
CREWS Report Series 98 - 22

A REUSE-ORIENTED APPROACH FOR THE CONSTRUCTION OF

SCENARIO BASED M ETHODS

V. Plihon*, J. Ralyté** , A. Benjamen** ,

N.A.M. Maiden+, A. Sutcliffe+, E. Dubois#, P. Heymans#

*GECT University of Toulon Var BP 132 83957 La Garde Cedex France plihon@univ-tln.fr
** CRI University of Paris 1 90 rue de Tolbiac 75013 Paris France {ralyte, benjamen}@univ-paris1.fr

+City University Northampton Square London, EC1V 0HB United Kingdom
{N.A.M.Maiden, A.G.Sutcliffe}@cs.city.ac.uk

#FUNDP, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
{dubois, heymans}@info.fundp.ac.be

Appeared in the proceedings of the International Software Process Association's
5th International Conference on Software Process (ICSP'98),

Chicago, Illinois, USA, 14-17 June 1998.

A Reuse-Oriented Approach for the Construction of

Scenario Based Methods

V. Plihon*, J. Ralyté** , A. Benjamen** , N.A.M. Maiden+, A. Sutcliffe+, E. Dubois#, P. Heymans#

*GECT University of Toulon Var BP 132 83957 La Garde Cedex France plihon@univ-tln.fr
** CRI University of Paris 1 90 rue de Tolbiac 75013 Paris France {ralyte, benjamen}@univ-paris1.fr

+City University Northampton Square London, EC1V 0HB United Kingdom

{N.A.M.Maiden, A.G.Sutcliffe}@cs.city.ac.uk
#FUNDP, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium

{dubois, heymans}@info.fundp.ac.be

Abstract

Despite the recent interest in scenarios, the development
of new methods and tools for Requirements Engineering
integrating scenario based approaches has been limited.
This paper reports on four different processes developed
from research undertaken as part of the CREWS project
which the authors believe will improve scenario use and
make it more systematic. Furthermore CREWS aims to
integrate these approaches into a method for scenario-
based requirements engineering. To achieve this objective
and be able to include existing approaches such as use
case analysis we develop a component based approach
which reflects a shift towards a reuse-centric approach to
method engineering. The paper presents CREWS method
and meta-method knowledge through the implementation
of an SGML database to store, retrieve and dynamically
compose chunks of CREWS processes.

Keywords

Method Engineering, Process, Reuse, Requirements
Engineering, Scenario, Method Construction.

1. Introduction

There has been considerable recent interest in the use
of scenarios to acquire and validate system requirements.
However, few processes, methods or software tools are
available to achieve systematic scenario use, or even to
generate useful scenarios in the first place. A recent
analysis of scenario use by practitioners reveals that
current commercial methods and software tools provide
insufficient and unsystematic guidance [30]. This paper
presents four different processes developed from research
undertaken as part of the ESPRIT IV 21903 'CREWS'
(Cooperative Requirements Engineering With Scenarios)
reactive long-term research project which the authors
believe will improve scenario use and make it more
systematic. The paper also describes how these four
processes have been synthesised together and integrated
with processes developed outside CREWS into a more
complete and integrated process for scenario-based
requirements engineering. The paper ends with lessons
learned for modelling large-scale software engineering
processes, and in particular advantages from a more
component-oriented approach to process modelling.

Despite the recent interest in scenarios, development
of new methods and tools has been limited to a small
number of academic institutions (e.g. [17]), research-
oriented organisations (e.g. [8]), consultancies (e.g. [8])
and method vendors (e.g. [10]). Current software tools
provide little prescriptive guidance for scenario use. To
remedy this, CREWS aims to make scenario-based
requirements acquisition and validation more systematic
and hence more useful, widespread and cost-effective. It
proposes four approaches which are being developed and
evaluated in parallel: requirements acquisition from real-
world scenes; acquiring requirements from natural
language scenario descriptions [21]; systematic scenario
generation and use to validate requirements [14], and
scenario animation to validate requirements [9].

Furthermore, CREWS aims to integrate these
approaches into a method for scenario-based requirements
engineering. It draws on the ESPRIT 6353 'NATURE'
basic research action's integration of different process
modelling approaches into a comprehensive modelling
framework [22]. However, NATURE lacked guidelines for
integrating process chunks, deciding the granularity of
these chunks, guiding and tracing the process, and
defining standards for process chunks. CREWS, through
the development of its method base, will have to develop
new guidelines to overcome omissions in the NATURE
framework.

This paper presents extensions to the NATURE
framework to meet the needs of CREWS. It presents
CREWS's method and method meta-knowledge through an
implementation of an SGML database to store, retrieve and
dynamically compose chunks of CREWS processes.
Section 2 presents the CREWS approaches for guiding the
different uses of scenarios during the acquisition and
validation of systems requirements. Section 3 introduces
the notion of a process chunk and chunk descriptor,
presents the SGML structure of a chunk, and gives several
examples of process chunks. Section 4 presents the
CREWS process glossary to provide a basis for consistent
description of process chunks. Section 5 presents the
hierarchical organisation of the process chunks to facilitate
chunk retrieval and composition. Section 6 presents how
the four processes have been synthesised together and
integrated with processes developed outside CREWS into a
more complete and integrated process for scenario-based
requirements engineering. Section 7 concludes the paper
and discusses future problems to be overcome to produce
an effective method for scenario-based requirements
engineering.

2. The CREWS Approaches

The four CREWS approaches guide the different uses
of scenarios during the acquisition and validation of system
requirements. Two approaches guide requirements
acquisition. Existing approaches do not give method
guidance to represent rich descriptions, or scenes, of
current system use and transform these descriptions into
conceptual models. Therefore, the first approach guides co-
operative elicitation of system requirements from scenes
recorded in multimedia representations such as video
footage and audio recordings, to elicit different types of
model and system requirement from these representations.
A method and prototype multi-media software tool
supports this process. The second approach guides the
semi-automatic extraction of system requirements from
natural language descriptions of scenarios and use cases.
The process encourages an author to use CREWS style and
content guidelines when writing a use case/scenario to
ensure both its completeness and correctness, as well as
making the use case/scenario amenable to computational
analysis. A software tool then applies a set of case frames
to the use case/scenario description to extract candidate
agents, objects, actions and system requirements.

The other two approaches guide requirements
validation. Scenarios provide useful 'test scripts' for a
requirements specification, however there is a lack of
process guidance for systematic scenario generation and
use. The third approach provides a method and software
tool to generate useful scenarios then walk users through
these scenarios, as well as to semi-automate the detection
of missing or incorrect system requirements through
computational analysis of these scenarios. The fourth
process validates system requirements through the
animation of scenarios derived from a formal specification
of the system. This language is compatible with the
ALBERT agent-based requirements modelling language,
thus enabling easy inter-linking of requirements
specifications, declarative non-deterministic scenario
scripts and deterministic scenario execution traces as a
basis for requirements animation and hence validation.
This approach is also supported by a software tool.

