CREWS Report Series 98 - 22

A REUSE-ORIENTED APPROACH FOR THE CONSTRUCTION OF
SCENARIO BASED METHODS

ok

V. Plihon’, J. Ralyté”, A. Benjamen,
N.A.M. Maiden®, A. Sutcliffe’, E. Duboig, P. Heyman$

"GECT University of Toulon Var BP 132 83957 La Garde Cedex France plihon@univ-tin.fr
" CRI University of Paris 1 90 rue de Tolbiac 75013 Paris France {ralyte, benjamen}@univ-paris1.fr
*City University Northampton Square London, EC1V OHB United Kingdom
{N.A.M.Maiden, A.G.Sutcliffe}@cs.city.ac.uk
*FUNDP, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
{dubois, heymans}@info.fundp.ac.be

Appeared in the proceedings of the International Software Process Association's
5th International Conference on Software Process (ICSP'98),
Chicago, lllinois, USA, 14-17 June 1998.

A Reuse-Oriented Approach for the Construction of
Scenario Based Methods

V. Plihon, J. Ralyté, A. Benjamen, N.A.M. Maideri, A. Sutclifie’, E. Duboi§, P. Heymaris
"GECT University of Toulon Var BP 132 83957 La Garde Cedex Fralifen@univ-tin.fr
" CRI University of Paris 1 90 rue de Tolbiac 75013 Paris France {ralyte, benjamen}@univ-paris1.fr
*City UniversityNorthampton Square London, EC1V OHB United Kingdom
{N.A.M.Maiden, A.G.Sutcliffe}@cs.city.ac.uk
*FUNDP, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium
{dubois, heymans}@info.fundp.ac.be

Abstract

Despite the recent interest in scenarios, the developméht Introduction

of new methods and tools for Requirements Engineering

integrating scenario based approaches has been limited.

This paper reports on four different processes developed There has been considerable recent interest in the use
from research undertaken as part of the CREWS proje@t scenarios to acquire and validate system requirements.
which the authors believe will improve scenario use aridowever, few processes, methods or software tools are
make it more systematic. Furthermore CREWS aims gyailable to achieve systematic scenario use, or even to
integrate these approaches into a method for scenarigenerate useful scenarios in the first place. A recent

based requirements engineering. To achieve this objecti@Balysis of scenario use by practitioners reveals that
and be able to include existing approaches such as ugdrent commercial methods and software tools provide

case analysis we develop a component based approd@gufficient and unsystematic guidance [30]. This paper

which reflects a shift towards a reuse-centric approach teresents four different processes developed from research
method engineering. The paper presents CREWS methtlertaken as part of the ESPRIT IV 21903 'CREWS'

and meta-method knowledge through the implementatiéRooperative Requirements Engineering With Scenarios)

of an SGML database to store, retrieve and dynamicallgactive long-term research project which the authors
compose chunks of CREWS processes. believe will improve scenario use and make it more

systematic. The paper also describes how these four
processes have been synthesised together and integrated
Keywords with processes developed outside CREWS into a more
complete and integrated process for scenario-based
Method Engineering, Process, Reuse, Requirementguirements engineering. The paper ends with lessons
Engineering, Scenario, Method Construction. learned for modelling large-scale software engineering
processes, and in particular advantages from a more
component-oriented approach to process modelling.

Despite the recent interest in scenarios, development The CREWS Approaches
of new methods and tools has been limited to a small

number of academic institutions (e.g. [17]), research-))
oriented organisations (e.g. [8]), consultancies (e.g. [8]) 1he four CREWS approaches guide the different uses

and method vendors (e.g. [10]). Current software toof scenarios during the acquisition and validation of system

provide little prescriptive guidance for scenario use. TEgduirements. Two approaches guide requirements
remedy this, CREWS aims to make scenario-bas@gauisition. Existing approaches do not give method

requirements acquisition and validation more systemafidance to represent rich descriptions, or scenes, of
and hence more useful, widespread and cost-effective.CH/T€Nt system use and transform these descriptions into
proposes four approaches which are being developed é}g@ceptual m(_)de_ls. Therefore, the flr_st approach guides co-
evaluated in parallel: requirements acquisition from reaPPerative elicitation of system requirements from scenes
world scenes; acquiring requirements from naturdfcorded in multimedia representations such as video
language scenario descriptions [21]; systematic scenaf@9t@ge and audio recordings, to elicit different types of

generation and use to validate requirements [14], afedel and system requirement from these representations.

scenario animation to validate requirements [9]. A method and prototype multi-media software tool
supports this process. The second approach guides the

Furthermore, CREWS aims to integrate thesgemj-automatic extraction of system requirements from
approaches into a method for scenario-based requiremendsural language descriptions of scenarios and use cases.
engineering. It draws on the ESPRIT 6353 'NATUREfhe process encourages an author to use CREWS style and
basic research action's integration of different proceggntent guidelines when writing a use case/scenario to
modelling approaches into a comprehensive modellinghsure both its completeness and correctness, as well as
framework [22]. However, NATURE lacked guidelines formaking the use case/scenario amenable to computational
integrating process chunks, deciding the granularity @halysis. A software tool then applies a set of case frames
these chunks, guiding and tracing the process, ap$lthe use case/scenario description to extract candidate
defining standards for process chunks. CREWS, throu@@entsl ObjeCtS, actions and System requirements_
the development of its method base, will have to develop

new guidelines to overcome omissions in the NATURE _ The other two approaches guide requirements
framework. validation. Scenarios provide useful 'test scripts' for a

requirements specification, however there is a lack of
This paper presents extensions to the NATURBrocess guidance for systematic scenario generation and
framework to meet the needs of CREWS. It presen{fe. The third approach provides a method and software
CREWS's method and method meta-knowledge through gfb| to generate useful scenarios then walk users through
implementation of aGML database to store, retrieve andhese scenarios, as well as to semi-automate the detection
dynamically compose chunks of CREWS processesf missing or incorrect system requirements through
Section 2 presents the CREWS approaches for guiding nputational analysis of these scenarios. The fourth
different uses of scenarios dUring the achiSition arw'ocess validates System requirements through the
validation of systems requirements. Section 3 introducgimation of scenarios derived from a formal specification
the notion of a process chunk and chunk descriptaff the system. This language is compatible with the
presents the SGML structure of a chunk, and gives seveldIBERT agent-based requirements modelling language,
examples of process chunks. Section 4 presents #@s enabling easy inter-linking of requirements
CREWS process glossary to provide a basis for consistepfecifications, ~declarative non-deterministic scenario
description of process chunks. Section 5 presents th&ipts and deterministic scenario execution traces as a
hierarchical Organisation of the process chunks to faC|||taEﬁS|s for requirements animation and hence validation.

