

axiom [3], changes in states can only be due to events which have happened in previous transitions.

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 8 –

violated statements. It is also possible for a user to attach to any component of a state or state transi-
tion, built or being built, a comment, question or a change request. This additional information is re-
corded and added to the animation traces, which can then be a basis for discussion and model im-
provements.

An additional advantage of animation is that, since operations are carried out by stakeholders over
intangible objects (the representations of the composite system’s components inside the animator tool),
some restrictions about the kind and the amount of the tested operations disappear. For example, test-
ing how operations are carried out in a manufacturing environment might be very costly in the real-
world if real parts have to be produced. Another advantage of animation comes from the settings in
which an animation session usually takes places (distributed but in the same room) and is that informal
communication between stakeholders is possible. This is often not possible when trying out a real
system where operations are performed in different places. Finally, over prototyping, animation has
the advantage that it avoids to create an implementation and that it keeps therefore validation at the
requirements level (since no design or implementation concerns interfere).

5 Technical and Methodological Integration

Both techniques presented in the last two sections define complex methods for the elicitation as well
as the validation of requirements. Consequently, integration of both methods as outlined in Sect. 2.1
has to be performed on the methodological level, i.e. by defining integrated method parts. This means
that a data integration of both environments would not be sufficient. In addition to data integration a
composite methodical technique has to be defined and supported. By the methodical integration, each
existing environment is empowered to make use of support offered by the other environment. This
allows complex tool spanning activities with branches, backtracks, loops etc.

To realise the methodical integration we used an existing framework introduced in [22]. The
framework provides mechanisms for data and method integration.

In the following sections, the integration is outlined. In Sect. 5.1 we describe how data integration
is achieved. Sect. 5.2 describes the method integration part. Finally, in the Sect. 5.3 we describe the
realisation of the process-integrated tool support.

5.1 Data Integration
We achieved the data integration by applying the meta-modelling repository framework developed in
the ESPRIT project NATURE which had been defined based on the IRDS standard [13] (see [20] for
detailed descriptions of the IRDS standard as well as the formal NATURE meta-models). The result-

Fig. 4: Transition and state view of one animation step

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 9 –

ing IRDS hierarchy is outlined in Fig. 5. We defined our conceptual modelling languages, like the
Albert II specification language or the goal modelling language, on the IRD Definition Level as in-
stances of a common IRD Definition Scheme Level Model. Concrete models are represented as in-
stances of the language constructs on the next level the IRD Level (e.g. the ADITEC Machine Termi-
nal (MT) specification or the goals identified for the ADITEC system). Performing an animation will
again instantiate the model components with concrete, as we call them, model lives; e.g., in Fig. 5 the
concrete set-up performance by agent Michael.

3URGXFW

0RGHO�&RPSRQHQW
GHSHQGVBRQ0RGHO FRQVLVWVBRI

*RDO�0RGHO

*RDO$FWLRQ$JHQW

7RRO
FUHDWHV

ZRUNVBRQ

$OEHUW�,,�0RGHO

$VVRFLDWLRQ
,QVWDQWLDWLRQ
*HQHUDOLVDWLRQ

0XOWLPHGLD�0RGHO

RSHUDWLRQDOLVHV
GHS��W\SH

5:(
5:()

DWWDLQV
GHS��W\SH

$',7(&�07�6SHF� $',7(&�0HGLD$',7(&�*RDO�0RGHO

:RUNHU

07
VHW�XS�VSHF�

*�����2UGHU�LV�
VHW�XS�RQ�07

VHW�XS�IUDJPHQW
DWWDLQV

0LFKDHO

NATURE Product Meta-Model
IRD Definition Schema Level

Modelling Languages Definitions
IRD Definition Level

Conceptual Models
IRD Level

Concrete Instance Lifes
IRD Application Level

VHW�XS�
FDSWXUHG

VHW�XS�IUDJPHQW
YLGHR�FRQWHQWTXHU\�RUGHU�GDWD

RSHUDWLRQDOLVHV

For integration of parts of the different modelling languages, we defined a set of dependency rela-
tions between specific product types. Thus, the method chunks described in the following subsections
will primarily use instantiations of the IRD Definition Schema Level concept depends_on defining
these relations between Products (on the IRD Level!). For instance, the dependency relation type
Attains already introduced in Sect. 3 as the integration mechanism between goal models and real
world examples is defined on the IRD Definition Level and instantiated on the IRD Level linking a
goal concept (Goal G2.3) with a real world example fragment (set-up fragment) showing an example
for the attainment of this goal. However, different types of dependencies are defined for the integra-
tion between Albert II concepts and goals. E.g., as we outlined for the overall RE process in Sect. 2,
goals are operationalised to concrete specification concepts. These concepts are linked to those goals
by the operationalises dependency type, which we see instantiated in Fig. 5 for example be-
tween the Albert II set-up specification and G2.3. A third group of dependency types are
defined between current state models and extended models to be able to trace adoption and changes of
resp. on concepts.