One of the strengths of the four CREWS approaches
is that they have been designed to complement each other.
As a result, CREWS can offer a coherent scenario-based
requirements engineering method with different techniques
and software tools to achieve each process. Furthermore,
this method also includes existing approaches such as use
case analysis [10] and notations such as the UML [27].
Indeed, it is imperative to link it to existing methods to fill
the gaps between the CREWS processes, or even to

complement them such as through the application of
CREWS use case authoring guidelines in the OOSE
approach [10]. This shift towards a more 'component-
based' process model reflects a wider shift in software
engineering towards a more reuse-centric approach to
systems engineering. Reusable process knowledge is bite-
size rather than large-scale, reflecting the nature of human
expertise. The development of such a method will, we
hope, enable CREWS to evaluate its approaches on large-
scale case studies.

However, several issues need to be resolved if we are
to integrate approaches into an effective method. Three
specific questions which the research reported in this paper
addressed are: (i) what is the most effective size of reusable
process chunks, (ii) how should we represent these chunks
to facilitate reuse, and (iii) how should we organise these
chunks to facilitate reuse ? In answering these questions,
the CREWS method comprises: (i) definitions of a
scenario-based approach as a collection of process chunks
made available in the method base, (ii) glossaries to
harmonise the terms used to describe these process chunks
and to facilitate the retrieval queries formulation, and (iii)
hierarchical organisation of these chunks to facilitate their
retrieval.

The CREWS method base stores both method
knowledge (i.e. the contents of the method chunk) and
method meta-knowledge (i.e. the context in which to use
the chunk) in tightly-coupled descriptions of each process
chunk. The description of each chunk is faceted [19] and
close to that of [2]. Each process chunk is described using
the SGML (Standard Generalised Mark-up Language).
The two knowledge levels of the method base are parts of
the same SGML document in order to facilitate their joint
manipulation. Our motivation for using SGML has been on
the one hand, its ability to represent hyper-text documents
and on the other hand, the availability of SgmlQL which is
an SQL like language tailored to query SGML documents.
The next section describes the SGML descriptions of the
process chunks in more detail.

3. The structure of the CREWS method base

3.1 Overview of the structure of the CREWS
method base

Figure 1 gives an overview of the knowledge stored
about each process chunk in the CREWS method base. The
chunk body is the description of the scenario-based process
itself. The chunk interface describes preconditions which

control the application of the chunk (e.g. actors who must
be involved in the process), the current situation which is
the input to the process chunk (e.g. the current state of the
'scenario' product) and the intention or goal that the chunk
of process achieves (e.g. to validate system requirements).
The chunk body and interface constitute the reusable
knowledge about the process itself which is delivered to the
person who enacts the process chunk. In contrast, meta-
knowledge about reuse of the process chunk is in the chunk
descriptor. It describes the design activities which the
process chunk achieves (the situation part) and the design
intention that can be supported by the scenario chunk (the
intention part). This partial duplication of knowledge about
the chunk's situation and intention is purposeful, because it
enables to distinguish between the conditions of
applicability of the chunk and the conditions under which
it is reusable in design activities.

Chunk
Body

Chunk interface

Chunk descriptorMethod meta-knowledge level

Method knowledge level

Chunk reusability

Chunk applicability

Chunk internal

Figure 1: Chunk overview

3.2 The SGML structure of the CREWS method
base

The SGML (Standard Generalised Mark-up
Language) [7] is an international standard language to
describe a document using a set of mark ups. SGML
documents are structured as trees. SGML's query language,
SgmlQL [12] enables a user to query the SGML method
base. SGML uses the notion of composition to relate its
elements. The root of the CREWS method base is the
element DESCRIPTIONS which represents a collection of
DESCRIPTIONs. The element DESCRIPTION is itself
characterised by a METHOD_KNOWLEDGE_LEVEL
and a KNOWLEDGE_ LEVEL which are composed of a
DESCRIPTOR and of a CHUNK respectively. A chunk is
considered as atomic when it reaches an intention which
cannot be decomposed into more detailed intentions, on the
contrary it is called composed. The SGML structure of the
CREWS method base is the tree presented in Figure 2 .

DESCRIPTIONS

DESCRIPTION*

CHUNK

META_KNOWLEDGE_LEVEL

DESCRIPTOR

KNOWLEDGE_LEVEL

Figure 2: The top levels of the CREWS method base

3.2.1 The structure of a chunk. Our definition of a
scenario chunk is based on the process view of the
NATURE process modelling formalism [22], [15] and
consistent with the notion of ‘step’ in [29]. According to
this view a process transforms an initial situation into a
result which is the target of the intention of the chunk. The
situation represents the part of the product undergoing the
process and the intention reflects the goal to be achieved in
this situation. The target of the intention is the result
produced by the process execution. As the target is
embedded in the intention, this leads to the
characterisation of a process by a <situation, intention>
couple which is called context.

Several advantages of the NATURE formalism are
discussed in [16]. As an example we can precise that the
NATURE formalism allows to describe in a modular way
chunks belonging to several levels of granularity , using a
situational/intentional paradigm. The notion of choice used
in NATURE allows to provide flexible guidelines to
achieve a certain intention, and finally, the chunks can be
formally described using a context algebra based on a
rational language.

CHUNK

INTERFACE

CHUNK_SITUATION

PRODUCT_PART*

CHUNK_INTENTION

BODY

PRODUCT

Name
Graphical_Representation
Informal_Description
Example

OCCURENCE_

CONDITION?

VERB
TARGET

GUIDELINE

SIMPLE
MANNER

Type
scenario-based

Role
result

Problem Statement
Elicit

scenario

using CREWSauthoring
guidelines

Figure 3: The Sgml scenario chunk structure

Following the NATURE view, a chunk has two parts
(Figure 3): its INTERFACE which is the couple
<CHUNK_SITUATION, CHUNK_INTENTION> and a
BODY. We chose these designations by analogy with object
descriptions in object oriented approaches. The interface is
the visible part of the chunk. It tells us in which situation
and for which intention the chunk is applicable. The body
explains how to proceed to fulfil the intention in that
particular situation. The body provides guidelines
(GUIDELINE) to guide the process and relates the process
to the product parts (PRODUCT) involved. For example,
the interface of the scenario chunk which describes how to
elicit a scenario using CREWS's author guidelines is the
couple <(Problem Statement), Elicit scenario using
CREWS authoring guidelines>, where the situation is
defined by a product which is a problem statement, and the
intention, to elicit scenario using authoring guidelines,

uses information in this problem statement as input to the
process. The target of the chunk of process, scenario,
defines the result produced by the application of the chunk.
The chunk's body describes how to define a use case out
from the problem statement. Other attributes of a process
chunk are unique name, graphical representation of the
process and informal description. It is also possible to
define examples of the process application.

The situation defined in the chunk interface
(CHUNK_SITUATION) is composed of one or several
product parts referenced by PRODUCT_PART* in the
SGML tree, and an occurrence condition
(OCCURRENCE_CONDITION) which is optional. All
these elements are strings (#PCDATA).

