PRIME:
Towards Process-Integrated Environments'

Klaus Pohl, Klaus Weidenhaupt, Ralf DOmges,
Peter Haumer, Matthias Jark, Ralf Klamma

Lehrstuhl Informatik V (Information Systems)

RWTH Aachen

Ahornstr. 55, D-52056 Aachen, Germany

To appear in: ACM Transactions on Software Engineering and Methodology, 1999

! The PRIME framework is a result of the Project 445/5-1 "ProzeRintegration von
Modellierungsarbeitsplatzen" funded by the Deutsche Forschungsgemeinschaft. The PRIME
framework has been used to implement two prototypical process-integrated environments within
the ESPRIT Reactive Long Term Research 21.903 Project CREWS (funded by the European

Community) and the Collaborative Research Center (SFB) 476 IMPROVE (funded by the
Deutsche Forschungsgemeinschatft).

Abstract:

Research in process-centered environments (PCEs) has focused on project management support and
has neglected method guidance for the engineers performing the (software) engineering process. It
has been dominated by the search for suitable process modeling languages and enactment
mechanisms. The consequences of the process orientation on the computer-based engineering
environments, i.e. the interactive tools used during process performance, have been studied much
less. In this paper, we present the PRIME (PRocess-Integrated Modeling Environments) framework
which empowers method guidance through process-integrated tools. In contrast to the tools of
PCEs, the process-integrated tools of PRIME adjust their behavior according to the current process
situation and the method definitions. Process-integration of PRIME tools is achieved through

- thedefinition of tool models;
- theintegration of the tool models and the method definitions;

- theinterpretation of the integrated environment model by the tools, the process-aware control
integration mechanism, and the enactment mechanism;

- the synchronization of the tools and the enactment mechanism based on a comprehensive
interaction protocol.

We sketch the implementation of PRIME as reusable implementation framework which
facilitates the realization of process-integrated tools as well as the process-integration of legacy
tools. We define a six-step procedure for building a PRIME-based process-integrated environment
(PIE) and illustrate how PRIME facilitates change integration on an easy-to-adapt modeling level.
Following the six-step procedure we have implemented two process-integrated environments
(PRIME-CREWS and TECHMOD) which have been applied in small case studies.

Categories:
D.2.1 [Software Engineering]: Tools
D.2.2 [Software Engineering]: Computer-aided software engineering (CASE)
D.2.6 [Software Engineering]: I ntegrated environments
D.2.6 [Software Engineering]: I nteractive environments
D.2.11 [Software Engineering]: Software Architectures
D.2.13 [Software Engineering]: Reusable Software
D.3.3 [Programming Languages]: Frameworks
H.4.1 [Information Systems Applications]: Workflow Management
J.6 [Computer aided engineering]
K.6.3 [Software Management]: Software process

Keywords: process-centered environments, process-integrated environments, method guidance,
process modelling, process-sensitive tools, tool modelling, tool integration, PRIME

1 Introduction

1.1 Process-Centered Environments

During the last decade a tendency of moving from product-oriented computer supported
development environments to process-oriented environments, so-called process-centered
environments (PCEs), could be observed. The process improvement paradigm popularized by
approaches such as the SEI Capability Maturity Model [1] or Total Quality Management [2]
stresses the necessity to focus on the production process in order to achieve better product quality
at decreased costs. Hence, product-oriented environment support in form of data integration
mechanisms (such as repositories or standards for data exchange formats) have to be
complemented by process-oriented support functionality. Striving for continuous process
improvement implies that process knowledge is never stable. Accumulated experiences from
former projects may indicate better ways for performing certain parts of the process. Moreover,
each project imposes its own specific restrictions on how development processes should be carried
out.

The explicit definition of processes in PCESs is a prerequisite for an easy adaptation of the
development processes to project specific needs and the integration of process changes. In contrast,
the process support offered by product-oriented environments is hard-coded. There exists no explicit
process definition. Process changes require reprogramming, and are thus hard to accomplish.

modeling domain performance domain

method definition
0 process support

0 instantiated and control

process model
p,
process
engine

e S =

0 feedback

V'

enactment domain

Figure 1: Three domains of sofiware process support.

PCEs comprise three conceptually distinguishable domains [3], [4]: the modeling, the
performance, and the enactment domains (Figure 1). The modeling domain comprises all activities
for defining and maintaining process models using a formal language with an underlying operational

semantic which enables mechanical interpretation of the models. The enactment domain
encompasses what takes place in a PCE to support (guide, enforce, control) process performance;
this is essentially a mechanical interpretation of the process models by a so-called process engine.
The performance domain is defined as the set of actual activities conducted by human agents and
non-human agents (computers).

Process support provided by PCESs can be characterized by the typical interactions between the
three domains (Figure 1):

1. A process mode is instantiated by binding process parameters such as resources and time
scheduling to project specific values, and then passed to the enactment domain;

2. Based on the interpretation of the instantiated model, the enactment domain supports,
controls, and monitors the activities of the performance domain;

3. The performance domain provides feedback information on current process performance to
the enactment domain. This is a prerequisite for adapting process model enactment to the
actual process performance and enabling branches, backtracks, and loops in process model
enactment.

Research in the PCE area has concentrated on the modeling and enactment domains [5]. It has
resulted in a set of mature process modeling languages and enactment mechanisms, e.g. [6], [7], [8],
[9], [10], [11], [12], [13], [5], [14]. Excdlent overviews on the research in the PCE area and
comparisons of different approaches can befoundin, eg., [15], [16], [17], [18], [19], [4].

Unfortunately, the consequences for the interactive tools of the environment have been studied
much less. Thetools of PCEs do not provide integrated, definition-conform stakeholder guidance.

1.2 Project Management Support vs. Method Guidance

Existing PCEs focus mostly on process (project) management support. Method guidance for the
engineers who are actually performing the (software) engineering process has largely been
neglected. Process management support offered by existing PCEs and method guidance for the
engineers performing the process differ in two main aspects.

- The primary concern of project management support provided by PCEs is to coordinate the
interworking of people at the task level, for example, to ensure that tasks (reviewing a design
document, testing a module etc.) are performed in a certain order, information flows
correctly, or time constraints are met. In contrast, method guidance aims at supporting the
engineers performing these tasks [20], [21] such as to guide the engineer during the
refinement of an entity type and the required adjustment of the data flow diagrams, or to
enforce the recording and use of traceability information[22];

- Theartifacts managed in current PCEs and the artifacts considered by method guidance vary
significantly in their granularity. While most PCEs consider the products under development

and their relations at the level of documents (such as Entity Relationship diagrams, design
documents, or test modules) method guidance requires the consideration of a more fine-
grained product structure like entities, relationships, attributes.

Thus, method guidance aims at supporting the stakeholder performing a task based on the
explicit definition of best practice gained by generalizing from (individual) experiences. Whereas
process support is defined in so called process models/definitions, method guidance is specified in
method models/definitions. In well understood domains, method guidance could be very restrictive.
For example, the handling of an insurance claim and the criteria for accepting or rgecting the claim
could be precisdly defined. Thetools used to process the claims should thus enforce and support the
employees in meeting the actual claim handling definitions. Such kind of support is requested by and
researched in the workflow community (cf., eg., [23]).

In the case of more creative tasks such as design activities, a complete and strict definition of the
task is not possible. But also in cregtive processes certain sub tasks must be performed in pre-
defined situations, and/or the performance of some sub tasks can be restricted by some predefined
criteria. Those subtasks can be predefined and used to guide the process execution. For example, it
might be defined that whenever a change request requires an adaptation of an approved document,
the change request has first to be approved following a predefined procedure and each change in the
document has to be reported to all stakeholders influenced by the change. Process execution should
thus in general be unrestricted, but support the execution of predefined procedures (sub tasks)
whenever possible. Examples for areas in which such kind of support is required are method-
conform development of conceptual models [20], [21], ensuring consistency between design
documents [24], managing inconsistencies during system development [25], or constructing and
simulating flowsheet models for chemical plants [26].