chunk retrieval and composition. Section 6 presents hopis approach is also supported by a software tool.
the four processes have been synthesised together and

integrated with processes developed outside CREWS into a ©One of the strengths of the four CREWS approaches
more complete and integrated process for scenario-basednat they have been designed to complement each other.
requirements engineering. Section 7 concludes the pafsr @ result, CREWS can offer a coherent scenario-based
and discusses future problems to be overcome to prodtigguirements engineering method with different techniques

an effective method for scenario-based requiremerﬁé‘d software tools to achieve each process. Furthermore,
engineering. this method also includes existing approaches such as use

case analysis [10] and notations such as the UML [27].
Indeed, it is imperative to link it to existing methods to fill
the gaps between the CREWS processes, or even to

complement them such as through the application obntrol the application of the chunk (e.g. actors who must
CREWS use case authoring guidelines in the OOS#e involved in the process), the current situation which is
approach [10]. This shift towards a more '‘componenthe input to the process chunk (e.g. the current state of the
based' process model reflects a wider shift in softwalgcenario’ product) and the intention or goal that the chunk
engineering towards a more reuse-centric approach dbprocess achieves (e.g. to validate system requirements).
systems engineering. Reusable process knowledge is bitee chunk body and interface constitute the reusable
size rather than large-scale, reflecting the nature of humlamowledge about the process itself which is delivered to the
expertise. The development of such a method will, weerson who enacts the process chunk. In contrast, meta-
hope, enable CREWS to evaluate its approaches on largeewledge about reuse of the process chunk is ichbak
scale case studies. descriptor It describes the design activities which the

However, several issues need to be resolved if we Jprocess chunk achieves (the situation part) and the design

to integrate approaches into an effective method. Thrlen?entlon that can be supported by the scenario chunk (the

specific questions which the research reported in this pa ftention part). This partial duplication of knowledge about

addressed are: (i) what is the most effective size of reusariﬁg chunk's 5|tu§1t|_on a_nd intention is purposeful, _b_ecause it
.. nables to distinguish between the conditions of
process chunks, (ii) how should we represent these chunks . — .. L :
o ; applicability of the chunk and the conditions under which
to facilitate reuse, and (iii) how should we organise thes : ; I
. : Jt’is reusable in design activities.
chunks to facilitate reuse ? In answering these questions,

the CREWS method comprises: (i) definitions of

scenario-based approach as a collection of process chumk$od metanowiedgeve — Chunk reusability
made available in the method base, (ii) glossaries o 1 . S

B . Chunk interface
harmonise the terms used to describe these process chunNkSq kowiedge ievel

Chunk applicability

Chunk

and to facilitate the retrieval queries formulation, and (iii Body N
hierarchical organisation of these chunks to facilitate thelr
retrieval. Figure 1: Chunk overview

The CREWS method base stores bathethod
knowledge (i.e. the contents of the method chunk) an% 2 The SGML structure of the CREWSmethod
method meta-knowleddée. the context in which to use .se
the chunk) in tightly-coupled descriptions of each proce?sa
chunk. The description of each chunk is faceted [19] and
close to that of [2]. Each process chunk is described using e sgML (Standard Gerslised Mark-up
the SGML (Standard Geraised Mark-up Language). | anguage) [7] is an international standard language to
The two knowledge levels of the method base are parts Qi ribe a document using a set of mark ups. SGML
the same SGML document in order toifigate their joint y,0ments are structured as trees. SGML's query language,

manipulation. Qur m_o_tivation for usif§GML has been on SgmIQL [12] enables a user to query the SGML method
the one hand, its ability to represent hyper-text documerﬁgse_ SGML uses the notion of comitios to relate its

and on the other hand, the availability of SgmIQL which i§iements. The root of the CREWS method base is the
an SQL like language tailored to qUESEML documents. gjement DESCRIPTIONS which represents a collection of
The next section describes the SGML descriptions of th§-scRIPTIONs. The element DESCRIPTION is itself
process chunks in more detail. characterised by a METHOD _KNOWLEDGE_LEVEL
and a KNOWLEDGE_ LEVEL which are composed of a
3. The structure of the CREWS method base DESCRIPTOR and of a CHUNK respectively. A chunk is
considered aatomic when it reaches an intention which
cannot be decomposed into more detailed intentions, on the

3.1 Overview of the structure of the CREWS contrary it is calleccomposedThe SGML structure of the
method base CREWS method base is the tree presented in Figure 2 .
DESCRIPTIONS
DESCFJIPTION‘

Figure 1 gives an overview of the knowledge stored
about each process chunk in the CREWS method base. The
chunk bodyis the description of the scenario-based process
itself. Thechunk interfacedescribes preconditions which Figure 2: Thetop levels of the CREWS method base

META_KNOWLEDGE_LEVEL KNOWLEDGE_LEVEL

DESCRIPTOR CHUNK

3.2.1 The structure of a chunk. Our definition of a uses information in this problem statement as input to the
scenario chunk is based on the process view of tpeocess. The target of the chunk of proces=nario,
NATURE process modelling formalism [22], [15] anddefines the result produced by the application of the chunk.
consistent with the notion of ‘step’ in [29]. According toThe chunk's body describes how to define a use case out
this view a process transforms an initsfuationinto a from the problem statement. Other attributes of a process
result which is théargetof theintentionof the chunk. The chunk areunique namegraphical representation of the
situationrepresents the part of the product undergoing thocessand informal description It is also possible to
process and thiatentionreflects the goal to be achieved indefineexample®f the process application.
this situation. Thetarget of the intention is the result
produced by the process execution. As the target
embedded in the intention, this leads to th
characterisation of a process by<situation, intention>
couple which is calledontext.

. The situation defined in the chunk interface
é&HUNK_SITUATION) is composed of one or several
product partsreferenced by PRODUCT_PART* in the
SGML tree, and an occurrence condition
(OCCURRENCE_CONDITION) which is optional. All

Several advantages of the NATURE formalism arl1€Se elements are strings (#PCDATA).

discussed in [16]. As an example we can precise that the The intentionis described [18] in terms of eerb, a
NATURE formalism allows to describe in a modular wayarget (the product resulting from an application of the
chunks belonging to several levels of granularity , using process chunk) and manner (which describes how the
situational/intentional paradigm. The notion of choice use@tention is achieved). Examples of manners include ‘one-
in NATURE allows to provide flexible guidelines togsngt refinement’, ‘stepwise strategy’, ‘using authoring
achieve a certain intention, and finally, the chunks can Bgidelines’. Each target product part can either be an
formally described using a context algebra based onogjector aresult. An objectalready exists in the situation