The intention is described [18] in terms of a verb, a
target (the product resulting from an application of the
process chunk) and a manner (which describes how the
intention is achieved). Examples of manners include ‘one-
shot refinement’, ‘stepwise strategy’, ‘using authoring
guidelines’. Each target product part can either be an
object or a result. An object already exists in the situation
whereas a result indicates that the product is produced by
the process. ‘Refine scenario’, is an example of intention
in which the target ‘scenario’ is an object because it is
defined in the situation whereas ‘Elicit scenario’ is an
example where the target ‘scenario’ is a result. It is
developed during the execution of this intention. The
precise notation of these intentions is as follows :

Refine (scenario)Obj, and

Elicit (scenario)Res (using CREWS authoring
guidelines)Man.

This process chunk definition can be applied to model
different types of software engineering method. However,
the focus of CREWS is scenario-based requirements
engineering, so often the situation or the target of the
intention will make reference to products which are use
cases or scenarios.

The body of a process chunk is decomposed into the
product part and the guideline part. The product
(PRODUCT) is characterised by a name, an informal
description, an example of instantiation of the product and
a reference to a graphical representation which is a picture
stored in the SGML document. For sake of clarity, this
attributes have not been represented on the above figure.
The guideline (GUIDELINE) can be either represented by
an informal description (INFORMAL_DESCRIPTION) or
by a set of links (LINK*) depending on whether the chunk
is informal or not. The body of a formal chunk is described
following the NATURE approach, detailed examples of
such a description can be found in [23], [25].

The Figure 4 illustrates the interface and the body part
of the scenario chunk referred to with the intention ‘Elicit
scenario using CREWS authoring guidelines’. In this
example the scenario chunk named ‘P13’ helps to fulfil the
intention ‘Elicit scenario’, for a given ‘problem
statement’. The aid provided by the scenario chunk is
stated in the guidelines attached to its body. These
guidelines propose to first write a scenario from the
problem statement either using style guidelines, or using
contents guidelines, or under the control of a word
processor. Then, the scenario may be reviewed in a
clarification step. As stated in the result part of the
intention, the output of the scenario chunk is a textual
scenario.

< Problem Statement ;

Elicit scenario using CREWS authoring guidelines>

Name : P13

Verb : Elicit
Result :scenario
Manner: using CREWS authoring

guidelines

Product Part :
Problem Statement

< Problem Statement ;
write scenario>

<Scenario ;
clarify scenario>

< Problem Statement ;
write scenario

< Problem Statement ;
write scenario

< Problem Statement ;
write scenario

 directly>

Body

Situation

Guidelines :

Intention

using contents guidelines>using style guidelines>

Figure 4: Example of scenario chunk from the CREWS
base

3.2.2 The structure of the descriptor. The process
chunk descriptor describes the meta-level knowledge to
facilitate effective reuse of the chunk. It fulfils for a process
chunk the same role as a meta-class does for a class. We
extend the chunk's interface to structure the meta-
knowledge in the descriptor to enable the retrieval of the
right process chunk to achieve the right intention in the
right situation. As you might expect, a chunk descriptor
has a situation part and an intention part that we consider
in turn, see Figure 5.

DESCRIPTOR_SITUATION DESCRIPTOR_INTENTION

APPLICATION_
DOMAIN

DESIGN_
ACTIVITY

VERB COMPLEX_MANNERTARGET

DESCRIPTOR

Role object
Typenon-scenario-based

Interactive systems
Information systems

Requirement
 acquisition

Acquire system
requirements

VERB
eliciting

TARGET
Scenario

SIMPLE_MANNER

Using CREWS
Authoring
GuidelinesRole result

Typescenario-based
Medium text
Notation informal
Coveragefunctional
Contextsystem interaction ...
Abstractiontype
Life Cycle Spantransient
...

RELATED_CHUNKS

PRED* SUC*

Figure 5: The SGML structure of the chunk descriptor

Indeed, we view the reuse process as being
contextual : a user of the method base is faced to reuse
situations at which he / she looks with some intention in
mind. Therefore , the descriptor seeks to capture in which
situation a scenario chunk can be reused to fulfil which
intention.

The situation part of a descriptor
(DESCRIPTOR_SITUATION) has two attributes. The
application domain attribute defines the domain to which
the chunk is applicable. In the process chunk shown in
figure 4, the chunk to elicit a scenario using CREWS
authoring guidelines applies to Interactive systems or
information systems. The design activity attribute defines
in which process the chunk applies, i.e. requirements
acquisition. A design activity could be defined as a very
general Requirements Engineering intention you try to
fulfil in a certain application domain.

The intention part of a descriptor
(DESCRIPTOR_INTENTION) expresses how the chunk
may participate to the achievement of the design activity.
For example the descriptor intention of the chunk P13 is
‘Acquire system requirements by eliciting scenario using
CREWS authoring guidelines’ as the process of eliciting
scenarios is a means to achieve the design intention to
‘Acquire system requirements’. The descriptor intention is
an expression of the role that a scenario approach can play
in a particular design activity.

The intention part is similar to the intention attribute
in the interface part of the chunk. The intention of the
descriptor is specified by the intention verb, the target of
this intention, but a manner which is a complex manner
(i.e. recursively defined as an intention). For example in
the intention Acquire system requirements by eliciting
scenarios using CREWS authoring guidelines, the manner
(by eliciting scenario using CREWS authoring guidelines)
is recursively defined as an intention (eliciting) with a
result (scenario), a manner (using CREWS authoring
guidelines).

CREWS has defined a glossary of process intentions
which informs the definition of each chunk intention.
However, for the CREWS method, there is one important
addition to an intention. Because the method is
predominately scenario-based, we have refined the target
in the intention using a set of facets which defines
properties of the scenario-based product, for example its
formality, level of abstraction, and the nature of the
interactions described in the scenario [26].

Finally, the descriptor relates the chunk ones which
precede (PRED*) and the ones which follow it (SUC*).

4. The CREWS glossary

One problem with component reuse is semantic
ambiguities in component descriptors (e.g. [20]). A partial
solution for the CREWS method base is a glossary of terms
which describe CREWS's different scenario-based
approaches. The glossary enables a user to search for
scenario chunks using synonyms from the glossary. The
glossary itself has two parts. The first describes process
products, for example "goal", "specification", "scenario"
and "message trace diagram" (a synonym for which is a
"sequence diagram"). The second describes process
intentions, for example "elicit" and "validate". Each term
in the glossary has a definition and synonyms. The current
version has 14 basic terms to describe product parts and 30
terms to describe process intentions.

At the level of the product, one can find terms like
goal, specification, scenario, etc (see the complete list in
the appendix). All terms which are heavily used in the R.E.
community but for which no standard terminology exists.
As an example of definition, we can consider the following
one :

Elicit : the process of systematically
obtaining from people new facts (scenarios,
requirements) about the domain / business
processes / the system under consideration ; (Syn)
to acquire, to discover, to capture.