1.3 Providing Integrated Method Guidance

A prerequisite for method guidance is that there are efficient ways to communicate the project-
specific method definitions to the stakeholders and, as far as possible, ensure that the stakeholders
actually apply the definitions during process execution. There are three principal solutions to
achievethis: handbooks, separate guidance tools, and integrated guidance.

Handbooks: This kind of support is widespread in current industrial practice, where guidelines
and instructions for performing a process or task are provided in handbooks. The usual way of
orchestrating method support in the handbook and the actual process performance is: during a
learning phase each stakeholder learns the guidelines, instructions etc. If the humans performing
the process/task do not remember the guidelines in the corresponding situations, the method
support will not be used. In other words, the actors must know what are "legal” or "good" steps
according to the handbook and under which circumstances these steps can be applied. Of course,
the stakeholder can use the handbook as reference manual to look for details concerning the
method definitions (support), but they have to know (and remember) when to look and for what.

Changes in the project-specific definitions cause obvious problems: each potential actor must be
informed about the change and it must be ensured, e.g. by training, that everybody adapts his/her
knowledge according to the change. Using handbooks for providing method guidance also hinders
method improvement. The method definitions can be of high quality, but can be neglected during
task performance. If the method definitions are neglected, the recorded trace and monitoring data
can wrongly indicate the need for a method improvement.

Separate Guidance Tools: In contrast to handbooks, a separate guidance tool offers direct
support for the process performer. It presents the project-specific method definitions applicable in
a given situation to the stakeholders. Such a tool can range from a web-based browser providing
selective access to the documented method guidance to a task manager which guides, e.g., the
engineer by notifying him about the task to be performed next. Moreover, the guidance tool can be
empowered to invoke the execution of an action or tool, to set up a special working environment,
or to remind the stakeholder about existing definitions. If project-specific adaptations of the
method definitions are integrated in the guidance tool, then the new definitions are immediately
used during process execution by all actors. Furthermore, the performance of a task can be better
controlled, monitored and traced. Thus, compared with a handbook, a guidance tool offers
significantly better support.

Nevertheless, providing project-specific method guidance in a separate tool has some
shortcomings such as:

- The number of user interfaces increases. The user has to interact with the tools used to
perform the tasks and with the guidance tool to report the status of task performance. Thisis
especially difficult if detailed feedback information is required.

- Process performance and guidance are not integrated. The task performer is responsible for
keeping the guidance tool up to date, e.g. reporting the execution of an action, the results, the
actual state, etc. It can thus not be ensured that the current task status of the task performance
is known in the guidance tool.

- Guidance is typically coarse grained. The separate guidance tool has only limited knowledge
about the actual process state which is mainly restricted to abstract document and task states.
In contrast to the interactive engineering tools a separate guidance tool does not know the
states of each product component nor the actions actually being performed. As a
consequence, the guidance offered istypically at amore abstract level (coarse grained).

- The actor can execute another action, but report the execution of the action suggested by the
guidance tool. Thus the feedback information can simply be wrong, imprecise or idealized to
meet certain expectations. Capturing wrong traceability information can lead to unintended
method "improvement™ (it can even spoil the method definitions).

Separate guidance tools such as task managers are typically being used in PCEs to inform the
user about the enactment state and to obtain feedback information about the execution of a task.

Integrated Method Guidance: The limitation of a separate guidance tool can be avoided if the
project-specific method guidance is integrated into the interactive tools used to perform the
activities or tasks, eg. a tool for handling insurance claims, a CAD tool or a UML editor.
Integrating method guidance into the interactive tools means that the interactive tools

- inform the user about the actual method definitions applicable for the current situation. This
includes to notify the users about existing method guidance for performing the activity and/or
task at hand;

- guidethe user in choosing among defined alternative ways of performing an activity or task;

- remind the user if the actual task performance leads to a violation of the best practice
definitions, e.g. to datainconsistencies;

- restrict the services provided according to the method definitions. For example, if the method
definition does not allow a specialization of an entity in certain situations, the tool should
disable the functionality.

The advantages gained by providing integrated method guidance are:

- The stakeholders need not necessarily be aware of the project-specific method definitions
since their interactive tools act as on-line assistant during process performance.

- Updates of the method guidance are directly available in the tool environment of each
workplace.

- Less training effort on “best practices” is required. Integrated method guidance ensures that
the "best practice" is actually being applied, and thus products of higher quality are produced,
errors are avoided and expensive rework is reduced.

Integrated method guidance should, however, not be too restrictive. The user should always be
able to neglect the method guidance offered and to abort the method definition being enacted.

Technically, integrated method guidance can be achieved by either hard-coding the guidance in
the tool environments or by providing the guidance based on the interpretation of explicit method
definitions. Hard-coding the method guidance might be well suited for domains in which the defined
best practice (method guidance) is stable. If there are frequent changes in the method definitions
(like in creative processes) method guidance should, similar to process guidance in PCEs, be based
on the interpretation of explicit method definitions.

To empower the tools in the performance domain to offer model-based, integrated method
guidance and to provide detailed feedback information according to the method definition, a better
integration of the engineering tools and the enactment mechanism is required. Such an integration is
also essential for achieving a synchronization of the enactment and performance domains. The
synchronization is required to adjust the support offered to the current performance state and to
provide sufficient feedback information. The need for a tighter integration of the enactment and the

performance domains has been widely recognized, e.g. [27], [3], [28], [29], [30], [31], [32],[33], [5],
[34], [4], [35], [36], [37], but no systematic approach has been proposed so far.

1.4 Structure of this Paper

To achieve model-based, integrated method guidance, we argue in this paper that the interactive
engineering tools of the computer-based environment must be process-integrated. In Section 2 we
define a set of requirements for process-integrated environments (PIES).

Towards an ideal solution for achieving these requirements we sketch the basic ideas underlying
our PRIME framework (Section 3). We show that process-integration of tools can be achieved
through

- the definition of the tool capabilities in tool models, the integration of the tool models with
the method definitions and the interpretation of the so gained integrated environment model
during process execution (Section 4);

- anintegration of the enactment and performance domains by an inferaction protocol and a
process aware control integration mechanism which controls message distribution based on
the interpretation of the integrated environment model (Section 5).

Based on these integration ideas, we derive an architecture for process-integrated modeling
environments, called PRIME (Section 6). The generic architectural components of PRIME have
been implemented as an object-oriented implementation framework.

To facilitate the process-integration of legacy tools we outline an extension of the generic tool
architecture of the PRIME implementation framework and elaborate on a set of APIs (application
programming interfaces) to be provided by a legacy tool to be fully process integrable. Using those
extension we sketch the process-integration of VISIO, acommercial CAD tool (Section 7).

For building a PRIME-based process-integrated environment (PIE) we outline a six-step
procedure (Section 8) and demonstrate how PRIME supports the integration of changes on an easy-
to-adapt modeling level (Section 9). Finally, we summarize the main contributions of the PRIME
framework and provide an outlook on future work (Section 10).

PRIME has been used to implement two prototypical process-integrated environments, PRIME-
CREWS and TECHMOD. Throughout the paper we refer to the two environments for illustrating
certain aspects.

2 Requirements for Process-Integrated
Environments

In the enactment domain, method definitions” are enacted to drive the modeling process. In the
performance domain, humans use (interactive) tools to execute the proposed method or process
steps. Providing integrated method guidance for the engineers requires an integration of the
enactment and performance domain. Such an integration mainly has to cope with aspects of data,
control and process integration. While we share Wasserman’s view on data and control integration
[38] (see also [39]), we claim that process integration requires certain features which are not
discussed in literature so far.