The dependency links are heavily employed by the method chunks described below. For instance,
the operationalises link of Fig. 5 is used by the explain method chunk in the following way:
During the animation of the existing system, the stakeholder who controls the animation of the client
representing worker Michael wants to obtain more information about the operation set-up. To dis-
play a real world example from the existing system of a set-up the method chunk explanation-support
follows the dependency link of the set-up specification object (IRD Level) of type operational-
ises leading to goal G2.3 which in turn is linked to a real world example fragment containing a
video clip showing a worker at the set-up procedure.

5.2 Integrated Method Chunks
The basic building block for method integration is the notion of method chunk. A method chunk is a
modular reusable set of activities. They are introduced because of the fact that it is not possible to pre-

Fig. 5: IRDS-Based Product Integration for Method Chunks

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 10 –

define methodical process guidance for the whole RE process, but only for specific, well-understood
parts [21], [27]. Thus, a method chunks provides guidance for the well-understood parts. Conse-
quently, we defined our individual as well as the integrated guidelines and processes using these
method chunks and meaningful combinations of them.

As presented in Sect. 2, we make the individual techniques able to trigger each other when neces-
sary (going from validation to elicitation and going from elicitation to validation), making the overall
requirements engineering process look like a set of elicitation-validation cycles. More precisely, a
chunk defining how to carry out an operation with one technique might request that a whole set of
operations is performed with the other (a new elicitation session or a new animation session). Per-
formance of the requested operations is improved if information is drawn from what was done in the
calling technique. Therefore, we have improved the individual techniques with chunks that are able to
make use of information provided in the other one. We will start this subsection by presenting these
chunks. Then, we will describe a larger chunk showing an example of how the elementary chunks can
be combined in a useful manner. This more coarse-grained method chunk will illustrate (i) when there
can be a need for an approach to call the other one and (ii) how to combine lower-level chunks with
each other, with chunks already defined in isolation within the techniques and with external chunks to
obtain an effective method support.

5.2.1 Elementary Method Chunks
In the following we describe and motivate the chunks.

Animation chunks that make use of elicitation information:

- EMC 1: Explain an animation step by using a real-world example. At some point during an
animation, a client user might wonder what is the right action to perform. The name of the actions
and of their parameters at his disposal might not be very meaningful to him/her. Similarly, what
Albert state components denote might not be so easily understandable from their name. If such
elements are part of the existing reality, if they were captured on videotape and if traceability links
were established between the Albert model and real world example (via goals), then the integrated
environment supports explanation of Albert concepts by visualisation of the corresponding cap-
tured real world example. Guidance on how to reach the right real world example from the anima-
tion (i.e. how to follow the right traceability links) is provided by this chunk.

- EMC 2: Animate by replaying real-world example. In order to test if the current model accepts
some behaviour that occurs in the current real system, benefit can be taken from the real world ex-
ample that captures such a behaviour (if there is one). Going through the real world example as
one progresses through the animation is supported by this chunk. The chunk makes use the expla-
nation chunk presented above to go through traceability links.

- EMC 3: Animate by avoiding real-world example. It is also useful to animate behaviours that
were not captured during elicitation. These might have been omitted during the elicitation or
maybe they were taken into account but it was not possible to film them. Another possibility is
that they are not behaviours of the current system (either unwanted or wanted for the future sys-
tem). In any case, to elaborate such ‘alternative’ behaviours, one may find help in referring to the
other (captured) ways of performing the same task (accomplishing the same goal). Such a support
is provided by this chunk during the animation and also makes use of the explanation chunk
above.

Elicitation chunks that make use of animation information.