rational language. whereas aesult indicates that the product is produced by
MUK the process.Refine scenariQ’is an example of intention
Name e in which the targetscenario’is an object because it is
Graphical_Representatiol . . - . 0w R
informal_Description BODY defined in the situation whereaglicit scenario’ is an
E . .
xampie INTERFACE e e ~Propuct example where the targescenario’ is a result. It is
CHUNKisITUATIO/ MJNTENTION developed during the execution of this intention. The
PRODUCT m CAURENCEi Veﬁﬁﬁ'; AN precise notation of these intentions is as follows :
Problem Statement CONDITION? scenario (N Refine (scenarig);, and
ANNER
Rofe ing CREWSauthori
resut guidetines o Elicit (scenarioyes (using CREWS authoring
scenario-based guidelineSQAan.
Figure 3: The Sgml scenario chunk structure This process chunk definition can be applied to model

different types of software engineering method. However,
Following the NATURE view, a chunk has two partgshe focus of CREWS is scenario-based requirements
(Figure 3): its INTERFACE which is the couple engineering, so often the situation or the target of the
<CHUNK_SITUATION, CHUNK_INTENTION> and a intention will make reference to products which are use
BODY. We chose these designations by analogy with objesdises or scenarios.
descriptions in object oriented approaches. inkexfaceis . .
the visible part of the chunk. It tells us in which situation The body of a process chunl_< Is decomposed into the
and for which intention the chunk is applicable. Tioely product part_ and the _gwdellne part. The _product
explains how to preed to fulfil the intention in that (PRODUCT) is characterised by a name, an informal

particular situation. The body provideguidelines description, an example of instantiation of the product and

(GUIDELINE) to guide the process and relates the prOceggeference to a graphical representation which is a picture

to theproduct parts(PRODUCT) involved. For example, stor_Ed in Lhe SGMLb document. For sake of cl]?rity, this
the interface of the scenario chunk which describes how grel ;S?dselir?;/e(gl(J)TDIEeaT\ISpcrzﬁeSéegitﬁZrt:ug)erislgelrizgd by
elicit a scenario using CREWS's author guidelines is the S

g g an informal description NFORMAL_DESCRIPTION) or

couple <(Problem Statement)Elicit scenario using . X
CREWS authoring guidelines where the situation is _by a set of links (LINK*) depending on whether the chunk

defined by a product which ispoblem statemenand the :cslinfo_rmal r?r nl\(l);TThsEbody ofa fr(])rrgal c_f|1unk s deslcribe?
intention, to elicit scenario using authoring guidelines oflowing the N U approach, detal ed examples o
such a description can be found in [23], [25].

The Figure 4 illustrates the interface and the body part Indeed, we view the reuse process as being
of the scenario chunk referred to with the intentiBlicit contextual : a user of the method base is faced to reuse
scenario using CREWS authoring guidelineth this situations at which he / she looks with some intention in
example the scenario chunk named ‘P13’ helps to fulfil thmind. Therefore , the descriptor seeks to capitunehich
intention ‘Elicit scenario’, for a given ‘problem situation a scenario chunk can be reused to fulfil which
statement’ The aid provided by the scenario chunk igntention.
stated in the guidelines attached to its body. These

guidelines propose to first write a scenario from thrf\DESCRIPTOR_SITUATION) has two attributes. The

problem statement either using style guidelines, or us'aiﬂ)plication domainattribute defines the domain to which

contents guidelines, or under the control of a wor : : .
.) .~ the chunk is applicable. In the process chunk shown in

processor. Then, the scenario may be reviewed in_.a -) .
PR . figure 4, the chunk to elicit a scenario using CREWS
clarification step. As stated in the result part of the

intention, the output of the scenario chunk is a textugpthorm_g guidelines appllgs tmtf_ergctlve_ system_s or
scenario information systemsThe design activityattribute defines

in which process the chunk applies, imquirements
Situation : acquisition A design activity could be defined as a very
e oblomn Siateme general Requirements Engineering intention you try to
fulfil in a certain application domain.

The situation part of a descriptor

< Problem Statement ;
Elicit scenario using.&ws authoring guidelides

ke _ _ _
Body ’\FllgsultEsll:%ﬂgrgREwsamhm . The intention part of a descriptor
. anner:

L p—— uidelines (DESCRIPTOR_INTENTION) expresses how the chunk

write scenaric- clarify scenari Intention

may participate to the achievement of the design activity.

For example the descriptor intention of the chunk P13 is

‘Acquire system requirements by eliciting scenario using

CREWS authoring guidelinesas the process of eliciting

Figure 4; Example of scenario chunk from the CREWS Scenarios is a means to achieve the design intemion
base ‘Acquire system requirementsThe descriptor intention is

an expression of the role that a scenario approach can play

] in a particular design activity.
3.2.2 The structure of the descriptor. The process

chunk descriptor describes the meta-level knowledge to The intention part is similar to the intention attribute
facilitate effective reuse of the chunk. It fulfils for a proces® the interface part of the chunk. The intention of the
chunk the same role as a meta-class does for a class. 4g&criptor is specified by the intentioerb, the target of
extend the chunk's interface to structure the metHliS intention, but a manner which iscamplex manner
knowledge in the descriptor to enable the retrieval of tHe€- recursively defined as an intention). For example in
right process chunk to achieve the right intention in tHg€ intention Acquire system requirements by eliciting
right situation. As you might expect, a chunk descriptgicenarios using CREWS authoring guideljrie® manner

has asituation part and arintention part that we consider (PY eliciting scenario using CREWS authoring guidelines)
in turn, see Figure 5. is recursively defined as an intentioali¢iting) with a

result gcenarig, a manner ysing CREWS authoring

DESCRIPTOR guideline$
DESCRIPTOR_SITUATION DESCRIPTOR_INTENTION RELATED/_(w

CREWS has defined a glossary of process intentions

< Problem Statement;Problem Statements Problem Statemeft ;
write scenario write scenario ~ Write scenario
using style guidelinesusing contents guidelines direct

PRED* suc
?g’il;ﬁ::’:;ms E;.?Eiet Acaure ',TEZSJ%WE C::R:EX‘MANNER which informs the definition of each chunk intention.
Information systems Reoreme : clcing *Scemato s GREWS However, for the CREWS method, there is one important
R e cenariobased Rolresul anonrg addition to an intention. Because the method is
oo predominately scenario-based, we have refinedtahget
E“‘?i'lzll'. in the intention using a set dhcets which defines
Abstractontype properties of the scenario-based product, for example its

Life Cycle Spantransient

formality, level of abstraction, and the nature of the
Figure 5: The SGML structure of the chunk descriptor ~ Intéractions described in the scenario [26].

Finally, the descriptor relates the chunk ones which
precede (PRED*) and the ones which follow it (SUC?).

4. The CREWS glossary Validate: to process of checking against
stakeholders that the right product is being built ;
(Syn) test, quality assure.