The requirements daborated in the next subsections are thus significantly more comprehensive
than those discussed, for example, by [40], [3], [28], [30], [31], [37],[41], [32] whose analysis is
mainly based on the weak integration of the enactment and performance domains in existing PCEs.
They dlightly extend the requirements discussed in [42].

2.1 Data Integration

The process engine must pass data to the tools of the performance domain such as parameters of a
service regquest. The tools return feedback information to the enactment domain, for example, the
results obtained from executing the requested service.

Both kinds of data exchange require an agreement about the information to be exchanged. The
data to be exchanged can be coarse-grained or fine-grained depending on the granularity of the
method definition. Roughly speaking, data integration can be achieved by defining a common data
base schema and recording the data in a logically centralized database (such as PCTE [43], [44]),
and/or by agreeing on the data and their format for each message type (e.g., CDIF [45], XMI/SMIF
[46]). Whereas the second kind of integration requires that the data is actually included in each
message, the first one enables the exchange of object identifiers or views on the common data base
which is especially convenient and efficient for exchanging large amounts of data.

2.2 Service Integration

A tool service is a functionality provided by a tool which can be called from outside such as the
creation of a certain artifact, the compilation of source code, or printing a document. Tool services
can vary in their complexity. To ensure that the tools of the performance domain can execute the
services requested from the enactment mechanism, the tools must be considered when defining
method definitions.

2 For the process-integration requirements discussed in this sections, the terms method
definitions/models can be seen as equivalent to process definitions/models.

10

Therefore, the method engineer has to collect information about the available tools, their
services and the service invocation such as parameters required from various sources such as
manuals, program documentation, personal knowledge and/or experience. Considering the
heterogeneous environments and work settings which exist today in industry, mechanisms are
required which systematically support the method engineer in finding and assigning adequate tool
support to certain method steps. If the capabilities of the tools like their services and the in and out
parameters of the services are defined at a conceptual level the method engineer can be supported in
relating the tool services to the method definitions. For example, the tool and method definitions can
be compared and discrepancies, such as lack of sufficient tool functionality or wrong assignments,
can be detected.

Current process modeling formalisms lack comprehensive modeling concepts for representing
tool resources at the same conceptual level as processes. They offer only limited, low-level
constructs for representing service invocation. Examples include the black transitions in SPADE [7],
or the wrapping techniques for the black-box integration employed in the OZ environment [32],
[36].

2.3 Invocation of Method Fragments

Methodical support for creative processes cannot be fully predefined. Many criteria which
influence the actual performance are not known a priori and some method steps themselves are
poorly understood. The actual method execution is thus often driven by humans who, depending
on the given situation, decide what to do next. Method execution depends on intelligent and
creative individuals who make the right decisions. It is thus important that the computer-based
environment does not restrict the humans in their creativity.

On the other hand, even in creative processes there exist steps which are well understood, do not
depend on unknown criteria and, thus, can be predefined and must be followed [47], [4]. Examples
for such "steps' are the integration of change requests of formally approved documents,
documentation and traceability guidelines imposed by a contract, or the assessment of the
creditability of a customer. To increase the productivity and the quality of the product under
development, such method knowledge should be used, whenever possible, to guide the engineer. As
a consequence, the understood steps should be defined in, what we call, method fragments.

In contrast to a method definition which typically defines a whole method, a method fragment is
a partial definition which specifies the guidance for a well understood method part. Nevertheless, a
method fragment can and should be used to guide the users of a computer-based environment
whenever the current situation demands/indi cates the execution of the method fragment.

The computer-based environment should, of course, support the user in the invocation of a
predefined method fragment. Process-integrated tools must thus provide means for initiating the
execution of predefined method fragments. This can be achieved by comparing the current process
situation with the method fragment definitions.

11

2.4 Process Sensitive Tools (Informing the User about the
Enactment State)

A tight integration between the enactment and performance domains can only be achieved if both
domains consider the process status of each other. The enactment domain has to consider the
current performance state for deducing the steps to be performed next (Section 2.5), whereas the
current enactment state has to be reflected in the performance domain.

Only if the user is aware of the enactment state and the method definitions she or he is able to
understand the guidance provided by the enactment domain. Moreover informing the user about the
current enactment state (i.e. the current performance state assumed by the enactment domain)
empowers the user to correct wrong and change undesired states. In existing PCEs the enactment
dtate is, if a all, typically accessible for the user via a separate user interface (tool). As a
consequence, the actual state is often not considered when interacting with the computer-based
engineering tools. To ensure that the user is aware of the current enactment state, we argue that the
interactive tools used should be process sensitive.

A process sensitive tool adapts its behavior (the user interactions allowed and the services
provided) according to the current enactment state and the method definitions. For example, the
selectability of product parts may be restricted to the ones allowed in the current state, or the product
parts on which a service can be performed might be highlighted to draw user attention to them.
Moreover, a process sensitive tool empowers the user to activate predefined method fragments.
Since method fragment definitions are subject to frequent change, the activation of predefined
fragments should not be hard-coded in the tool. Instead, the activation should be based on the actual
method fragment definitions. In other words, the tools have to be process-aware and have to know
the activation criteria for the defined method fragments.

Supplying the performance domain with knowledge about the enactment state is straightforward
in situations where a particular service has to be performed on a specific product part. In this case,
the relevant product parts are passed as parameters of the service request. For example, if the entity
"book" should be deleted, the entity "book" is passed as parameter of the delete service.

If there are alternatives among which the user can choose passing the required information to the
performance domain is much more complicated. The enactment domain must inform the tools about
the alternative services (strategies) allowed and the product parts on which the services can be
applied. For example, assume that for integrating a certain type of requirement, the user can choose
between two alternative services, namely the definition of a new entity and the refinement of an
existing entity. To guide the user, thetool must display the allowed alternative services together with
the existing ER-diagram. Moreover, the tool should only enable the selection of entities since the
two services can only be performed on entities. Attributes, relationships, role names and cardinalities
should thus not be selectable.

12

2.5 Feedback Information (Informing the Process Engine
about Performance State)

For adjusting the enactment state according to the actual process execution, the performance
domain must provide feedback information about service executions. The data to be exchanged
depends on the service executed. Consequently, the feedback data has to be defined as out-
parameters for each service type (see service integration above). In addition, information about the
current performance state including unforeseeable events such as a process deviation have to be
provided. This information can either be created by observing (monitoring) activities, or directly
provided by the user.

Technically, a control integration mechanism should be used to take care of correct distribution
of the feedback information.

The problem of gathering feedback information from the performance domain has been widely
recognized. For example, SPADE [7] has introduced a specific Petri-Net construct, the user input
place. Message events generated by the tools have to be reified into tokens of such places. In
Provence [48], [49] the enactment mechanism captures events from the performance domain via a
monitoring system for operating system traps such as file system accesses. But mapping
performance domain events to feedback information understood by the enactment mechanism is by
far not trivial, e.g. deducing that saving afile in a text editor means that a bug fix in the source file
has been compl eted.

2.6 Synchronization of Enactment and Performance Domains

The definition of an interaction protocol and its consideration within each domain is a prerequisite
for synchronizing the states of both domains. In current PCEs, the interaction between the
enactment domain and the tools is typically established by an implicit client-server relationship:
The enactment domain acts as a client which requests the execution of a tool service. Conversely,
the tool plays the role of a server which executes the service and returns the results (feedback
information) to the enactment mechanism. This simple cooperation pattern is sufficient as long as
we consider traditional tools which are not process-integrated.