- EMC 4: Capture real-world example by using animation traces. Performing real-world obser-
vation in early elicitation can only be done in a non-focussed way. But, as a requirements model
evolves, more focussed observation sessions can be carried out. Such focussed elicitation can be
initiated if during animation one discovers that some behaviours existing in the current system
were not captured. Animation traces may therefore contain requests for new observations. The
goal of this chunk is to help the requirements engineer go through the traces and perform observa-
tion when needed.

- EMC 5: Improve current state goal model by using animation traces. Initially, the current
state goal model is abstracted from real world observations using the Abstraction Guides. Some of

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 11 –

the abstracted behaviours are the observed ones and some others have to be inferred. Unfortu-
nately, it may happen that the requirements engineers have not (correctly) inferred behaviours of
the latter type. On the other hand, when doing animation, behaviours that should have been in-
ferred can be played by the users. The impossibility to animate them reveals a problem in the ab-
straction process. Therefore, traces of the animation where such situations happen are a precious
indication to improve the requirements model.

- EMC 6: Check abstraction of current state goal model by using animation traces. One could
also decide to take all the animation traces and check goals of the current state goal model against
them. Depending on whether the animated behaviour exists in the current real system or not and
depending on whether the animation failed or not, one can decide whether the abstraction of the
goal model is a faithful representation of the existing system. In case something has to be changed
in the abstraction the chunk “Improve current state goal model by using animation traces” should
be invoked.

The method chunks have been formally described using the notation defined in [25]. For the sake of
brevity, we have only described them informally here.

5.2.2 A Combined Method Chunk: Validation of Current State Goal Using RWE
The more elementary method chunks depicted above can be combined to larger chunks within meth-
odological support to validation and elicitation. As an example of this, we present a complex com-
bined chunk providing support for performing the validation of a goal from the current state goal
model with the animator. The chunks introduced in this paper are represented with white boxes while
the grey boxes represent the chunks that already existed in the individual techniques or external ones.

LMC 1 :
Retrieve

examples from
goal

EMC 2 :
Animate

by replaying real
world example

goal

current state model

CMC 1 : Validate goal
 using real world example

real world examples

real world
examples

real world
examples

uses

uses

EMC 4 :
Capturereal

world example

EMC 5 :
Improve current
 state goal model

EMC 6 :
Check abstraction

of current state
 goal model

XMC 1 :
Improve goal

operationalisation

.

change requests,

change requests,
animation trace

XMC 2 : Extend
CS goal model
with opt. prop.

EMC 3 :
Animate

by avoiding real
world example

EMC 1 :
Explain animation

step with real
world example

animation trace

EMC : Elementary integrated Method Chunks, CMC : Combined integrated Method Chunks,
 LMC : eLicitation Method Chunks, XMC : eXternal Method Chunks

Triggering a goal-directed animation (see Fig. 6) comes from the need to validate a goal from the
goal model. It is with the satisfaction of this goal in mind that the users of the animation will then try
to elaborate behaviours within the tool. But in order to know more precisely which behaviours to try
out, they have to retrieve the real world examples associated to this goal. To support this latter task,
we chose to reuse the LMC1 chunk that initially only supported browsing in the elicitation approach.
Then, one has to consider one of the following alternatives: (1) animate the retrieved examples or
(2) animate other behaviours than the captures ones, that is, trying out alternative ways of satisfying
the goal. Executions of both animation chunks can result in change requests that trigger one or more of
the EMC4, EMC5 and EMC6 elicitation chunks. Finally, it may be that the change request can only be
adequately handled using external chunks like XMC1 or XMC2.

Fig. 6: Process chunk for validating goal using real world example

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 12 –

5.3 Tool Integration
In this section we sketch our integrated prototype CREWS–EVE (Cooperative Requirements Engi-
neering With Scenarios – Elicitation and Validation Environment) which comprises the method inte-
grated modelling environment consisting of the elicitation tools described in Sect.3 and the validation
tools presented in Sect. 4.

To be able to integrate the existing prototypes related to the two individual techniques and to sup-
port the method chunks described above, we needed an implementation platform which supports the
dynamic definition and adaptability of the integrated chunk as well as the repository described in Sect.
5.1. The PRIME framework (PRocess Integrated Modelling Environments, see [22] for a detailed de-
scription), which defines method knowledge in explicit process models, fulfils these requirements. The
process integration provided by PRIME empowers the user to initiate the enactment of predefined
method chunks guiding him through the activities of the chunks, even across tool boundaries.