One problem with component reuse is semantic
ambiguities in component descriptors (e.g. [20]). A partial) X . .
solution for the CREWS method base is a glossary of teriis made Qf. _terms denoting intentions corresponding to
which describe CREWS's different scenario-basedfSIC activities. These terms, themselves, cannot be

approaches. The glossary enables a user to search aI%?Ched o a single high-level term type that they

. . ialise. For example, the lower-level term 'to compose'
rio chunk in nonyms from the glossary. TRBC & L : '
scenario chunks using synonyms from the glossary W%OSG the definition is the following,

glossary itself has two parts. The first descripescess

The rest of the intention part of the CREWS glossary

products for example "goal", "specification”, "scenario" Compose (to be composed of) to be formed
and "message trace diagram” (a synonym for which is a of a group of parts; (Syn) to assemble, to
"sequence diagram"). The second descrilgscess aggregate, to integrate, to combine.

intentions for example "elicit" and "validate". Each term id b d to denote intentions which cialise
in the glossary has a definition and synonyms. The current could be used fo denote intentions ch spe

version has 14 basic terms to describe product parts andGB%r cotril cr?ptualrls§ doéltljlr(feni'o r?l?koesmcg(])mok())];ﬁs tté)xt ler::j
terms to describe process intentions. aggregatio S) 0 : P 9
images to make an illustrated document). But, as we have

At the level of the product, one can find terms likeeen in the previous section, writing an intention (either of
goal, specification scenarig etc (see the complete list inthe chunk itself or its descriptor) requires more than just a
the appendix). All terms which are heavily used in the R.Eerm : it requires the term, plus a result, plus a manner in
community but for which no standard terminology existswhich the result should be obtained. This manner can in
As an example of definition, we can consider the followingurn be complex and again decomposed in the same way as
one : an intention. This helps make the expression of the
S : intention more precise. For example, one of the partners of
Elicit : ~the process of systematlcallythe CREWS project has a chunk whose intention is

obtaining from people new facts (scenarios ; . .
requirements) about the domain / busineﬁgnceptuahse (System RequiremeaisXby Creating

processes / the system under consideration ; (S I_ber_t Spgmflcatlorp?)es_(usmg G|ener|c Methoqa”).“"a”' .
to acquire, to discover, to capture. is intention specialises the 'Conceptualise’ intention

type.

Because of the complexity of the part dedicated to .) . . .
intentions (see the Appendix), we have decided to structure _An_ important benefit .Of writing |_ntent|_ons _that
them according to a hierarchy of intentions. This hierarc _ecu:_lllse only one O.f the five types of Intentions s that.
has been defined by distinguishing among the differe IS gives us a criteria to determ|_ng the size of chunks :
types of intentions one can have when undertaking an I%1 unfks that _d_enote act|V|L|eslgerbtam|n? t(.) morle that Ionelof
activity. We have considered five types of intentiong e five activity types shou e spiit into lower leve
(namely Elicit, Conceptualise, Document, Verify, Validate hunk_s. In the ne_xt section, we present how the chunks are
and created the corresponding entries in the glossary. Eli Eganlsed according to these five types.
is presented above and the four other intentions are listed In the previous section, the overall structure of chunks
below with their associated definitions : was presented and indicated how to write and use them. At

Conceptualise the process of systematicallythat level, the impact of the CREWS glossary is the

abstracting (existing or envisaged) real-worI(IOIIOWIng)

phenomena into models which highlight the « for the chunk producer, the interface and the
essential aspects and hide the unimportant details descriptor of the chunk has to be written by using
(relative to the viewpoint taken) ; (Syn) to model, the entries defined in the glossary ;

to abstract. .
o for the chunk users, they can select the desired

Document as opposed tto conceptualise’ chunks on the basis of the basic entries or of their
write down the product of activities such as synonyms which enrich the questioning of the
analyse, compare, change, etc. (Syn) to describe, database.
to specify, to record, to write.

Verify : to get the product right; (Syn) to
attest, to check.

5. Hierarchical indexing of the CREWS
chunks

Elicit

In order to facilitate the retrieval of chunks from th
repository it is useful to index the collection of chunks by

e

Elicit Elicit Elicit Elicit
scenario use case goal requirements
c1 using ACRE C3 using P2 by goal Peby cooperative

method CS heuristics structure analysis| decision making

o
e

hierarchy of intentions. This conforms to practice in Objg
Orientation [11]. Figure 6 shows the top level of th

B

C4 P3 C5

3 using CREWS
authoring
guidelines

using
authoring guidelines

using
refinement rules

using CS
heuristics

P4

CREWS hierarchy whereas figures 7, 8, 9 and 10 rel
each of the five key requirements engineering intentiong

Al

P in full prose
C2by CS generation

using
composition rules

Ps using

alternative rules

the available CREWS chunks.

A

1

by observing
real world scenes

A2 by observing

Requirements

real world scenes

Engineering

Intention F

U

Elicit Conceptualise Document Verify Validat

Figure 6: Top level of the CREWS hierarchy of RE

igure 7: Hierarchy of the CREWS chunks for tigicit’
intention

Similarly, the hierarchies in Figure 8, 9 and 10 show

which chunks are made available in the CREWS base to
contribute respectively to the intention€onceptualise
‘Documert ‘ Verify and ‘Validate.

intentions

For example Figure 7 shows that tRécit’ intention
may have four different targets, namely, scenario,

5e Conceptualise

Conceptualise

Conceptualise
use case

Conceptualise
goal

Conceptualise

scenario requirements

case, goal, and requirements. This leads to the four suik

intentions, Elicit scenario), ‘Elicit use case’‘Elicit goal’

P7 A4 N1

e by integrating
scenarios

using
linguistic devices

using
modelling technique

asking
typical questions

and Elicit requirements’ For each of thestlicit’ sub-
intentions, CREWS proposes a number of chun

A3

using P9

abstraction guides)

using
CStool

using
linguistic template

corresponding to the different CREWS approaches to
fulfilling the intention. Each of them is introduced in the

hierarchy by an associated manner. For example there are

Figure 8: Hierarchy of the CREWS chunks for the
‘Conceptualiselintention

five different manners to Elicit scenario? The

corresponding processes are captured in chunks 1 (C1)] 2 Document

(P13), 3 (P1), 4 (C2), and 5 (Al1). Chunks 2 and 3 suppoft

scenario authoring through style and contents guidelings Document Document
displayed by L'ERITOIRE software tool environment scenario use case
whereas chunk 1 provides simple word processing) CI0 .

o . . by capturing using
facilities. In chunk 4, scenarios are generated and filtergd decisions and CS and Re Pro tool
automatically from use case descriptions by the CREWS|- position arguments 4
SAVRE environment.

Figure 9: Hierarchy of the CREWS chunks for the
‘Document’intention

Verify Validate

7 e N3

goal requirement 1t
wng
Aver anguage cheokel| [T oy megouang || [by anmator]

CS meta modell

wee® Snceiialse
0\35‘—‘:\ NL requirementgr| (using rigorous
RS notationjy,
m\e;e“ o
° R
(

unction hierarch

NL scenarios

ERA modg Conceptualist
2= scenarigr|(askirg typical
oncatansd” o estiony Mbert
g
S Toolan

on
Document
by paraphrasim) e

Validate
by animationj,

requirements
document

Figure 10: hierarchy of the CREWS chunks for the
‘Verify’ and‘Validate’ intentions

Figure 11: application of the 2RARE project

Figure 11 presents the whole enriched RE process that

The hierarchy of intentions provides a mean to brow§@uld be applied for the development of this application.
over the contents of the method base. It therefore facilitatE8iS process is partly based on different available chunks
the retrieval of the chunks matching the requirements @¢fined by the CREWS participants (see P7, P8, C6, N1,

the method base user, i.e. the method engineer.