The more active role of process-integrated tools (Section 2.3 - 2.5) requires an interaction
protocol between the two domains more eaborated than the client-server. Such a protocol should,
for example, distinguish between different process states such as normal process performance,
process deviations, the performance of automated services, or user choices.

2.7 Process-Aware Control Integration Mechanism

In contrast to service integration, which considers the service interfaces, a control integration
mechanism is required for transmitting particular service requests and feedback information

13

between the components of a process-integrated environment. A control integration mechanism is
responsible for passing the requested service to a tool which is able to execute the service. To
enable correct physical distribution of the service requests and the feedback information provided
after service execution, the control integration mechanism has to be aware of the services provided
by a particular tool. In addition, service and feedback distribution have to consider relevant
knowledge defined in the method model. For example, when distributing a service the control
integration mechanism has to consider if the model restricts the allocation of possible resources
needed for performing the service, or if the model explicitly defines a particular service provider.
Thus, either the control mechanism must be process-aware, i.e. it must know the relevant parts of
the actual method definition, or the enactment domain must instruct service distribution according
to the method definition. Most existing PCEs (e.g. SPADE [50], MELMAC [11], Merlin [51],
Process WEAVER [12]) offer neither a process-awareness of the control mechanism nor the
ability of the enactment domain to control service distribution.

Existing control integration mechanism like FIELD [52], BM S of HP's Softbench [53], Tool Talk
[54], CORBA [55] or (D)COM [56] provide an excellent foundation for implementing a process-
aware control integration mechanism.

3 PRIME: Key Solution Ideas

Our PRIME framework provides solutions to the seven requirements discussed in Section 2.
PRIME is based on three basic ideas:

1. The explicit definition of fool models and their integration with method definitions (Section
4). We argue that, from a modeling perspective, tools should no longer be treated as second
class citizens. Instead, the capabilities of tools should be explicitly defined and related with
the process/method definitions. The integration of the tool and the method definitions forms
an environment model which lays the foundation for the process-integration of the interactive
engineering tools and for atighter integration of the performance and enactment domains.

2. The integration of the performance and the enactment domains (Section 5). The
synchronization of both domains is achieved by a comprehensive interaction protocol which
defines the principal behavior of both domains. The interaction protocol defines a richer
interaction pattern which, in contrast to most PCES, empowers both domains to act as a
client. The enactment domain can regquest the execution of tool services and the performance
domain can request the enactment of predefined method fragments. Model conform
distribution of service requests and feedback information is guaranteed by the process-aware
control integration mechanism which controls message distribution based on the
interpretation of the environment model.

3. Generic architectures for process-integrated tools and enactment mechanisms which,
together with a process-aware control integration mechanism, comprise the PRIME

14

implementation framework (Section 6). Both architectures ensure that method execution isin
accordance with the environment model and the interaction protocol. The generic tool
architecture facilitates process sensitivity by supporting the invocation of predefined method
fragments and guaranteeing that the guidance provided to the user corresponds to the method
definition and the current process situation. The generic enactment architecture handles
enactment requests of the performance domain by enacting the requested method fragments
and provides means for an easy integration of existing enactment mechanisms.

modeling domain methed fragment definition performance domain

toof definition
environment mode/ generic

tool

@ architecture
Section 5 I \§ :

integration of performance

and enactment domains
O process aware control integration
O interaction protocol

models

instantiated

methad fragment
<]
=)
Section 4

tool models & their integration
with method definitions
[data integration

O service integration
O foundation for Q
O process sensitivity @
O correct feedback information 5 -
O invocation of process fragments generic Section 6 '
| process engine "
hitect generic tool and enactment
architecture Q] [g architectures
0 process sensitivity
E] O correct feedback information
O invocation of process fragments

enactment domain

Figure 2: The three key solution ideas of PRIME. <pohl2.ps, pohl2.tif >

Comparison with Related Work

Whereas the main focus of PRIME is to establish integrated, model-based method guidance
based on a tight integration between the enactment and the performance domain (i.e. the process
engine and the interactive tools used to perform the process), most research contributions do not
consider the integration of tools in PCEs although the problems of a posteriori integration of existing
CASE tools have been widely recognized (e.g.[19], [34], [57], [31]). Bandindlli et al. argue that

"a posteriori tool integration (e.g. by means of wrappers) could be less effective since a

tool is still seen as a monolithic ‘operator’ " [50].
Consequently, existing PCEs do not offer process-integrated tools.

An exception, where means for white-box integration are offered, is the GTSL approach [29]
developed within the GOODSTEP project [58] which aims at the generation of specific tool
services, schemata, and consistency checks from tool specifications which are coupled with process

15

models. GTSL mainly provides solutions to the service and data integration problem, but does not
provide means for the invocation of method fragments or for dynamic adaptation of the tool
behavior according to the process definition and the enactment state.

Meta-CASE environments like M etaEdit+ [59] are based on the generation of tools according to
a specification. They focus mainly on notational aspects, but lack process-orientation (see [60] for a
detailed comparison of the complementary adaptability mechanism provided by MetaEdit+ and
PRIME).

Existing process modeling languages focus on the constructs and their semantics needed to
define processes and enactment mechanisms which can be used to interpret the definitions. They
mainly neglect tool definitions. Some provide low-level constructs for the invocation of foreign
programs like black transitions in SLANG [7], or the binding of abstract process operators to tools
during process instantiation in ALF [61].

Control-oriented tool integration approaches like FIELD [52] and its commercial derivatives
(such as HP's BMS [53] and Sun's ToolTak [54]) as well as object-oriented distribution
infrastructures like CORBA [55] or (D)COM [56] store tool (service) descriptions in the interface
repositories accessed by the message servers/object brokers. However, they provide limited means
for defining processes.

As a consequence, if at all, tool and process models coexist in the message server repository and
in the process repository without a systematic approach for assuring consistency. Many PCEs like
SPADE [7], Process WEAVER [12], EPOS [62], and Merlin [51] employ such mechanisms for
invoking tool services, although the tool models used by the message server and the process models
used by the enactment domain are not (systematically) integrated.

Tool invocation in existing PCEs is mostly restricted to the invocation of "atomic" tool actions
or services. User guidance by adapting the accessible objects and operations through guidance
services is not (systematically) supported. The interactive tools of existing environments are not
process-integrated.

In the Multi-Tool-Protocol (MTP) approach [36] the single/multi-user and single/multi-task
capabilities of tools are explicitly defined. The explicit tool classification empowers MTP to provide
better tool invocation support than conventional black box approaches. In contrast to PRIME, MTP
does not provide any means for facilitating the adaptation of tools according the process definition
and the actual process situation (enactment state). Nevertheless, the actual tool invocation in a
PRIME based environment could make use of the M TP facilities.

The FIELD-based Forest environment [63] is an attempt to establish a central description of
processes and tools. Forest extends the tool-related message distribution patterns stored in the
message server by so-called policy descriptions which can be regarded as primitive process
definitions. Although this approach improves the integration of tool and process models it provides
no systematic means for establishing process-sensitive tools. It does also not support the invocation

16

of method fragments, and thus, similarly to most other PCEs, it does not allow a more active role of
the humans executing the process which is one of the main achievements of PRIME.