Because of the complexity of the part dedicated to
intentions (see the Appendix), we have decided to structure
them according to a hierarchy of intentions. This hierarchy
has been defined by distinguishing among the different
types of intentions one can have when undertaking an RE
activity. We have considered five types of intentions
(namely Elicit, Conceptualise, Document, Verify, Validate)
and created the corresponding entries in the glossary. Elicit
is presented above and the four other intentions are listed
below with their associated definitions :

Conceptualise : the process of systematically
abstracting (existing or envisaged) real-world
phenomena into models which highlight the
essential aspects and hide the unimportant details
(relative to the viewpoint taken) ; (Syn) to model,
to abstract.

Document : as opposed to ‘to conceptualise’,
write down the product of activities such as
analyse, compare, change, etc. (Syn) to describe,
to specify, to record, to write.

Verify : to get the product right ; (Syn) to
attest, to check.

Validate : to process of checking against
stakeholders that the right product is being built ;
(Syn) test, quality assure.

The rest of the intention part of the CREWS glossary
is made of terms denoting intentions corresponding to
basic activities. These terms, themselves, cannot be
attached to a single high-level term type that they
specialise. For example, the lower-level term 'to compose',
whose the definition is the following,

Compose : (to be composed of) to be formed
of a group of parts ; (Syn) to assemble, to
aggregate, to integrate, to combine.

could be used to denote intentions which specialise
e.g. 'conceptualise' (like composing objects to form
aggregations) or 'document' (like composing text and
images to make an illustrated document). But, as we have
seen in the previous section, writing an intention (either of
the chunk itself or its descriptor) requires more than just a
term : it requires the term, plus a result, plus a manner in
which the result should be obtained. This manner can in
turn be complex and again decomposed in the same way as
an intention. This helps make the expression of the
intention more precise. For example, one of the partners of
the CREWS project has a chunk whose intention is
Conceptualise (System Requirements)Res (by Creating
(Albert Specification)Res (using Generic Method)Man)Man.
This intention specialises the 'Conceptualise' intention
type.

An important benefit of writing intentions that
specialise only one of the five types of intentions is that
this gives us a criteria to determine the size of chunks :
chunks that denote activities pertaining to more that one of
the five activity types should be split into lower level
chunks. In the next section, we present how the chunks are
organised according to these five types.

In the previous section, the overall structure of chunks
was presented and indicated how to write and use them. At
that level, the impact of the CREWS glossary is the
following :

• for the chunk producer, the interface and the
descriptor of the chunk has to be written by using
the entries defined in the glossary ;

• for the chunk users, they can select the desired
chunks on the basis of the basic entries or of their
synonyms which enrich the questioning of the
database.

5. Hierarchical indexing of the CREWS
chunks

In order to facilitate the retrieval of chunks from the
repository it is useful to index the collection of chunks by a
hierarchy of intentions. This conforms to practice in Object
Orientation [11]. Figure 6 shows the top level of the
CREWS hierarchy whereas figures 7, 8, 9 and 10 relate
each of the five key requirements engineering intentions to
the available CREWS chunks.

Requirements
Engineering

Intention

Elicit Conceptualise Document ValidateVerify

Figure 6: Top level of the CREWS hierarchy of RE
intentions

For example Figure 7 shows that the ‘Elicit ’ intention
may have four different targets, namely , scenario, use
case, goal, and requirements. This leads to the four sub-
intentions, ‘Elicit scenario’, ‘Elicit use case’, ‘Elicit goal’
and ‘Elicit requirements’. For each of these ‘Elicit’ sub-
intentions, CREWS proposes a number of chunks
corresponding to the different CREWS approaches to
fulfilling the intention. Each of them is introduced in the
hierarchy by an associated manner. For example there are
five different manners to ‘Elicit scenario’. The
corresponding processes are captured in chunks 1 (C1), 2
(P13), 3 (P1), 4 (C2), and 5 (A1). Chunks 2 and 3 support
scenario authoring through style and contents guidelines
displayed by L’ECRITOIRE software tool environment
whereas chunk 1 provides simple word processing
facilities. In chunk 4, scenarios are generated and filtered
automatically from use case descriptions by the CREWS -
SAVRE environment.

Elicit

Elicit
use case

Elicit
goal

Elicit
requirements

using
CS heuristics

using
CS heuristics

using
authoring guidelines

using
authoring guidelines

by goal
structure analysis

by goal
structure analysis

using
refinement rules

using
refinement rules

using
composition rules

using
composition rules

using
alternative rules

using
alternative rules

by cooperative
decision making

by cooperative
decision making

using CS
 heuristics

using CS
 heuristics

Elicit
scenario

using ACRE
method

using ACRE
method

using CREWS
authoring
guidelines

using CREWS
authoring
guidelines

in full prose
in full prose

by CS generation
by CS generation

by observing
real world scenes

by observing
real world scenes

by observing
real world scenes

by observing
real world scenes

P13

C1

P1

C2

A1

C3

C4

P2

P3

P4

P5

A2

P6

C5

Figure 7: Hierarchy of the CREWS chunks for the ‘Elicit’
intention

Similarly, the hierarchies in Figure 8, 9 and 10 show
which chunks are made available in the CREWS base to
contribute respectively to the intentions ‘Conceptualise’,
‘Document’, ‘ Verify’ and ‘Validate’.

Conceptualise

Conceptualise
scenario

using
linguistic devices

using
linguistic devices

using
abstraction guides

using
abstraction guides

Conceptualise
goal

using
modelling technique

using
modelling technique

using
linguistic template

using
linguistic template

Conceptualise
use case

 by integrating
 scenarios

 by integrating
 scenarios

using
CS tool

using
CS tool

Conceptualise
requirements

asking
typical questions

asking
typical questions

P7

A3

P8

C6

A4

P9

N1

Figure 8: Hierarchy of the CREWS chunks for the
‘Conceptualise’ intention

Document

Document
scenario

Document
use case

by capturing
decisions and

position argument

by capturing
decisions and

position arguments

using
CS and Req Pro tool

using
CS and Req Pro tool

A6 C10

Figure 9: Hierarchy of the CREWS chunks for the
‘Document’ intention

Verify

Verify
scenario

Verify
use case

Verify
requirements

using
completion rules

using
completion rules

disambiguating
anaphoric references

disambiguating
anaphoric references

using
CS meta model

using
CS meta model

using
Albert language checker

using
Albert language checker

through
proof

through
proof

checking
terminology

checking
terminology

Validate

Validate
 requirements

 by animation
 by animation

using
use cases

using
use cases

Validate
 goal

by negociating
by negociating

by comparing
scenes and

observations

by comparing
scenes and

observations

using
scenarios

using
scenarios

P10

P11

P12

C7

N2

N3

A4

A5

N4

C8

C9

Figure 10: hierarchy of the CREWS chunks for the
‘Verify’ and ‘Validate’ intentions

The hierarchy of intentions provides a mean to browse
over the contents of the method base. It therefore facilitates
the retrieval of the chunks matching the requirements of
the method base user, i.e. the method engineer.