It is complementary to the query facilities provided by*
the SgmIQL language which allows the user to retrieve
chunks on the basis of the information provided by the

descriptors. This will be illustrated in the next section.

6. Developing RE processes
composition of chunks

through the

Requirements Engineering processes can be developed

by selecting and composingthe different chunks made

available in the chunk method base. This activity is
supported by the information contained in the glossary and

in the hierarchy presented in the previous section.

In this section, we will first illustrate the result of this «
activity by presenting a specific global RE process defined
for some application development. Then, for a fragment of
this global process, we will show how it has been
constructed by using tools for retrieving and composing

chunks.

6.1 An example of RE process

The proposed RE process is inspired from the
experience that some of the authors got in the context of
the Esprit 2RARE project, a project where was studied the
use of novel requirements techniques in the context of two
trial industrial applications. One of the two applicationse
was related to the development of a Video-on-Demand
system where the basic issues were concerning (i) the
clarification of unstructured and poorly expressed
requirements and (ii) the use of techniques supporting the
detection of missing requirements. More details about the
application context can be found in [31] together with’
some details on the semi-formal (like, ERA) and formal

(the Albert language) techniques used.

N4 in figures 8 and 9).

The inputs of theDocument by structuringthunk

are all the various unstructured sources of information
collected from the different stakeholders. The
objective is to somehow structure these pieces of
information by distinguishing among informal texts
related to requirements and those related to scenarios.

From the informal texts related to requirements, the
chunk Conceptualise using rigorous notatioaims

at producing semi-formal models, namely an ERA
diagram related to the data structure and a functional
hierarchy diagram related to the static part of the
functions. This chunk is clearly a composed chunk
since it is composed by finer chunks associated with
the two semi-formal notations used.

The ‘Conceptualise using linguistic devicediunk,
denoted as P7 in figure 8, has the objective to clarify
and achieve a better quality for the informal scenarios
proposed. The use of linguistic techniques together
with the application of appropriate heuristics leads to
the formalisation of scenarios and their integration
into use-cases [21]. This chunk is a composed one
made of finer chunks introduced in the previous
section.

The ‘Conceptualise by integrating scenariagiunk,
denoted as P8 in figure 8, has the objective to
integrate several scenarios in order to conceptualise a
use case.

The ‘Conceptualise using CS toahunk, denoted as
C6 in figure 8, has the use-cases produced by the
previous chunk as an input. This elementary chunk
(see previous section) has for objective the generation
of a set of complete and correct scenarios.

The ‘Conceptualise asking typical questiorsiunk,
denoted as N1 in figure 8, is a basic chunk taking
different semi-formal models as input and

transforming them (using heuristics and additional ~ $tin every TARGET within $i
stakeholders pieces of infoation) into Albert formal Where text($t) match « Albert specification » ;

desc_ri_ptio_ns. Albert is a formal requirements 14 unique result of the query (Conceptualise
specification language designed for the purpose plyirements asking typical questions) is incorporated in

capturing requirements inherent to real-timenq hrocess under construction (see Figurbeldw).
distributed systems [5].

NL requirements Albert

The ‘Validate by animationbasic chunk, denoted as—— > NI Conceptualise specification
N4 in figure 9, starts from the Albert formal wwscenaios | scenario. | (%008 R >

requirements specification and proposes to the
stakeholders to interactively and co-operatively use a
tool (the so-called animator) in order to explore Figure 13: The RE process resulting of the first query
different possible behaviours (or traces) of the future
system allowed by the formal requirements [4].

Now, focusing our attention on the scenario inputs
(i.e. on the product parts of the situation), we can query the
Finally, the Document by paraphrasindgasic chunk chunk base in order to identify potential chunks satisfying

aims at the paraphrasing of the formal Alberthe condition.
specification into its natural language counterpa&elect text($i). « \n »
which constitutes the requirements document. Thfgom $d in every DESCRIPTION within $Crewsfile,

document should necessarily be written in natural
language because of the variety of stakeholders who
have to read it.

6.2 Elaborating an RE process

$descro in every DESCRIPTOR within $d,

$dom in every DOMAIN within $descro,

$da in every DESIGN_ACTIVITY within $descro,
$cm in every COMPLEX_MANNER within $descro,
$t in every TARGET within $cm

$c in every CHUNK within $d,

$i in every CHUNK_INTENTION within $c,

$v in every VERB within $i

Figure 11 shows the result of the method engineeringhere ((text($dom) match « interactive system »)

activity. In this subsection, we give some flavours about
how this final result has been obtained. Considering a
subpart of the process, we exemplify the retrieval of
scenario chunks from the chunk method base and their
assembly.

One of the basic constraint in the trial application was
related to the use of a formal requirements specification
language, namely the Albert language. On the other hand,
from the beginning, this was clear that the inputs were
badly structured texts associated with the descriptions o

and (text($da) match « requirements acquisition »)
and (text($t) match « scenario »)
and ((text($v) match « conceptualise »)
or (text($v) match « elicit »))
and (text($t->Role) eq «object»)
and (text($t->Notation) eq « Semi-formal »)
and (text($t-> Coverage) eq « Functional »)
and (text($t->Context) eq « System interaction;»))

Obviously, there are too many chunks satisfying the
ndition (Elicit scenario using ACRE method (C1), Elicit

scenario using CREWS authoring guidelines (P13), Elicit

requirements scenarios. To summarise, the basic sﬂuatg)cnenario by CS generation (C2), Elicit scenario by

is depicted as in the Figure b2low.

Albert
> ? specification
—_

NL scenarios .

>

NL requirements

Figure 12 The basic situation of the RE process

Being driven by this need for formal requirements,
one can apply a SgmIQL query on the chunk method base
in order to retrieve the possible chunks leading to an

Albert specification :
Select text($i) . « \n »
from $c in every CHUNK within $Crewsfile,
$i in every CHUNK_INTENTION within $c,

observing real world scenes (A1), Conceptualise scenario
using linguistic devices (P7), Conceptualise scenario using
abstraction guides (A3)and this is difficult to decide for
one chunk rather than for another. As an alternative
strategy, one may prefer to start from the NL scenarios
descriptions considered as an input of a chunk.