Especially in desktop environments (Windows, MacOS), the document-centered paradigm has
become more and more popular in recent years. Document models such as OLE [56] or OpenDoc
[64] provide the technical foundation for blurring the boundaries between individual tools in that
certain functionality is (from a presentation perspective) no longer bound to specific tools but to
document objects. Document objects can be nested within container documents forming so-called
compound documents. The tool functionality is then presented to the user, eg., through context-
sensitive menus which display only those functions which are applicable in the seected document
context. In this sense, the “document acts as an intelligent assistant of its user” [65] and the
individual tools providing the operations on the documents step aside from a user perspective.
However, the context sensitivity in the document-centered paradigm mainly deals with the functions
which are bound to the currently activated document context. It is not coupled to any method or
process definitions. Functionality across documents defined in method or process definition is thus
only rudimentarily supported. Moreover, there is no generic, model-based mechanism for defining
functionality across documents nor for attaching the invocation of method fragments to certain
document parts or even product constellations across different documents.

In summary, the need for tighter (process) integration of engineering tools was recognized and
some partial solutions to the problem exist. So far, no comprehensive approach was proposed which
establishes process-integration of tools and, in addition, enables the humans performing the process
to play a more active role.

4 Integrated Tool and Process Models

According to the requirements discussed in Section 2, ther@raeeypes of services in process-
integrated environments (PIE): automated, guidance, and enactment services [42].

Automated services require no user interactions and are executed by the tool according to the
service request obtained by the enactment domain. An example for an automated service is the
compilation of source code or the automated recording of traceability information.

Guidance services guide the user in making a selection among a set of alternative services
and/or product parts. If the execution of@dance service is requested, the tool must adapt its
behavior (the services offered and the product parts displayed at its user interface) according to the
method definition and the information obtained with the service request. An example for a guidance
service is the refinement of an entity type which defines two alternatives: introducing a
discriminating attribute or specializing (subtyping) the entity type. The tool has to display the
defined alternatives to the user (e.g. as menu options), and the user has to choose the alternative to
be executed.

17

Enactment services enable the tools to request the enactment of a complex method fragment
from the enactment domain. An example for a complex method fragment is the "subtyping” of the
entity. This fragment consists of a set of steps (services) which have to be performed in a certain
order. Thus, the fragment has to be enacted by the process engine. If the user chooses the subtype
aternative the ER editor has thus to request the execution of the complex method fragment by the
process engine.

Since a method model defines when and how a service (method fragment) should be performed,
the process meta model (process modeling language) must provide appropriate concepts to define
the three service types as well as their situated invocation (Section 4.1).

The tool model defines the services provided by a tool. A tool meta model (tool modeling
language) must thus provide appropriate concepts to define the capabilities of the interactive tools
used to perform the services (Section 4.2).

In Section 4.3 we describe the integration of the tool and process/method meta models into the
environment meta model. In Section 4.4 we summarize the contribution of the environment meta
model to the process-integration requirements outlined in Section 2.

4.1 The Process Meta Model: Defining Method Fragments

To define the three service types we suggest to use the contextual process meta model devel oped
inthe ESPRIT project NATURE (see [66], [67], [68], [47], [4] for a detailed description). Figure 3
introduces the key concepts of the meta model and their relationships using the OMT notation
[69].

Briefly, a situation is built from product parts of the product undergoing the development
process. An intention reflects the goal to be achieved in a given situation. A context represents a
meaningful relation between a situation and an intention. Thus, the meta model provides concepts
for the explicit representation of situations and the goals to be achieved in such situations. The
notion of context is further refined into executable, choice and plan contexts:

- Executable contexts represent the part of the definitions which can be strictly enforced, or
even automated. An executable context is operationalized by performing the action related to
this context. Performing the action changes the product and may thus generate new
situations;

- Choice contexts represent the part of the definitions in which the user has to make a decision.
For each choice context, at least two alternatives must be defined. An alternative can be
another choice, executable, or plan context. For each alternative, arguments (pros and/or
cons) can be provided to guide the application engineer in choosing one of the alternatives,

- Plan contexts define a strategy to be followed to fulfill a particular intention (goal). A plan
context defines a certain order on a subset of arbitrary contexts. It can be used to enforce the

18

application engineer to deal with the contexts in the order defined. It thus corresponds to an
enactment service provided by the process engine.

related_situation related_intention
Situation Intention
O
composed_of 2+ .
based on
1+
I I con pro
Plan Choice
Context Context
changes
Argument
(@) applied
b
Product Action ——2—g Executable
Context

Figure 3: The NATURE process meta model [47], [66].

4.1.1 Defining Method Fragments Using NATURE's Process Meta
Model

To define method guidance, the process meta mode has to be instantiated. Thereby a concrete
method definition is established. The definition of automated and guidance services is
straightforward.

Automated services are defined as executable contexts. For each executable context, the situation
and the intention which together specify the activation criteria have to be defined. Moreover, each
executabl e context has to be related to the action to be performed whenever the executable context is
activated.

Guidance services are defined as choice contexts. Similarly to executable contexts, also for each
choice context a situation and an intention has to be defined. Moreover, for each choice context the
allowed alternatives have to be defined. In addition, for each alternative arguments supporting or
declining their choice can be defined.

Enactment services are defined as plan contexts. Whereas the definition of the criteria for
activating a plan context (situation and intention) is similar to the definition of executable and choice
contexts, the definition of the plan itself is more complicated. According to the process meta model a
plan context is composed of a set of choice, executable, and/or other plan contexts. In addition, the
sequence of activation of those contexts has to be defined by some kind of control flow. Thus, the
definition of the plan context requires a language with higher expressiveness. For defining the
control flow of plan contexts, we do not argue to extend the contextual meta model with additional
concepts and an operational semantics. Rather, we suggest to represent the concepts of our model in

19

an existing process modeling language which supports the definition of control flows and has an
operational semantics. The main requirements for such a language are enactability, modularity for
enabling the invocation of fine-grained method fragments, and composability for nesting method
fragments (arbitrary contexts). If a particular language has been chosen, the three context types and
the notion of situations and intentions must be represented by concepts provided by the language.

4.1.2 Service Definition in SLANG

For our prototypical environments (see Section 8.2) we have chosen the Petri-Net language
SLANG [7] and the imperative language C++. In both languages we have defined templates which
support the definition of the three context types. In the following, we sketch the context definition
in SLANG.

Plan contexts and choice contexts are modeled as sub-nets in SLANG. Executable contexts are
modeled as transitions (depicted as gray bars; see Figure 4). The situation type and the intention of
each context is mapped within a SLANG net to a set of situation places (depicted as circles
enclosing a square) and an intention place (depicted as circles enclosing a triangle). Each situation
place carries structured tokens representing the product parts of the corresponding situation type.
Thus, for each transition and for each sub-net representing a context, a set of "entry" places is
defined. Similarly, "output" places are used to define the result of the execution of a context. In the
case of executable and plan contexts, the output consists of a set of places representing the
created/changed product parts. The result of a choice context is defined by a set of situation/intention
place pairs which represent the possible alternatives of the choice context.

To activate a context defined in a SLANG (sub)net, the required tokens must be moved into the
corresponding situation and intention places, e.g. by mapping the output places of a preceding
context to the "entry" places of another context and by filling its intention place through additional
transitions. We call such additional transitions control transitions (see[70] for details).

4.1.3 Defining Method Guidance: An Example

To illustrate the definition of a plan context in SLANG we specify the method guidance for
subtyping an entity type and adjusting the corresponding data flow diagrams.

The subtyping of an entity type is likely to influence the definition of the data flow diagrams
(DFDs). For example, the entity being subtyped could correspond to a data store defined in a DFD.
In some cases it is useful to refine the effected data stores and/or the adjacent data flows or even to
create new processes which operate differently on the refined DFD dements. The guidance is thus
defined as plan context PC_SubtypeEntityAndAdjustDEFD.