It is complementary to the query facilities provided by
the SgmlQL language which allows the user to retrieve
chunks on the basis of the information provided by the
descriptors. This will be illustrated in the next section.

6. Developing RE processes through the
composition of chunks

Requirements Engineering processes can be developed
by selecting and composing the different chunks made
available in the chunk method base. This activity is
supported by the information contained in the glossary and
in the hierarchy presented in the previous section.

In this section, we will first illustrate the result of this
activity by presenting a specific global RE process defined
for some application development. Then, for a fragment of
this global process, we will show how it has been
constructed by using tools for retrieving and composing
chunks.

6.1 An example of RE process

The proposed RE process is inspired from the
experience that some of the authors got in the context of
the Esprit 2RARE project, a project where was studied the
use of novel requirements techniques in the context of two
trial industrial applications. One of the two applications
was related to the development of a Video-on-Demand
system where the basic issues were concerning (i) the
clarification of unstructured and poorly expressed
requirements and (ii) the use of techniques supporting the
detection of missing requirements. More details about the
application context can be found in [31] together with
some details on the semi-formal (like, ERA) and formal
(the Albert language) techniques used.

Conceptualise
(using rigorous
notation)Man Conceptualise

(asking typical
question)Man

Document
(by paraphrasing) Man

Validate
(by animation)Man

miscellaneous sources

of in
formation NL requirements

NL scenarios
use ca

se scenario

function hierarchy

ERA model

traces

Albert
specification

requirements
document

sce
nario

Conceptualise
(by structuring)Man

Conceptualise
(using linguistic
devices)Man

Conceptualise
(by integrating
scenarios)Man

Conceptualise
(using
CS Tool)Man

Figure 11: application of the 2RARE project

Figure 11 presents the whole enriched RE process that
could be applied for the development of this application.
This process is partly based on different available chunks
defined by the CREWS participants (see P7, P8, C6, N1,
N4 in figures 8 and 9).

• The inputs of the ‘Document by structuring’ chunk
are all the various unstructured sources of information
collected from the different stakeholders. The
objective is to somehow structure these pieces of
information by distinguishing among informal texts
related to requirements and those related to scenarios.

• From the informal texts related to requirements, the
chunk ‘Conceptualise using rigorous notation’ aims
at producing semi-formal models, namely an ERA
diagram related to the data structure and a functional
hierarchy diagram related to the static part of the
functions. This chunk is clearly a composed chunk
since it is composed by finer chunks associated with
the two semi-formal notations used.

• The ‘Conceptualise using linguistic devices’ chunk,
denoted as P7 in figure 8, has the objective to clarify
and achieve a better quality for the informal scenarios
proposed. The use of linguistic techniques together
with the application of appropriate heuristics leads to
the formalisation of scenarios and their integration
into use-cases [21]. This chunk is a composed one
made of finer chunks introduced in the previous
section.

• The ‘Conceptualise by integrating scenarios’ chunk,
denoted as P8 in figure 8, has the objective to
integrate several scenarios in order to conceptualise a
use case.

• The ‘Conceptualise using CS tool’ chunk, denoted as
C6 in figure 8, has the use-cases produced by the
previous chunk as an input. This elementary chunk
(see previous section) has for objective the generation
of a set of complete and correct scenarios.

• The ‘Conceptualise asking typical questions’ chunk,
denoted as N1 in figure 8, is a basic chunk taking
different semi-formal models as input and

transforming them (using heuristics and additional
stakeholders pieces of information) into Albert formal
descriptions. Albert is a formal requirements
specification language designed for the purpose of
capturing requirements inherent to real-time
distributed systems [5].

• The ‘Validate by animation’ basic chunk, denoted as
N4 in figure 9, starts from the Albert formal
requirements specification and proposes to the
stakeholders to interactively and co-operatively use a
tool (the so-called animator) in order to explore
different possible behaviours (or traces) of the future
system allowed by the formal requirements [4].

• Finally, the ‘Document by paraphrasing’ basic chunk
aims at the paraphrasing of the formal Albert
specification into its natural language counterpart
which constitutes the requirements document. This
document should necessarily be written in natural
language because of the variety of stakeholders who
have to read it.

6.2 Elaborating an RE process

Figure 11 shows the result of the method engineering
activity. In this subsection, we give some flavours about
how this final result has been obtained. Considering a
subpart of the process, we exemplify the retrieval of
scenario chunks from the chunk method base and their
assembly.

One of the basic constraint in the trial application was
related to the use of a formal requirements specification
language, namely the Albert language. On the other hand,
from the beginning, this was clear that the inputs were
badly structured texts associated with the descriptions of
requirements scenarios. To summarise, the basic situation
is depicted as in the Figure 12 below.

NL requirements

NL scenarios

Albert
specification

?

Figure 12: The basic situation of the RE process

Being driven by this need for formal requirements,
one can apply a SgmlQL query on the chunk method base
in order to retrieve the possible chunks leading to an
Albert specification :
Select text($i) . « \n »
from $c in every CHUNK within $Crewsfile,
 $i in every CHUNK_INTENTION within $c,

 $t in every TARGET within $i
where text($t) match « Albert specification » ;

The unique result of the query (Conceptualise
requirements asking typical questions) is incorporated in
the process under construction (see Figure 13 below).

NL requirements

NL scenarios

Albert
specificationConceptualise

(asking typical
questions)Man

 scenario

N1

Figure 13 : The RE process resulting of the first query

Now, focusing our attention on the scenario inputs
(i.e. on the product parts of the situation), we can query the
chunk base in order to identify potential chunks satisfying
the condition.
Select text($i). « \n »
from $d in every DESCRIPTION within $Crewsfile,
 $descro in every DESCRIPTOR within $d,
 $dom in every DOMAIN within $descro,
 $da in every DESIGN_ACTIVITY within $descro,
 $cm in every COMPLEX_MANNER within $descro,
 $t in every TARGET within $cm
 $c in every CHUNK within $d,
 $i in every CHUNK_INTENTION within $c,
 $v in every VERB within $i
where ((text($dom) match « interactive system »)

and (text($da) match « requirements acquisition »)
and (text($t) match « scenario »)
and ((text($v) match « conceptualise »)

or (text($v) match « elicit »))
and (text($t->Role) eq «object»)
and (text($t->Notation) eq « Semi-formal »)
and (text($t-> Coverage) eq « Functional »)
and (text($t->Context) eq « System interaction »)) ;