Select text($i) . « \n »

from $d in every DESCRIPTION within $Crewsfile,

$descro in every DESCRIPTOR within $d,

$dom in every DOMAIN within $descro,

$da in every DESIGN_ACTIVITY within $descro,

$cm in every COMPLEX_MANNER within $descro,

$t in every TARGET within $cm,

$c in every CHUNK within $d,

$i in every CHUNK_INTENTION within $c,

$v in every VERB within $i, from $c in every CHUNK within $Crewsfile,

$pp in every PRODUCT_PART within $c $i in every CHUNK_INTENTION within $c,
where ((text($dom) match « interactive system ») $t in every TARGET within $i,
and (text($da) match « requirements acquisition ») $v in every VERB within $i,
and (text($t) match « scenario ») $pp in every PRODUCT_PART within $c
and ((text($v) match « conceptualise ») where ((text($t) match « scenario »)
or (text($v) match « elicit »)) and (text($v) match « conceptualise »)
and (text($t->Notation) eq « Informal ») and (text($pp) eq « use case »)) ;
:23 ggﬁg;;'\gg%uﬁw s?eg;i?st :))) : The result of this query is tH€onceptualise use case

using CS toolthunk (C6) which can be integrated with the

The query results in theCbnceptualise scenario others as depicted in the previous sub-section (see Figure
using linguistic devices thunk (P7) and the composedii).

process is now as shown below (To overcome the problem of readability of the
Figure 14). SgmIQL queries, for the method engineer which are not
familiar with the SgmIQL formalism, we plant to build a
NL requirements functon hierarch, ERA tool prototype able to automatically perform the authoring

Ao of the most useful queries for retrieving chunks during the

N1 Conceptualise | | specification re u”_ements en |neer| 0CeSSES develo ment
_: pree: (aSkirgtypi;;ll NG q g rm p
questions)n)

P7 Conceptualise

L | (using linguistic |—3m-scenario
deviceshan

NL scenario

7. Discussion

Figure 14: The RE process resulting of the third query
This paper reports the results of preliminary research
As the output of the chunk P7 is a scenario, ondithin CREWS into a scenario-based requirements
possibility could be to simply combine P7 and Ni1€ngineering method. The development of this method has
However a look to the relationships that P7 has with othl&d to advances in two directions. First, the four CREWS
chunks indicates four possibilities P3, P4, P5 and P8 (sdProaches to scenario-based requirements acquisition and
the corresponding query below). The three first helplidation have been integrated to provide a partial but
moving from scenario to goals and are not of intere§Pherent and novel method based of requirements
whereas P8 supports the integration of scenarios in a singigitation from observations from real-world practice,

use case, in a semi-automated way. P8 is selected. computational analysis of natural language descriptions of

Select text($suc). « \n » scenarios and goals to acquire system requirements,

from $d in every DESCRIPTION within $Crewsfile, systematic generation and walkthroughs of scenarios to
$descro in every DESCRIPTOR within $d, validate system requirements, and animation of formal
$suc in every SUCC within $d, requirement specifications to ensure their correctness and
$c in every CHUNK within $d, completeness. Furthermore, the current incomplete

$i in every CHUNK_INTENTION within $c
where text($i) match «conceptualise scenario
devices » ;

~_ coverage of these four approaches is overcome through
using linguisti,eir jntegration with other existing approaches within the
CREWS method. The second, more important

The status of the RE process under construction development is the definition, design and implementation
now as depicted in figure 15. of a data base of reusable process components which
prescribe how to undertake the CREWS approaches. This

N reaurements,, eieaion development has implications for defining and delivering
Dscerapl” Climynen | > New processes and techniques which complement rather
~ _ e than replace existing software engineering methods. The

L scenario ggzg‘l» i‘f’;;@_» remainder of this section will discuss this second

we o usecase development.

Figure 15: RE process resulting of the fourth query Our modular approach to process modelling draws

extensively on ideas from software reuse (e.g. [19]). It is a

The next query will try to identify a chunk having a White-box" approach because the "reuser”, that is the
use case as input and scenario as output. method engineer, uses the external description of a process

Select text($i) . «\n» chunk as well as descriptions of its internal contents to

retrieve, understand and apply the process. We believe thatrent contents of the CREWS method base is to make
such a white-box approach is effective for methothem available for publiccgess and critiquing using the
engineering for several reasons. First, the contents ofirdernet. The SGML ata base is configurable for Internet
chunk will have to be adapted to fit each new processccess. Not only will this enable the authors to elicit
Acquiring, modelling and validating system requirementsonstructive criticism of their approaches from a large
are complex processes which can be affected by factorspagulation, but it will also provide the starting point for a
diverse as the previous systems development process, lthi@g repository of expertise and experience reports about
experience of the requirements engineering team and #eenario reuse that the academic and practitioner
amount of time available to undertake each process (ecgmmunities can reference and contribute to over time. We
[13]). Although the influence of context on the process i®ok forward to reporting on the base and feedback on its
reflected in the situation description of a chunk, it isontents in the near future.

impossible to predict and hence c_Iescrlbe all mfluen(_:mg The description of process chunks in SGML provides
factors. Therefore, processes will often need minagr

modification to fit each new situation. a starting point to enact processes (e.g. [3], [(_3]) through
formalisation of the description of each process in a chunk.

Second, the composition of a coherent process can\We believe that the modularisation of processes through
improved by making all three descriptors of each chundhunks makes the formalisation and hence enactment of
(the situation, intention and description) available to thgrocesses more feasible due to the reduction size and
method engineer. Our assumption that minor modificatiomemoval of contextual factors from each chunk process.
to processes are inevitable means that perfect "cohesiéiture research will be in two parts. The first will be to
between any two chunks is unlikely, that is there will benodel each chunk of process using a process modelling
few perfect "fits" between chunks. However, the likelihoodbrmalism ([22], [28]) to enable its enactment. The second
of a sufficient fit can be increased by a larger number wofill be to define composition formalism to enable
chunk facets to provide links between chunks. Fa@nactment of more than one chunk in a single process. The
example, two chunks which have a good fit using thway we envision this is based on a meta-process to guide
intention and situation facets but not the description facdtse construction of the integrated process expressed with
can still be composed together in a process, but with tthee same process modelling formalism as the one used for
caveat that changes in the scenario product (the focuspobcess chunks. Therefore the global process shall be
the description) might be needed. enacted « on the fly » using single enactment mechanism.

Our long-term goal is complete process enactment through

SO far, the application of our method engineeringreal-time" composition of a tailored requirements
approach has been limited to the four CREWS approaches b 9

. - engineering method from reusable process chunks. The
and two of the most common commercial use case-drivén

approaches. Further evaluation is stil needed %chlevement of this goal, the authors believe, will be a

demonstrate its potential effectiveness. However, ts‘legnlflcant step towards adaptive and scaleable approaches

experiences of the authors within CREWS indicate that the guiding the systems development process.

approach is viable. One of the most critical problems to
overcome is composition of process chunks into a meth?g(:knowled ement: This paper was prepared as part of
The example reported in section 6 demonstrates that th 9 ' pap prep P

e .
CREWS chunks can be linked together in a meaningf"\fork package W2 of the CREWS project. The CREWS
way. Indeed, within CREWS, the acts of defining oup

eam includes in addition to the authors of this paper : C.