Figure 4 depicts the specification of this plan context in SLANG. Within the plan context
PC SubtypeEntityAndAdjustDFD the subtyping of an entity is defined by the plan context

20

PC SubtypeEntity (see upper |eft part of Figure 4). This context is activated by the start transition
which maps the tokens of the situation place EntityToBeSubtyped to the situation place SuperEntity
and fills the intention place SubtypeEntity. The data stores and adjacent flows related to the subtyped
entity areretrieved by the executable context EC GetDependentObjects. The situation places of this
context consist of the source object (pre-filled with the entity type to be subtyped) and the target
types of the dependent objects to be retrieved (pre-filled with a token of the type DFD Element). A
token is moved into the intention place of the executable context EC GetDependentObjects after the
plan context PC SubtypeEntity has been executed. The intention place GetDependentObject is
defined as output place of the plan context (cf. Figure 4). This activates the executable context
EC GetDependentObject which retrieves the dependent objects. Those objects are passed to the
output place DFD Elements.

According to the definition of the plan context PC SubtypeEntityAndAdjustDED, the user can
choose which DFD dement is going to be adapted first, i.e. the place DFD FElements is defined as
situation place of the choice context CC Adapt DFD Element and the intention place of this
context is filled after the executable context EC GetDependentObject has been terminated. In
addition to the DFD dement, the user has to choose one out of the four alternatives defined for this
choice context (middle part of Figure 4):

- Adapt the selected data flow element: Method guidance for the adaptation of the DFD
element is defined as plan context (PC AdaptDFDElement). Among others, the plan context
contains a choice context offering three different alternatives to the requirements enginesr,
namely to specialize an adjacent data flow of the data store which corresponds to the
specialized entity, to specialize the data store itself, or to partition the data store and
introduce new processes and flows which operate differently on the data stores;

- Add to the task This alternative is defined as executable context EC AddToTasklist which
adds the adaptation of the selected DFD element to the open task list of the requirements
engineer;

- Leave DFD element unchanged. The executable context NoChangeRequired removes the
token representing the selected DFD element from the place DFD_Elements, i.e. by choosing
this alternative the requirements engineer indicates that the selected DFD element (or
elements) need not to be changed;

- Quit adaptation: If the engineer chooses this alternative she or he indicates that the remaining
DFD Elements need not to be adapted and thus the plan context
PC SubtypeEntityAndAdjustDFD terminates.

Subt ypeEntity @ @ Entity To Be
Subt yped

@(j// Get Dependent \@ DFD_El ement
jects Sour ce =
Subtype Super) Sour ce e
Entity Entity \ i i Targe
PC_SubtypeEntity l e ienendentcojlecls l
/ L

;@Adap! DFD @ DFD Source

El enents B enents ~ Obj ect

CC_Sel ect
Intention Place DFDEI enent

S tuation Place @‘@(@‘{?{ B} QD;D"EEE\Q

El enents ‘
No Change

Control Pl ace PC_Adapt
DFDEl ement Requi r ed
l:| Control Transition ‘ | ‘

[] exccutavie context \ v J
—_—
Sub- Net
(Choi ce/ Pl an Cont ext)

O O O

EC _AddTo
TaskLi st

Quit
Adapt i on

Figure 4 : SLANG definition of the plan context PC SubtypeEntityAndAdjustDFD.

We will reuse this plan context to illustrate the assignment of executable and choice contexts to
specific tool categories (Section 4.3) and to demonstrate the dynamic adaptation of the tool behavior
(Section 8.4).

4.2 The Tool Meta Model: Defining Tool Capabilities

Representing methods and tools at a conceptual level is a prerequisite for comparing and mapping
the services defined in the process'method model with the services offered by the tools of the
environment. For achieving process-sensitive tools we propose to model tools not only in terms of
the services provided (as in other PCE approaches), but also in terms of their graphical user
interface and interaction capabilities.

In the following, we outline our tool meta model which was designed to facilitate an easy
integration with the contextual process meta model. The cornerstone of the tool meta model is the
concept fool category. By instantiating this concept the tool categories provided in the environment
are defined such as an ER editor or DFD editor (Figure 5). The atomic services (actions) provided by
a tool are defined as instantiation of the concept action like the action CreatelsALink. In addition,
each atomic service (action) is related to the tool category via the provides action association. For
example, by instantiating this association one can define that the £R Editor provides the action
CreatelsALink. As a prerequisite for data integration the input and output parameters for each action
have to be defined like the input of the CreatelsALink action (the super and sub entity type) or the
output of the action (the created Is4Link; cf. Figure5).

22

The graphical presentation of the product parts is defined as instantiation of the association
displays between a graphical shape and a product part provided by the tool. As depicted in Figure 5
it can be defined that an Entity (instance of Product) has to be displayed as a Rectangle (instance of

GraphicalShape).
input : Tool Meta Model
Product N Action
e LD ,‘y\ +
1+ o 1+
i 4 \\\ VA \‘,\ provides
LI \ action
displays S\ A%\ 0 providescommand | command
ion AN \ N 1+ Tool 1s 1+ | Element
: | AU) Category ;
2+ I‘\, \y‘ \\\ \\ ',‘\ \‘\ "“ ‘E | iii |
Graphical | { | LB) :" i command Pull-Down Control
Shape || VAN N i Icon Menu Key

! \ \

N \ v AR \ i Z z 4

: P LN \ P A A N
— ; > 7

v
\‘ x“\“ \"
“ \ I
v Create
- IsAlink
\

ER
Editor

”’
Ctri-l

Tool Model

Figure 5 : The tool meta model.

Besides the capabilities of a tool for displaying product parts, also the interaction capabilities
have to be defined. We assume that each tool enables the selection and de-selection of product parts
and thus we do not model these interactions. In contrast, the CommandElements provided by a tool
have to be explicitly defined. We distinguish three types of such capabilities, namely
PullDownMenu, Controllcons and ControlKeys®. For example, the three pull-down menus provided
by the ER editor (Document, Edit, Preferences) are modeled as instances of the concept
PullDownMenu and related to the ER editor through instantiations of the provides command
association. Similar, the control key supported by the ER editor (Crr/-I) is defined as instance of the
class ControlKey and related to the ER editor.

* We currently support mainly window-based, interactive tools which enable user interactions via
icons, menus, shortcuts and pointers. If other interaction facilities are required the tool model has
to be adapted by defining corresponding concepts and relating them to the tool model and to the
context definitions (see next section for details about the interrelations between the tool and the
process definitions). However, as explained in detail in Section 6.2 the tools used in the
environment must be ableto interpret the models and adapt their behavior accordingly.

23

4.3 The Environment Meta Model: Interrelating Process and
Tool Meta Models

The process meta model provides concepts for defining method fragments in terms of executable,
choice and plan contexts. The tool meta model provides concepts for defining the capabilities of
the tools available in the environment. By interrelating the tool and process meta models an
integrated meta model, the so-called environment meta model, is formed which defines how and
by whom a context has to be executed.

Since the tool meta model was designed with this interrelation in mind, the integration of the
tool and process meta modelsis fairly easy. The integration can be achieved by defining three types
of association between the two models (see Figure 6: dashed lines).

related_situation related_intention process meta model

Situation

tool meta mode!

based_on

L]

relations between

Plan Choice

!
! shared concepts
!
!
!

h Context Context tool & process mod.
changes
L ¢ Argument -
Q input apg[ied I
Product Action |——2—| Executable I display_of
Context intention
output T I -
T+ 1 .
|\1+ provides P éoh\gz:s l
provides Executable | I Context l

action Context

provides command Command
. Element

Graphical
Shape

Figure 6 : Environment meta model: Integrating process and tool meta models.

4.3.1 Relating Tool Categories and Executable Contexts

Each executable context defined in the process mode has to be associated with the tool category
responsible for executing the context. This responsibility is represented as an instance of the
association provides executable context (Figure 6). For example, if the executable context
EC CreateEntity is related to a tool category ER Editor the ER editor has to perform the action
associated in the process model with this context.