The general PRIME framework is divided into three distinguishable conceptual domains. The mod-
elling domain comprises all activities for defining and maintaining process models, i.e. method
chunks, using a formal language with underlying operational semantics enabling the mechanical inter-
pretation of the models. In addition, the modelling domain stores the repository definitions described
in Sect. 5.1. The interpretation of the process models is done by the enactment domain which then
guides and controls the performance domain comprising the set of actual activities conducted by the
tools. The interactions between these domains characterise the way in which model-based method
guidance is provided. Process chunks are first instantiated within the modelling domain and passed to
the enactment domain. Based on the interpretation of the instantiated model, the enactment domain
supports, controls, and monitors the activities of the performance domain by sending and receiving
predefined message types between the domains. Thus, the performance domain has to provide feed-
back information about the current process status to the enactment domain as a prerequisite for ad-
justing process model enactment to the actual process performance and enabling branches, backtracks,
and loops in the process model enactment.

Technically, the tools of the performance domain must be fully process-integrated. This can be
achieved by implementing a tool by reusing the generic PRIME tool architecture (see [22] for a de-
tailed description). The elicitation tools (the goal editor, the multimedia management tool, the depend-
ency management tool) have been build based on the PRIME architecture. Thus, this tools are process
adaptable. The validation tools (the Albert II editor and the animation tool) did not have the process-
integration features required. Thus, they must be adapted to enable their integration according to the
method chunks defined above.

 To avoid a re-implementation of the validation tools, we focused on a partial process-integration
first. This was achieved by implementing a wrapper that provides the validation tools with an
API (Application Programming Interface) and empowers them to send and receive service calls from
the enactment domain. Moreover, the wrapper provides the functionality for storing and retrieving
data out of the common RDBMS based repository by which data integration is achieved. In addition,
an extension to the PRIME environment was required to support the wrappers. Details on this can be
found in [5].

However, it turned out that the partial integration had two major shortcomings. First, changes of the
method definitions caused a re-programming of parts of the wrapper and the validation tools to enable
method invocation and method-conform tool performance. Second, the adaptation of the tools inter-
face of the validation tools according to the actual process situation could only be achieved by chang-
ing the implementations. Both drawbacks required a lot of re-design and consequently re-
programming effort of the validation, which were in some cases almost impossible to achieve. In con-
trast, changes in the method definitions required no code change in the elicitation tools.

Due to the experiences gained, we are now convinced that a partial re-implementation of the vali-
dation tool would require less effort than their continuous adaptation. We will therefore re-implement
part of the validations tools according to the PRIME architecture to make them fully process-
integrateable in the future.

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 13 –

6 Example from Case Study

The ADITEC manufacturing company produces machine gears for various kinds of industrial de-
vices. In the example, we show the system from the point of view of workers located at production
cells. These have to fetch production orders displayed at the cell’s machine terminal according to the
planning-dispatching system which they have to feed back by reporting on the progress of the orders’
production. Because of problems with inconsistent and erroneous data reporting, the management of
ADITEC wanted the information flow from the planning-dispatching system to the production cell and
backwards to be analysed and improved. We used the CREWS-EVE environment to analyse the in-
dicative properties of the existing system, created current state models of critical parts and animated
the current state model.

R(+):1

(-):3

S

3
2

4
1

G3.2
Measurements are

reported to central sys.

G0
Support information exchange

for production management

(+):

(-):

R SG1
Support production

order transfer

(+):

(-):

R SG2
Support production

time reports

R
(+):5

(-):1

S

1
6
5

G1.2
Orders are distributed

to production

(+):

(-):