. - lland as leader of the work package, C. Ben Achour, M.

approaches using a common form of description al)
; . arke, K.Pohl, P. Haumer, and S. Minocha.

comparing these descriptions enabled the authors “to

identify previously unforeseen overlaps between the

approaches which has led to greater method and softw@®eferences :
tool integration between them.

Further work is needed to evaluate the structure apg A. Cockburn, Structuring use cases with goal$echnical
glossaries for defining each process chunk. To achieve thisport. Human and Technology, 7691 Dell Rd, Salt Lake City,
we will model reported "good practice” with scenarios foT 84121, HaT.TR.95.1,
acquiring, modelling and validating systems requirementgtp://members.aol.com/acocburn/papers/usecases.htm (1995).
(e.g. [17]). We anticipate that this will led to extension an%lg: V. De-Antonellis., B. Pernicii P. SamaratF-ORM
refinement of the CREWS process chunks as well as tig&THOD : A Methodology for Reusing Sifeation, In Object
way to describe them. One specific tactic for evaluating the

Oriented Approach in Information Systems, Van Assche H16] V. Plihon Un environnement pour lingénierie des
Moulin b., Rolland C. (eds), North Holland, 1991 méthodesPhD thesis, Jan 1996.
[3] M. Dowson,Software Process Themes and Isséesc. of the [17] C. Potts, K. Takahashi, A.l. Anton)nquiry-based
;gd4(ljmi£§E Conf. on Software Process, Berlin, Germany , Rgqyirements analysién IEEE Software 11(2), pp. 21-32, 1994.

. ’ ._ . . [18] N. Prat, Goal formalisation and clag#cation for
[4] : E. Dubois and P. HeymanScenario-Based Techniques for o irements engineeringroceedings of the Third International
Supporting the Elaboration and the Validation of Formalygkshop on Requirements Engineering: Foundations of
RequirementsCREWS Report, University of Namur, 1998. Software Quality REFSQ'97, Barcelona, pp. 145-156, June 1997.

[5]. - P. Du Bois, E. Dubois and J.M. Zeipp@n the use of @ [19]: R. Prieto-Diaz, P. Freemar Classifying Software for
formal RE language: the generalized railroad crossing prOble”Reusability»JEEE Software, Vol 4 No 1, 1987.

Proc. of the IEEE International Symposium on Requirements

Engineering (RE'97), Annapolis MD, January 1997, pp. 128-13f20] Prieto-Diaz R., "Implementing Faceted Classification for
IEEE Computer Society Press Software Reuse", Communications of the ACM, Vol.34, No.5,

. . . May 1991.
[6] A. Finkelstein, J. Kramer, B. Nuseibeh (edSpftware

Process Modelling and Technolggphn Wiley, 1994 [21] C. Rolland, C. Ben AchourGuiding the construction of

textual use case specificatiori3ata and Knowledge Engineering
[7]: C. F. Goldfarb, The SGML HandbookQxford Clarendon Journal, 1997.

Press, 1990.

[22] C. Rolland, G. GrosZ General Framework for Describing
[8]: P. A. Gough, F. T. Fodemski, S. A. Higgins, S. J. ,Rayhe Requirements Engineering ProcestcEE Conferenf:e on
Scenario - an industrial Case Study and HypermedigyStems, Man and Cybernetics, CSMC94 , San Antonio, Texas,
Enhancements» Second IEEE International Symposium ont994.

Requirements Engineering, 1995. [23] C. Rolland, V. PlihonUsing generic chunks to generate
process model fragment®roceedings of the"? International

[9]: P. Heymans,Some toughts about the animation of formaConference on Requirements Engineering, ICRE’96, Colorado

specifications written in the AERT language Proceedings of Springs, 1996.

the Doctoral Consortium of the 3 IEEE International

Symposium on Requirements Engineering (RE'97), Annapoli§24] C. Rolland, C. Souveyet, M. Morenén Approach for
MD, USA, January 6-10, 1997. defining Ways of Workingnformation Systems, Vol 20, No 4,

pp337-359, 1995.

[10]_I. Jaco_bson, M. Christerson,_ P. Jpnsson and G. Oevergaa[gqf)]; C. Rolland, V. Plihon, J. RalyteSpecifying the reuse
Object Oriented Software Engineering: a Use Case Drivegontext of Scenario Method Chunk$aper accepted to the
Approach (Addison-Wesley, 1992). Conference on Advanced System Engineering (CAISE’98), 1998.

[11] : Kang K., Cohen S., Hess J., Novak W., Petersan §26]: C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A.
Feature-oriented domain analysis (FODA) fedl#ip study Sutcliffe, N.AM. Maiden, M. Jarke, P. Haumer, K. Pohl,
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegiebubois, P. HeymansA proposal for a scenario claisation
Mellon University, Pittsburgh, Pennsylvania, 1990 framework Requirements Engineering Journal 3 :1, 1998.

[12]: J. Lemaitre, E. Murisasco, M. RolbesgmiQL, «Un [27]: J. Rumbaugh, G. BoochsUnified Mehod », Notation
langage d'interrogation de documents SGMLPsoceedings of Summary Version 0.8 (Rational Software Corporation, 1996).

the 1fh conference on Advanced DataBases, August 199kg] s. si-Said, C. Rolland, G. GrosJENTOR :A Computer
Nancy, France. Aided Requirements Engineering EnvironmémtProceedings of
[13]: N.AN. M. Maiden, G. RuggACRE : A Framework for CAISE' 96, Crete, GREECE, May 1996.

Requirements Acquisition ~ MethodsSoftware Engineering [29] : B. Thomé,Systems Engineering : Principles and Practice
Journal 11(1) , Jan 96 of Computer-based Systems EngineeriitgB. Thomé (ed), John
[14] : N.AM. Maiden, S. Minocha, K. Manning, M. Ryan, Wiley & Sons (1993).

CREWS-SAVRE : systematic Scenario Generation andTtdse [30] M. Jarke, K.Pohl, P. Haumer, K. Weidenhaupt, E. Dubois,
International Conference on Requirements Engineering Heymans, C. Rolland, C. Bena Achour, C. Cauvet, J. Ralyté,
(ICRE'98), Colorado-Springs, USA, 1998. A. Sutcliffe, N.A.M. Maiden, S. MinochaScenario Use in
[15] V. Plihon, C. RollandModelling Ways of WorkingProc. Of Europfean S_oftware Organlzatlons_ --- Results from Site Visits and
the 7" International Conference on Advanced InformatiorRuestionnairesCREWS report series 97-10.