Given an executable context £, the associated action 4 and a set of tool categories 7; - 7, we
distinguish three types of assignment:

24

- automated assignment. If there exists exactly one tool category 7; which offers the required
action 4, thistool category can automatically be associated to the executable context £

- choice of tool category: If there exist two or more tool categories 7; - 7, which offer the
required action 4, the method engineer must relate exactly one tool category with the
executable context £;

- lack of tool support: If no tool category provides the required action, a new tool action has to
be implemented in a tool and defined in the corresponding tool model, or the process model
has to be changed.

For each assignment between a tool category and an executable context two consistency checks
can be performed to ensure that the input and output defined for the tool action in the tool model
corresponds with the process model definitions.

Constraint E1: Ensure that the output associations defined in the tool model between the action
and the product parts are subsumed by the change associations defined for the action in the
process model. Given an action A. Let P, be the set of product parts related to 4 in the tool model
using output associations and P, the set of product parts related to 4 in the process model via
change associations. Then, P, must be a subset of P,..

Constraint E2: Ensure that all product parts defined as input for the action are subsumed by the
situation of the executable context related to the action. Given an action A. Let P; be the set of
product parts related to A in the tool model via input associations. Let £ be the executable context
associated to the action 4 in the process model, S its situation and P; the set of product parts
defined for the situation. Then P; must be a subset of P.

Only if both checks are successful, i.e if the input and output parameters defined in the tool
model correspond with the process definitions, the tool category can be assigned to the executable
context.

4.3.2 Relating Tool Categories and Choice Contexts

Each choice context has to be related to exactly one tool category by a provides choice context
association. Thereby the tool category assigned to the choice context is made responsible for
performing the choice context. Thereby a new guidance service is defined for the tool category.

In addition, for each context C; defined as alternative of the choice context CC the presentation
of the intention / related to the context C; has to be defined. Since an intention like the intention
delete can be associated with more than one context, for example, the contexts deleteEntity and
deleteAttribute, a context dependent presentation of the intention is required. This is achieved by
relating the context C; to at least one command element using the display of intention association
(see Figure 6).

25

As therelation of an executable context to a tool category, also the relation of a choice context
to atool category can be supported by consistency checks:

Constraint C1: Ensure that the tool category can display all intentions associated with the
aternatives of the choice contexts. Given a choice context CC which is related in the process
model to a set of alternative contextsCA. For each context(, [7CA, the tool category 7" associated
(using the provides choice context association) with the choice context CC must be assigned to at
least one command element (via a provides command association) which is related (using a
display of intention association) to the contextC, .

Constraint C2: Ensure that the tool category can display all product parts associated with the
situations of all alternative contexts of the choice context: Given a choice context CC for which a
set CA of alternative contexts is defined in the process model, and a set of product parts P-4, which
subsumes all products related to any situation S which is related to a contextC, /7 CA. If a tool
category 7' is associated to the choice context CC then for all product parts P; [J P4 a displays
relation betweenP;, a graphical shape GG , and 7’ must exist.

4.3.3 Environment Model: An Example

We illustrate the assignment of the contexts defined in the process model to the capabilities of the
tools defined in the tool model using a small example (Figure 7). For readability, we depicted the
name of the class of each instance in italics and brackets.

The upper part of Figure 7 depicts part of a process model where the choice context
CC RefineEntity is related to two alternative contexts, namely the executable context
EC_CreatelsALink and the plan context PC SubtypeEntity. In addition, the situations (OnekEntity,
TwoLntities) and the intentions (CreatelsALink, SubtypeEntity) of the two alternatives, the product
parts (Entity) related to the situations and the action CreatelsALink of the executable context are
defined in the process model.

The lower part of Figure 7 depicts part of the tool mode where the tool category ER Editor
together with the supported control €ements (the control key Crr/-1 and the pull down menu Edir) is
defined. The tool category ER Editor is further related to the concepts shared with the process
model, namely to the action CreatelsALink using a provides action association and to the product
Entity viaadisplay as association.

In addition, the three associations defined in the environment meta model between concepts of
thetool and process meta models have been instantiated (depicted as dashed linesin Figure 7):

- Display of intention. By instantiating this association the executable context
EC Create IsALink isrdated to the control key Crrl-I and the pull down menu Edit. Thereby
the way of displaying the intention CreatelsALink related to the executable context is

26

defined. Similar, the plan context PC SubtypeEntity is rdated to the pull down menu Edit
(not shown in thefigure);

Provides choice context: The tool category ER FEditor is assigned to the choice context
CC RefineEntity by an instance of the provides choice context association. According to
constraint C2 it must thus be ensured that the tool category ER FEditor can display the
intentions of both alternatives of the choice context, namely the intention related to the
contexts EC CreatelsALink and PC SubtypeEntity. The executable context
EC Create IsALink isrdated to two command elements (the control key Cr#i-1 and the pull
down menu edir) which are both related to the tool category ER Editor via a
provides command association. Thus constraint C2 is satisfied (for simplification the relation
to the command elements of the plan context PC SubtypeEntity are not shown in the figure).
Congtraint C1 is also satisfied, since all the product parts defined for the situations of both
alternatives (in both cases the product type Entity) are related via a displays association to the
tool category ER Editor (seelower part of Figure 7);

Provides executable context: The tool category ER Editor can automatically be associated
to the executable context EC CreatelsALink by a provides executable context association,
since the executable context £EC CreatelsALink is related to the action CrearelsALink in the
process model and this action is related to only one tool category, using the provides action
association, namely the tool category ER Editor. In accordance to constraint E1, the input
parameters defined in the tool model, (two product parts of the type Entity) are subsumed by
the situation 7woLntities assigned to the executable context in the process model. Likewise
the output (Is4Link) is subsumed by the change association of the process model and thereby
constraint E2 is satisfied.

(provides_choice \
(Irtention) (related_intention) (Cloke Context)y ——————————————————————————~ context) -7
RefineE ntity p—— CC_RefineEntity, (altemative) drtention) :
(related_situation) CreatelsLink :
. {
(Irtentian) \ _(related (Plan Cantext) (Situdtior) (Exec.Context) _ _ _ _ __ ______ (provides_executable _ _
SubtypeEntity’ intention) \ PC_SubtypeE ntity OneEntity EC_CreatelsALink{ context) : :
v S [
(related_situation) \\\ = ~ [
AN to
(Situation) (:1’ lay_of \(\d’ lay_of. : :
ior) . ispay_of isplay_of [
(based_on) TwoEntity (applied_by) intention) intention) : :
~ o

N [
Y defined inthe (based_on) ! b
process model (based_on) I H :
L [
C) shared concepts (Prdect) tAction) (Put-Dowrrvern) Y
Entity CreatelsALin) :
defined inthe : (
tool model) :
[
defined inthe : :
process model (provides_ (provides_ (provides_ ')
defined inth action) ~~ command) command) : :

_____ efined inthe 1
environment mode \ | :

X . (GraphicalShape) (Tooi Category)
— definedinthe Rectangle ER_Edior
K tool model / /

Figure 7: An environment model (simplified). <pohl7.ps, pohl7.tif >

27

4.4 Environment Meta Model: Contribution to Process-

Integration Requirements

Representing both methods and tools at a conceptual level supports the method engineer in
assigning the required tool functionality to the method definitions. Moreover, the above mentioned
consistency constraints ensure correct assignments in the environment model. The environment
model represents an important conceptual foundation for achieving a process-integration of the
interactive toolsinaPIE:

Data integration is guaranteed by checking that the products subsumed by a situation
correspond to the products used as input parameters of the tool actions.

Service integration is achieved by the environment model through the interrelation of
executable and choice contexts defined in the process model and the corresponding tool
definitions.