Obviously, there are too many chunks satisfying the
condition (Elicit scenario using ACRE method (C1), Elicit
scenario using CREWS authoring guidelines (P13), Elicit
scenario by CS generation (C2), Elicit scenario by
observing real world scenes (A1), Conceptualise scenario
using linguistic devices (P7), Conceptualise scenario using
abstraction guides (A3)), and this is difficult to decide for
one chunk rather than for another. As an alternative
strategy, one may prefer to start from the NL scenarios
descriptions considered as an input of a chunk.
Select text($i) . « \n »
from $d in every DESCRIPTION within $Crewsfile,
 $descro in every DESCRIPTOR within $d,
 $dom in every DOMAIN within $descro,
 $da in every DESIGN_ACTIVITY within $descro,
 $cm in every COMPLEX_MANNER within $descro,
 $t in every TARGET within $cm,
 $c in every CHUNK within $d,
 $i in every CHUNK_INTENTION within $c,

 $v in every VERB within $i,
 $pp in every PRODUCT_PART within $c
where ((text($dom) match « interactive system »)

and (text($da) match « requirements acquisition »)
and (text($t) match « scenario »)
and ((text($v) match « conceptualise »)

or (text($v) match « elicit »))
and (text($t->Notation) eq « Informal »)
and (text($t-> Medium) eq « Text »)
and (text($pp) eq « NL scenarios »)) ;

The query results in the ‘Conceptualise scenario
using linguistic devices ’ chunk (P7) and the composed
process is now as shown below (

Figure 14).

NL requirements

NL scenario

Albert
specification

 scenario

function hierarchy, ERA

?Conceptualise
(using linguistic
devices)Man

scenario

P7

Conceptualise
(asking typical

questions)Man

N1

Figure 14 : The RE process resulting of the third query

As the output of the chunk P7 is a scenario, one
possibility could be to simply combine P7 and N1.
However a look to the relationships that P7 has with other
chunks indicates four possibilities P3, P4, P5 and P8 (see
the corresponding query below). The three first help
moving from scenario to goals and are not of interest
whereas P8 supports the integration of scenarios in a single
use case, in a semi-automated way. P8 is selected.
Select text($suc). « \n »
from $d in every DESCRIPTION within $Crewsfile,
 $descro in every DESCRIPTOR within $d,
 $suc in every SUCC within $d,
 $c in every CHUNK within $d,
 $i in every CHUNK_INTENTION within $c
where text($i) match «conceptualise scenario using linguistic
devices » ;

The status of the RE process under construction is
now as depicted in figure 15.

NL requirements

NL scenario

Albert

specification

 scenario?
P7 Conceptualise

(by integrating
scenarios) Man use case

P8
Conceptualise
(using linguistic
devices)Man

Conceptualise
(asking typical

questions)Man

N1

Figure 15 : RE process resulting of the fourth query

The next query will try to identify a chunk having a
use case as input and scenario as output.
Select text($i) . « \n »

from $c in every CHUNK within $Crewsfile,
 $i in every CHUNK_INTENTION within $c,
 $t in every TARGET within $i,
 $v in every VERB within $i,
 $pp in every PRODUCT_PART within $c
where ((text($t) match « scenario »)

and (text($v) match « conceptualise »)
and (text($pp) eq « use case »)) ;

The result of this query is the ‘Conceptualise use case
using CS tool’ chunk (C6) which can be integrated with the
others as depicted in the previous sub-section (see Figure
11).

To overcome the problem of readability of the
SgmlQL queries, for the method engineer which are not
familiar with the SgmlQL formalism, we plant to build a
tool prototype able to automatically perform the authoring
of the most useful queries for retrieving chunks during the
requirements engineering processes development.

7. Discussion

This paper reports the results of preliminary research
within CREWS into a scenario-based requirements
engineering method. The development of this method has
led to advances in two directions. First, the four CREWS
approaches to scenario-based requirements acquisition and
validation have been integrated to provide a partial but
coherent and novel method based of requirements
elicitation from observations from real-world practice,
computational analysis of natural language descriptions of
scenarios and goals to acquire system requirements,
systematic generation and walkthroughs of scenarios to
validate system requirements, and animation of formal
requirement specifications to ensure their correctness and
completeness. Furthermore, the current incomplete
coverage of these four approaches is overcome through
their integration with other existing approaches within the
CREWS method. The second, more important
development is the definition, design and implementation
of a data base of reusable process components which
prescribe how to undertake the CREWS approaches. This
development has implications for defining and delivering
new processes and techniques which complement rather
than replace existing software engineering methods. The
remainder of this section will discuss this second
development.

Our modular approach to process modelling draws
extensively on ideas from software reuse (e.g. [19]). It is a
"white-box" approach because the "reuser", that is the
method engineer, uses the external description of a process
chunk as well as descriptions of its internal contents to

retrieve, understand and apply the process. We believe that
such a white-box approach is effective for method
engineering for several reasons. First, the contents of a
chunk will have to be adapted to fit each new process.
Acquiring, modelling and validating system requirements
are complex processes which can be affected by factors as
diverse as the previous systems development process, the
experience of the requirements engineering team and the
amount of time available to undertake each process (e.g.
[13]). Although the influence of context on the process is
reflected in the situation description of a chunk, it is
impossible to predict and hence describe all influencing
factors. Therefore, processes will often need minor
modification to fit each new situation.

Second, the composition of a coherent process can be
improved by making all three descriptors of each chunk
(the situation, intention and description) available to the
method engineer. Our assumption that minor modifications
to processes are inevitable means that perfect "cohesion"
between any two chunks is unlikely, that is there will be
few perfect "fits" between chunks. However, the likelihood
of a sufficient fit can be increased by a larger number of
chunk facets to provide links between chunks. For
example, two chunks which have a good fit using the
intention and situation facets but not the description facets
can still be composed together in a process, but with the
caveat that changes in the scenario product (the focus of
the description) might be needed.

So far, the application of our method engineering
approach has been limited to the four CREWS approaches
and two of the most common commercial use case-driven
approaches. Further evaluation is still needed to
demonstrate its potential effectiveness. However, the
experiences of the authors within CREWS indicate that the
approach is viable. One of the most critical problems to
overcome is composition of process chunks into a method.
The example reported in section 6 demonstrates that the
CREWS chunks can be linked together in a meaningful
way. Indeed, within CREWS, the acts of defining our
approaches using a common form of description and
comparing these descriptions enabled the authors to
identify previously unforeseen overlaps between the
approaches which has led to greater method and software
tool integration between them.

Further work is needed to evaluate the structure and
glossaries for defining each process chunk. To achieve this,
we will model reported "good practice" with scenarios for
acquiring, modelling and validating systems requirements
(e.g. [17]). We anticipate that this will led to extension and
refinement of the CREWS process chunks as well as the
way to describe them. One specific tactic for evaluating the

current contents of the CREWS method base is to make
them available for public access and critiquing using the
internet. The SGML data base is configurable for Internet
access. Not only will this enable the authors to elicit
constructive criticism of their approaches from a large
population, but it will also provide the starting point for a
living repository of expertise and experience reports about
scenario reuse that the academic and practitioner
communities can reference and contribute to over time. We
look forward to reporting on the base and feedback on its
contents in the near future.