R SG3
Support quality
data exchange

G3.1.1
Target measures are provided

with production order

G3.1.2
Measures are distributed

for production lines

Real World Examples related: 6 R(+):5

(-):1

S
G1.1

Orders are scheduled 1
6

5

R
(+):4

(-):2

S

1

G1.3
Orders are retrieved

by worker 3
2

R(+):3

(-):2

SG2.1
Production times

are measured 6

5

5

3

R(+):3

(-):0

S

2
1

G3.1
Provide production

with target measures
1

R
(+):1

(-):2

SG2.2
Production times are

received by central sys. 2

1

3

1

Fig. 7 shows a screen dump of using CREWS-EVE to perform the chunk CMC1 described in Sect.
5.2.2. In the goal editor (on the upper left side), the G1.3 goal has been selected: “Worker retrieves
orders”. Using the LMC1 chunk, the repository’s dependency links between the selected goal and any
real world example media objects were queried. The results are displayed in the lower window. We
assume that operationalisation of the goal model has been carried out and resulted in an Albert II
model which is now animated in the upper window. The analyst using the tool now asks a worker to
assist him in performing animation. The analyst first decides to trigger the chunk EMC2. The Albert
worker agent’s RetrieveOrder action is performed within the animator. Consulting the next animation
step reveals that the worker agent perceives a list of orders displayed on the terminal. No problem is
therefore detected by executing this chunk. The analyst decides then to trigger the other animation
chunk EMC3. The worker is requested to look at the examples and to tell if there is no alternative way
by which he retrieves orders in the current system. He admits that he usually asks the foreman which
order to do next. The lower windows shows that captured real world example do not exist for this
situation. This means that if the situation was taken into account in the goal model and in the Albert
model it was only by inferring it. However, no action corresponding to this situation is found in the
action list of the worker’s agent animation window. To be sure of that, explanation was used for all
actions with unclear names. The chunk allowed to consult the observations corresponding to each of
the actions listed in the animator but none of them showed a worker asking the foreman what to do
next. In consequence, a change request is issued with the intention to trigger a new elicitation session
in which the capture of the missing real world example will have to be done and attached to the goal.

Fig. 7: Explaining Actions in an Animation Using Goal Models and Real World Scenes

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 14 –

7 Conclusions

Research reported in this paper takes as starting point two scenario-based requirements engineering
elicitation and validation techniques and tool environments and investigates how to integrate them in a
common tool environment with integrated method support. Elicitation based on real-world examples
aims to identify goals underlying the current system from captured real-world phenomena. Validation
is performed by cooperatively animating a model (resulting from the operationalisation of the goal
model) against instance-level scenarios.

We have highlighted several ways in which these approaches complement each other. Elicitation
provides explanation that helps the achievement of animations. Animation, on the other hand, can be
useful in checking the correctness of abstractions, for additional analysis of real-world scenes and to
carry out new observation sessions.

In order to take the best out of these complementarities, we have proposed fine-grained method
support for the integrated environment which comes in addition to the method support which already
existed for the two approaches taken in isolation. The proposed integration was threefold. First, the
product models of each technique were integrated into an IRDS-based repository. The mutual relation-
ships were formalised. Second, the process integration was performed by defining elementary method
chunks. Third, practical tool integration (APIs, service calls, etc.) was done by wrapping the validation
tools. Method adaptability of the latter was achieved by hardcoding the defined method chunks.

Moreover, the combination of the elementary method chunks empowered the definition of larger
methodological guidance, which supports requirements engineering in the elicitation and validation
cycles.

The integration has been validated on a small case study.

In the future, we will focus on the full process integration of the two techniques and the validation
of the integrated environment on a larger trial application.

Acknowledgements. This work is founded by the European Community under ESPRIT Reactive Long Term
Research 21.903 CREWS (Cooperative Requirements Engineering with Scenarios). The authors are also espe-
cially grateful to Luc Claes, Klaus Weidenhaupt, Markus Hoofe, Prof. Eric Dubois, and Prof. Matthias Jarke for
participation to the research reported in this paper.

8 References
[1] Annie I. Antón. Goal-based requirements analysis. In Proceedings of International Conference on Requirements Engi-

neering (ICRE'96), pages 136- 144. IEEE, 1996.

[2] Hugh Beyer and Karen Holtzblatt. Contextual Design: Defining Customer-Centered Systems. Morgan Kaufmann Pub-
lishers. 1997.

[3] A. Borgida, J. Mylopoulos and R. Reiter., On the Frame Problem in Procedure Specification. IEEE Transactions in
Software Engineering, vol SE-21, n°10, October 1995.

[4] Francoise Brun-Cottan and Patricia Wall. Using video to re-present the user. Communications of the ACM, 38(5):61-71,
5 1995.

[5] Luc Claes, Layered Components. To appear in Component-based Information Systems Engineering Workshop
(CBISE'98), Pisa, June 1998.

[6] Alistair Cockburn. Structuring use cases with goals. JOOP, September and November, 1997.

[7] A. Dardenne, A. van Lamsweerde and S. Fickas. Goal-directed requirements acquisition. Science of Computer Pro-
gramming, 20:3-50, 1993.

[8] Eric Dubois and Patrick Heymans. Scenario-Based Techniques for The Elaboration and the Validation of Formal Re-
quirements. Submitted.