Systems Engineering, CAISE'95, Springer Verlag, 1995. [31] R. Wieringa and E. Duboidntegrating semi-formal and

formal requirementsinformation Systems Journal, (to appear),
1998.

Appendix: The CREWS Glossary

Problem statement

Definition : something that you say or write about a
situation that causes difficulties.

At the product level Product

Animation

Definition : a product is the result which remains after the
execution of a process.

Requirement
Definition : an animation is the creation of a finite set of
finite sequences describing normative or non normative
behaviours of the composite system. While scenarios
focus on the interactions taking place between the system
and its environment, the result of the animation considecenario
the possible behaviours of the whole composite system
and helps in exploring them.

Definition : Requirement is a change or quality criterion
for some future system (version). We distinguish
functional and non-functional requirements.

Definition : At a functional level, a scenario is a
description denoting similar parts of possible behaviours

Behaviour limited to a subset of purposeful state components,

actions and communications taking place among two or

Definition : a possible behaviour consists in an alternate
several agents.

sequence (possibly infinite) of states and state transitions,
where : More external (richer) scenarios include information

The state is structured in terms of components and the about roles, responsibilities, organisation policies, ...

values of components stay unchanged between two state Synonyms contextual scenario.

transitions,
Scene

The state transitions correspond to the beginning and/or

the ending of actions, called events. Definition : all the things that are happening in a place,

and the effect or situation that they cause.
Some behaviours can be considered as more normative =
than some other. Thereby, a behaviour can be classifi§@ecification

as normative or non-normative according to the fact it is Definition : set of behaviours of the system and of its
considered to include a few or a lot of exceptions. environment.

Episode Use case
Definition : According to Regnell and Potts, on episode is Definition : a use case is defined as a possibly structured

Goal

a «part of a use case representing a demarcated and gt of scenarios grouped together to achieve a specific
coherent flow of events ». They help structure a use case stakeholder goal.

in manageable units.
Use case model

— .) Definition : see UML definition [27].
Definition : Goal is a future system state or behaviour to

avoid, maintain, attain, cease, etc.

Synonym:Intention. At the process level

Message trace diagram

Definition : a Message Trace Diagram (MTD) is aAnaIyse:

graphical way of representing the communication part

associated with scenarios. It exists some extensions Definition : a cognitive activity involving the

which allow to express also internal actions which widens decomposition , the structuring and scoping of a

their scope from just expressing communication. knowledge as well as deducing properties of the thing,
) under analysis, e.g. incompleteness, incorrectness, etc.

Synonyms sequence diagram. These RE-specific properties should be quite easy to list.

Open Issue Synonyms : tainderstand, to reason about.

Definition : result of the RE process.

domain / business processes /

the system under

consideration.

Animate

Synonyms : t@cquire, to discover, to capture.

Definition : the interactive process of visualising the
dynamic properties associated with
normative or non-normative behaviours of the composite
system.

Synonyms : t@ctivate, to simulate.

Change
Definition : to make something or someone different.
Synonyms : to modify.

Compare

Definition : to consider two or more process, product,
requirements, etc. in order to show how they are similar
to or different from each other.

Compose

Definition : (to be composed of) to be formed of a grouﬂ)zmd

of parts.
Synonyms : to assemble, to aggregate, to integrate, to
combine.

Gather

Conceptualise

the process of systematically abstracting
envisaged) real-world phenomena into

Definition :
(existing or

Definition

fragments dEnvision
Definition : to project what a product will be.
Synonyms : tgroject, to imagine.

Explain

to make something clear or easy to
understand, to give a reason for something to someone.

Synonyms : telarify, to illustrate.

Explore

Definition the process of envisaging (evaluating)
alternatives, or scope or pathways.

Synonyms : to navigate.

Definition : to achieve or get something that you need.
Synonyms : t@achieve, to retrieve.

facts

Definition : from documents.

Synonyms : t@ollect facts.

models which highlight the essential aspects and hide thgentify

unimportant details (relative to the viewpoint taken).
Synonyms : tanodel, to abstract.
Create

Definition : to make something exist that did not exist
before. The process of (semi-) automatically building a
product (scenario, requirements specification, etc.) in

Definition : to recognise and correctly name an element of
a product or of a process; to perceived some coherent
entity of the (existing or envisaged) real-world (or
Universe of discourse) and, optionally, express it as an
element of a product, process, ...

Synonyms : tmmame.

some targeted formalism, starting from a semantigegotiate

definition of its content.
Synonyms : t@ompose, to design, to generate.
Decompose

Definition : the process of partitioning a product/ process/
problem into more manageable units.

Synonyms : t@tomise, to partition. Refine
Document

Definition : as opposed to ‘to conceptualise’, write down
the product of activities such as analyse, compare,
change, etc.

Synonyms : talescribe, to specify, to record, to write.
Elicit Relate
Definition : the process of systematically obtaining from
people new facts (scenarios, requirements) about the

Definition the process of integrating different
viewpoints of different stakeholders on a certain topic, in
order to try to reach an agreement of all involved
stakeholders. Involves mediation and reconciliation.

Synonyms : tanediate, to reconcile.

Definition : the process (more detailed or more precise) of
changing a product (or process) in a systematic way so
that the changed product/process is better (more detailed
or more precise) according to some characteristic than the
former one.

Synonyms : teelaborate, to improve.

Definition : the process of explicitly defining links Sort
between products between which a semantic or structural
relationship exists.

Synonyms : t@associate, to link, to structure, to map.

Remove

Definition : to put things in a particular order or to
arrange them in groups according to size, rank, type, etc.

Synonyms : to prioritise, to rank, to order, to categorise,
to classify.

Definition : to take something away from the place wher&uggest

itis.
Synonyms : talelete.
Review

Definition : to examine, consider and judge a product or @race
process carefully with respect to completeness and
correctness.

Synonyms : t@ssess, to evaluate.
Scope
Definition : to draw the boundaries of the system.

Synonyms : to delimit («the part of the Universe of
Discourse some product, process, requirement, ...refers
to »).

Search

Definition : to try to find a solution to a problem, an
explanation for something, etc.

Synonyms : texplore, to investigate.
Select

Definition : to choose among candidates products or
processes subset by carefully thinking about which is the
best, most suitable, etc. for satisfying a higher-level
intention

Synonyms : t@hoose.

Verify

Definition : to provide someone with useful information
with respect to the intention (s)he as to satisfy.

Synonyms : t@dvise, to recommend.

Definition to record and subsequently retrieve
information about the product and process evolution in a
sequential or time-ordered manner.

Synonyms : taecord.

Validate

Definition : the process of checking against stakeholders
that the right product is being built.

Synonyms : tdest, quality assure.

Definition : to get the product right.
Synonyms : tattest, to check.

Walk through

Definition : to validate a model in a co-operative setting
using a sequential process that tests components in an
order. The validation is made manually, not in an
automatic manner, it follows a stepwise process for
checking.

Synonyms : teheck, to validate.