The description of process chunks in SGML provides
a starting point to enact processes (e.g. [3], [6]) through
formalisation of the description of each process in a chunk.
We believe that the modularisation of processes through
chunks makes the formalisation and hence enactment of
processes more feasible due to the reduction size and
removal of contextual factors from each chunk process.
Future research will be in two parts. The first will be to
model each chunk of process using a process modelling
formalism ([22], [28]) to enable its enactment. The second
will be to define composition formalism to enable
enactment of more than one chunk in a single process. The
way we envision this is based on a meta-process to guide
the construction of the integrated process expressed with
the same process modelling formalism as the one used for
process chunks. Therefore the global process shall be
enacted « on the fly » using single enactment mechanism.
Our long-term goal is complete process enactment through
"real-time" composition of a tailored requirements
engineering method from reusable process chunks. The
achievement of this goal, the authors believe, will be a
significant step towards adaptive and scaleable approaches
to guiding the systems development process.

Acknowledgement : This paper was prepared as part of
work package W2 of the CREWS project. The CREWS
team includes in addition to the authors of this paper : C.
Rolland as leader of the work package, C. Ben Achour, M.
Jarke, K.Pohl, P. Haumer, and S. Minocha.

References :

[1] A. Cockburn, Structuring use cases with goals. Technical
report. Human and Technology, 7691 Dell Rd, Salt Lake City,
UT 84121, HaT.TR.95.1,
http://members.aol.com/acocburn/papers/usecases.htm (1995).

[2] : V. De-Antonellis., B. Pernici, P. Samarati, F-ORM
METHOD : A Methodology for Reusing Specification, In Object

Oriented Approach in Information Systems, Van Assche F.,
Moulin b., Rolland C. (eds), North Holland, 1991

[3] M. Dowson, Software Process Themes and Issues, Proc. of the
2nd Int. IEEE Conf. on Software Process, Berlin, Germany , pp
28-40, 1993.

[4] : E. Dubois and P. Heymans, Scenario-Based Techniques for
Supporting the Elaboration and the Validation of Formal
Requirements. CREWS Report, University of Namur, 1998.

[5]. : P. Du Bois, E. Dubois and J.M. Zeippen, On the use of a
formal RE language: the generalized railroad crossing problem.
Proc. of the IEEE International Symposium on Requirements
Engineering (RE'97), Annapolis MD, January 1997, pp. 128-137,
IEEE Computer Society Press

[6] A. Finkelstein, J. Kramer, B. Nuseibeh (eds), Software
Process Modelling and Technology, John Wiley, 1994

[7] : C. F. Goldfarb, The SGML Handbook , Oxford Clarendon
Press, 1990.

 [8] : P. A. Gough, F. T. Fodemski, S. A. Higgins, S. J. Ray,
Scenario - an industrial Case Study and Hypermedia
Enhancements», Second IEEE International Symposium On
Requirements Engineering, 1995.

[9] : P. Heymans, Some toughts about the animation of formal
specifications written in the ALBERT language , Proceedings of
the Doctoral Consortium of the 3rd IEEE International
Symposium on Requirements Engineering (RE’97), Annapolis,
MD, USA, January 6-10, 1997.

[10] I. Jacobson, M. Christerson, P. Jonsson and G. Oevergaard,
 Object Oriented Software Engineering: a Use Case Driven
Approach , (Addison-Wesley, 1992).

[11] : Kang K., Cohen S., Hess J., Novak W., Peterson S.,
Feature-oriented domain analysis (FODA) feasibility study
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, 1990

[12] : J. Lemaitre, E. Murisasco, M. Rolbert, SgmlQL, « Un
langage d'interrogation de documents SGML », Proceedings of

the 11th conference on Advanced DataBases, August 1995,
Nancy, France.

[13] : N.AN. M. Maiden, G. Rugg, ACRE : A Framework for
Requirements Acquisition Methods. Software Engineering
Journal 11(1) , Jan 96

[14] : N.A.M. Maiden, S. Minocha, K. Manning, M. Ryan,
CREWS-SAVRE : systematic Scenario Generation and Use. Third
International Conference on Requirements Engineering
(ICRE’98), Colorado-Springs, USA, 1998.

[15] V. Plihon, C. Rolland, Modelling Ways of Working. Proc. Of
the 7th International Conference on Advanced Information
Systems Engineering, CAiSE’95, Springer Verlag, 1995.

[16] V. Plihon, Un environnement pour l’ingénierie des
méthodes, PhD thesis, Jan 1996.

[17] C. Potts, K. Takahashi, A.I. Anton, Inquiry-based
requirements analysis. In IEEE Software 11(2), pp. 21-32, 1994.

[18] N. Prat, Goal formalisation and classification for
requirements engineering. Proceedings of the Third International
Workshop on Requirements Engineering: Foundations of
Software Quality REFSQ’97, Barcelona, pp. 145-156, June 1997.

[19] : R. Prieto-Diaz, P. Freeman, « Classifying Software for
Reusability», IEEE Software, Vol 4 No 1, 1987.

[20] Prieto-Diaz R., "Implementing Faceted Classification for
Software Reuse", Communications of the ACM, Vol.34, No.5,
May 1991.

[21] C. Rolland, C. Ben Achour, Guiding the construction of
textual use case specifications. Data and Knowledge Engineering
Journal, 1997.

[22] C. Rolland, G. Grosz, A General Framework for Describing
the Requirements Engineering Process , IEEE Conference on
Systems, Man and Cybernetics, CSMC94 , San Antonio, Texas,
1994.

[23] C. Rolland, V. Plihon, Using generic chunks to generate
process model fragments. Proceedings of the 2nd International
Conference on Requirements Engineering, ICRE’96, Colorado
Springs, 1996.

[24] C. Rolland, C. Souveyet, M. Moreno, An Approach for
defining Ways of Working. Information Systems, Vol 20, No 4,
pp337-359, 1995.

[25] : C. Rolland, V. Plihon, J. Ralyte, Specifying the reuse
context of Scenario Method Chunks , Paper accepted to the
Conference on Advanced System Engineering (CAISE’98), 1998.

[26] : C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A.
Sutcliffe, N.A.M. Maiden, M. Jarke, P. Haumer, K. Pohl,
Dubois, P. Heymans, A proposal for a scenario classification
framework. Requirements Engineering Journal 3 :1, 1998.

[27] : J. Rumbaugh, G. Booch, «Unified Method », Notation
Summary Version 0.8 (Rational Software Corporation, 1996).

[28] S. Si-Said, C. Rolland, G. Grosz, MENTOR :A Computer
Aided Requirements Engineering Environment, in Proceedings of
CAiSE' 96, Crete, GREECE, May 1996.

[29] : B. Thomé, Systems Engineering : Principles and Practice
of Computer-based Systems Engineering, in B. Thomé (ed), John
Wiley & Sons (1993).

[30] M. Jarke, K.Pohl, P. Haumer, K. Weidenhaupt, E. Dubois,
P. Heymans, C. Rolland, C. Bena Achour, C. Cauvet, J. Ralyté,
A. Sutcliffe, N.A.M. Maiden, S. Minocha, Scenario Use in
European Software Organizations --- Results from Site Visits and
Questionnaires. CREWS report series 97-10.