[9] Eric Dubois, Eric Yu, Michael Petit. From Early to Late Formal Requirements: a Process-Control Case Study. In Proc.
of IWSSD9, Isobe, Japan. April 1998.

An Integration of Scenario-Based Requirements Elicitation and Validation Techniques Haumer, Heymans, Pohl

– 15 –

[10] Philippe Du Bois. The Albert II Reference Manual – Language Constructs and Informal Semantics. Research Report
RR-97-002, Computer Science Department, University of Namur. ftp://ftp.info.fundp.ac.be/publications/RR/RR-97-
002.ps.Z, July 1997.

[11] Donald C. Gause and Gerald M. Weinberg. Exploring Requirements: Quality before Design. Dorset House Publishing,
New York, 1989.

[12] Patrick Heymans, The Albert II Specifications Animator. CREWS Report Series 97-13. August 1997.

[13] ISO/IEC. Information Technology - Information Resource Dictionary System (IRDS) framework. International Standard
ISO/IEC 10027. First edition 1990-06-15, 1990.

[14] ITU-T. ITU-T Recommendation Z.120 — Message Sequence Charts (MSC), ITU, 1993.

[15] Michael Jackson. Software Requirements & Specifications — a lexicon of practice, principles and prejudices. Addison
Wesley Press. 1995

[16] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Oevergaard. Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison-Wesley, 1992.

[17] Karen McGraw and Karan Harbison. User-Centered Requirements: The Scenario-Based Engineering Process. Law-
rence Erlbaum Associates, Inc., Publishers, Mahwah, New Jersey, 1997.

[18] Peter Haumer, Klaus Pohl, and Klaus Weidenhaupt. Abstraction Guides: Interrelating Conceptual Models with Real
World Scenes. In Fourth International Workshop on Requirements Engineering: Foundation for Software Quality
(RESFQ), Pisa, Italy, June 8th-9th, 1998.

[19] Stephen M. McMenamin and John F. Palmer. Essential System Analysis. Prentice Hall, 1984.

[20] Klaus Pohl. Process Centered Requirements Engineering. RSP marketed by J. Wiley & Sons Ltd., England, 1996.

[21] Klaus Pohl, Ralf Dömges, and Matthias Jarke. Decision Oriented Process Modelling. In Proc. of the 9th Intl. Software
Process Workshop, pp. 124-128, Arlie, Virginia, USA, IEEE Computer Society Press, Oct. 1994.

[22] Klaus Pohl and Klaus Weidenhaupt. A Contextual Approach for Process-Integrated Tools. In Proc. of the 6th European
Software Engineering Conference (ESEC) and 5th ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, pages 176-192, Zurich, Switzerland, September 1997. LNCS 1301, Springer Verlang.

[23] Rational Software Corporation. Unified Modeling Language. Available on the World Wide Web:
http://www.rational.com, Rational, 2800 San Tomas Expressway, Santa Clara, CA 95051-0951, USA, 1 1997.

[24] Björn Regnell, Kristofer Kimbler, and Anders Wesslen. Improving the use case driven approach to requirements engi-
neering. IEEE Requirements Engineering '95, pages 40-47, 1995.

[25] Colette Rolland. A Primer for Method Engineering. Proceedings of the INFORSID Conference (INFormatique des
ORganisations et Systemes d'Information et de Decision), Toulouse, France, June 10-13, 1997.

[26] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N.A.M. Maiden, M.Jarke, P. Haumer, K. Pohl, E. Dubois,
and P. Heymans. A proposal for a scenario classification framework. accepted for Requirement Engineering Journal,
Technical Report CREWS Report Series 96-01, ESPRIT Project CREWS 21.903, available at
http://Sunsite.Informatik.RWTH-Aachen.DE/CREWS/, 1996.

[27] Colette Rolland and George Grosz. A General Framework for Defining the Requirements Engineering Process. In Proc.
of the Intl. Conf. On Systems, Man, and Cybernetics, San Antonio, Texas, USA, IEEE Computer Soc. Press, Oct. 1994.

[28] Klaus Weidenhaupt, Klaus Pohl, Matthias Jarke, and Peter Haumer. Scenario Usage in System Development: A Report
on Current Practice. IEEE Software, March, 1998.

[29] Roel Wieringa and Eric Dubois. Integrating Semi-Formal and Formal Software Specification Techniques. Information
Systems Journal, June 1998.