[31] R. Wieringa and E. Dubois, Integrating semi-formal and
formal requirements, Information Systems Journal, (to appear),
1998.

Appendix: The CREWS Glossary

At the product level

Animation

Definition : an animation is the creation of a finite set of
finite sequences describing normative or non normative
behaviours of the composite system. While scenarios
focus on the interactions taking place between the system
and its environment, the result of the animation considers
the possible behaviours of the whole composite system
and helps in exploring them.

Behaviour

Definition : a possible behaviour consists in an alternate
sequence (possibly infinite) of states and state transitions,
where :

The state is structured in terms of components and the
values of components stay unchanged between two state
transitions,

The state transitions correspond to the beginning and/or
the ending of actions, called events.

Some behaviours can be considered as more normative
than some other. Thereby, a behaviour can be classified
as normative or non-normative according to the fact it is
considered to include a few or a lot of exceptions.

Episode

Definition : According to Regnell and Potts, on episode is
a « part of a use case representing a demarcated and
coherent flow of events ». They help structure a use case
in manageable units.

Goal

Definition : Goal is a future system state or behaviour to
avoid, maintain, attain, cease, etc.

Synonym: Intention.

Message trace diagram

Definition : a Message Trace Diagram (MTD) is a
graphical way of representing the communication part
associated with scenarios. It exists some extensions
which allow to express also internal actions which widens
their scope from just expressing communication.

Synonyms : sequence diagram.

Open Issue

Definition : result of the RE process.

Problem statement

Definition : something that you say or write about a
situation that causes difficulties.

Product

Definition : a product is the result which remains after the
execution of a process.

Requirement

Definition : Requirement is a change or quality criterion
for some future system (version). We distinguish
functional and non-functional requirements.

Scenario

Definition : At a functional level, a scenario is a
description denoting similar parts of possible behaviours
limited to a subset of purposeful state components,
actions and communications taking place among two or
several agents.

More external (richer) scenarios include information
about roles, responsibilities, organisation policies, ...

Synonyms : contextual scenario.

Scene

Definition : all the things that are happening in a place,
and the effect or situation that they cause.

Specification

Definition : set of behaviours of the system and of its
environment.

Use case

Definition : a use case is defined as a possibly structured
set of scenarios grouped together to achieve a specific
stakeholder goal.

Use case model

Definition : see UML definition [27].

At the process level

Analyse :

Definition : a cognitive activity involving the
decomposition , the structuring and scoping of a
knowledge as well as deducing properties of the thing,
under analysis, e.g. incompleteness, incorrectness, etc.
These RE-specific properties should be quite easy to list.

Synonyms : to understand, to reason about.

Animate

Definition : the interactive process of visualising the
dynamic properties associated with fragments of
normative or non-normative behaviours of the composite
system.

Synonyms : to activate, to simulate.

Change

Definition : to make something or someone different.

Synonyms : to modify.

Compare

Definition : to consider two or more process, product,
requirements, etc. in order to show how they are similar
to or different from each other.

Compose

Definition : (to be composed of) to be formed of a group
of parts.

Synonyms : to assemble, to aggregate, to integrate, to
combine.

Conceptualise

Definition : the process of systematically abstracting
(existing or envisaged) real-world phenomena into
models which highlight the essential aspects and hide the
unimportant details (relative to the viewpoint taken).

Synonyms : to model, to abstract.

Create

Definition : to make something exist that did not exist
before. The process of (semi-) automatically building a
product (scenario, requirements specification, etc.) in
some targeted formalism, starting from a semantic
definition of its content.

Synonyms : to compose, to design, to generate.

Decompose

Definition : the process of partitioning a product/ process/
problem into more manageable units.

Synonyms : to atomise, to partition.

Document

Definition : as opposed to ‘to conceptualise’, write down
the product of activities such as analyse, compare,
change, etc.

Synonyms : to describe, to specify, to record, to write.

Elicit

Definition : the process of systematically obtaining from
people new facts (scenarios, requirements) about the

domain / business processes / the system under
consideration.

Synonyms : to acquire, to discover, to capture.

Envision

Definition : to project what a product will be.

Synonyms : to project, to imagine.

Explain

Definition : to make something clear or easy to
understand, to give a reason for something to someone.

Synonyms : to clarify, to illustrate.

Explore

Definition : the process of envisaging (evaluating)
alternatives, or scope or pathways.

Synonyms : to navigate.

Find

Definition : to achieve or get something that you need.

Synonyms : to achieve, to retrieve.

Gather facts

Definition : from documents.

Synonyms : to collect facts.

Identify

Definition : to recognise and correctly name an element of
a product or of a process; to perceived some coherent
entity of the (existing or envisaged) real-world (or
Universe of discourse) and, optionally, express it as an
element of a product, process, ...

Synonyms : to name.

Negotiate

Definition : the process of integrating different
viewpoints of different stakeholders on a certain topic, in
order to try to reach an agreement of all involved
stakeholders. Involves mediation and reconciliation.

Synonyms : to mediate, to reconcile.

Refine

Definition : the process (more detailed or more precise) of
changing a product (or process) in a systematic way so
that the changed product/process is better (more detailed
or more precise) according to some characteristic than the
former one.

Synonyms : to elaborate, to improve.

Relate

Definition : the process of explicitly defining links
between products between which a semantic or structural
relationship exists.

Synonyms : to associate, to link, to structure, to map.

Remove

Definition : to take something away from the place where
it is.

Synonyms : to delete.

Review

Definition : to examine, consider and judge a product or a
process carefully with respect to completeness and
correctness.

Synonyms : to assess, to evaluate.

Scope

Definition : to draw the boundaries of the system.

Synonyms : to delimit (« the part of the Universe of
Discourse some product, process, requirement, ...refers
to »).

Search

Definition : to try to find a solution to a problem, an
explanation for something, etc.

Synonyms : to explore, to investigate.

Select

Definition : to choose among candidates products or
processes subset by carefully thinking about which is the
best, most suitable, etc. for satisfying a higher-level
intention

Synonyms : to choose.

Sort

Definition : to put things in a particular order or to
arrange them in groups according to size, rank, type, etc.

Synonyms : to prioritise, to rank, to order, to categorise,
to classify.

Suggest

Definition : to provide someone with useful information
with respect to the intention (s)he as to satisfy.

Synonyms : to advise, to recommend.

Trace

Definition : to record and subsequently retrieve
information about the product and process evolution in a
sequential or time-ordered manner.

Synonyms : to record.

Validate

Definition : the process of checking against stakeholders
that the right product is being built.

Synonyms : to test, quality assure.

Verify

Definition : to get the product right.

Synonyms : to attest, to check.

Walk through

Definition : to validate a model in a co-operative setting
using a sequential process that tests components in an
order. The validation is made manually, not in an
automatic manner, it follows a stepwise process for
checking.

Synonyms : to check, to validate.