The feedback information required after context execution is inherently defined by the
context types (in the case of executable contexts as output product types; in the case of
choice context the contexts defined as alternatives).

The foundation for the invocation of method fragments is established by the fact that a plan
context can be related as an alternative to a choice context. This makes the tools aware of
plan context definitions. The tools get to know the plan contexts which can be activated in a
given process situation. Vice versa, the environment model empowers the enactment domain
to invoke the tool responsible for executing a choice or executable context whenever such a
context becomes active during the enactment of a plan context.

The definition of the allowed graphical and interaction capabilities for each context lays the
foundation for the adaptation of the tool behavior.

Within our PRIME framework, process-integration is mainly achieved through the appropriate

interpretation of the environment model at run-time by all () three main components, namely the

tools, the enactment mechanism and the control integration mechanism.

5 Synchronization of Performance and Enactment
Domains

Synchronization of the performance and enactment domain is achieved by a process-aware control
integration mechanism which directs message distribution based on the interpretation of the
environment model (Section 5.1) and an interaction protocol which defines the behavior of the
performance and enactment domain (Section 5.2).

28

5.1 Process-Aware Control Integration

The integrated environment model inherently assigns responsibilities for context execution.
Executable and choice contexts are executed by the interactive engineering tools of the
performance domain, while the process engine of the enactment domain is responsible for
enacting the plan contexts. The interrelation of the three context types through choice contexts
(via the alternative association) and plan contexts (via the composed of association) requires
interaction between the two domains.

In a process-integrated environment, message exchange should not be carried out in an
uncontrolled manner. Instead, the control integration mechanism has to direct the message
distribution according to the process definitions, respectively the definitions in the environment
model in the case of PRIME. In other words, the control integration mechanism must be process-
aware. For example, a service request from the enactment domain cannot be directed to an arbitrary
tool providing the requested service. Instead, the request has to be directed to the tool responsible for
performing the requested context according to the definitions in the environment model.

Technically, the interaction is carried out by message exchange which is typically employed by
a control integration mechanism such as Tool Talk, COBRA, OLE/COM Automation. In PRIME, the
information required for a process-aware control integration mechanism is represented in the
environment model. Thus process-aware control integration can be achieved by implementing a
trader on top of an existing control integration mechanism. The trader interprets the environment
model and controls the message distribution accordingly. This ensures that during process enactment
(and service brokering) service requests are directed to the tool assigned to the corresponding
context in the environment model.

5.2 Interaction Protocol

The message types allowed depend on the current states of both the performance and the
enactment domains. In contrast to conventional PCEs which are based on a simple client-server
pattern, the context model induces more elaborate interaction patterns.

To ground message exchange on a solid basis we define an interaction protocol. The interaction
protocol specifies the principal behavior of the enactment and performance domain in terms of the
states and possible state transitions which are triggered by the delivery and receipt of messages. In
addition, it defines the types of messages which can be exchanged between both domains.

We use the Statecharts formalism [71] for defining the interaction protocol. The behavior of the
enactment domain is defined by the Enact nment - St at e superstate, whereas the Per f or mance-

29

St at e superstate specifies the behavior of the performance domain (Figure 8)* The coupling of
both superstates is expressed by associating the transitions, which represent interactions between the
two domains, with defined message types which are sent by one domain and received by the other.

N
[Performance State) [Enactment State j
T T\ 7 om b e) . :)
PD-Unrestr PD-Restr (" ED-Inactive) (ED-Active
N " 4 N~ =" / \ A
PC Enactmen
External Cxt PD- Abort @_ S
Requested Deduce
'@ Context
R D EEN Th
std Context+(5)—|Plan Context
Active <l—.— Active Context Wait-
6 Response
o S
Execute Execute
Cxt Cxt
ED-Abort

\ I/) A\ G S N G)

Figure 8: Statecharts defining the states of enactment and

performance domains (simplified).

The contextual process model inspires the general distinction between the principal states of a
process integrated environment:

1. Restricted. Process performance is governed by plan context enactment (Figure 8; ED-
Act i ve and PD- Rest r superstates);

2. Unrestricted:. Process performance is not restricted since no plan context is being enacted
(Figure 8; PD- Unr estr and ED- | nact i ve superstates).

Inthe ED- | nact i ve superstate the process engine is essentially passive. Inthe PD- Unr est r
superstate, more precisely in the St d- Cont ext - Acti ve dtate, a tool is able to perform any
executable context and choice context provided by the tool®.

If the user has activated an executable or choice context (see Section 8.4 for details) provided by
the tool, transition 1 is performed and thus the Execut e- Cxt dtate is entered. After executing the
context the tool returnsinthe St d- Cont ext - Act i ve state by performing transition 2.

* For the sake of brevity, the Statecharts described in the following have been heavily simplified. A
detailed description of our original interaction protocol, which defines about 30 different states
and substates and 55 transitions in both domains as well as 15 message types, can be found in [4].

> Formally, the choices which are offered to the user in the PD-Unrestr state are modeled in the
environment model as a choice context, called standard context.

30

If the user has activated a choice or executable context not provided by the tool, the tool
sends a Broker Request message (transition 3) to the control integration mechanism and enters the
state Ext er nal _Cxt _Request ed. The control integration mechanism passes this message to the
process engine. If the process engineisinthe ED_Act i ve state, the tool request is queued and the
tool is informed. If the process engine is in the ED | nacti ve sate, it enters the Br oker -
Cont ext sate (transition 12) and requests the execution of the context by sending a message to the
control integration mechanism (transition 13). The control integration mechanism determines the
tool responsible for executing the requested context (according to the environment model) and
passes the request to the tool.

If the user has activated a plan context, the tool sends an Enactment Request (transition 5) to the
process engine and enters the Pl an- Cont ext - Act i ve state. Receiving this message the process
engine enters the ED- Acti ve superstate (transition 14). After having locked all required tool
resources (the locking sub-protocol is not shown here), the process engine determines in the
Deduce- Cont ext state the context to be performed next and sends a Context Request message
(transition 15) to the control integration mechanism; thereby it enters the Wi t - Response state.
The control integration mechanism determines the tool responsible for performing the context
(according to the environment model) and sends the context execution request to the corresponding
tool. By receiving the context request thetool changes in the Execut e- Cxt state (transition 6) and
returns, after having executed the context, in the Wi t - Request state by sending a Cxt Feedback
message (transition 7). If an executable context was executed, the tool sends the feedback
information to the process engine as defined by the output associations in the environment model. If
a choice context was executed, the tool returns the selected alternative (context) to the process
engine. After receiving the Cxt Feedback message, the process engine enters the Deduce-
Cont ext dtate (transition 16) and determines the context to be executed next.

Process enactment stops if the enacted method fragment (plan context) is completed or if the
user has requested to abort the context execution (see below). In both cases, the process engine
releases all previously locked tools (not shown here in details). As a consequence, the process
enactment domain enters the ED- | nact i ve date (transition 17 or 20), whereas the tools enter the
PD- Unr est r superstate (transition 8 or 11).

The user can notify the process enactment domain about a process deviation whenever the
enactment domain is active (ED- Act i ve superstate). The user initiates such a request by choosing
the abort-enactment context provided by each tool. In this case, the tool sends an Abort Request
message to the enactment domain (transition 9). Receiving this message (transition 18) the
enactment domain enters the ED- Abor t state and checks if the interruption of the user can be

31

applied, i.e. checks if the enactment can be aborted®. If the enactment can be aborted, the process
engine sends an 4Ahort-OK message and enters the | dl e state (transition 20), otherwise it continues
with the process enactment (transition 19). Correspondingly, the tool enters the St d- Cont ext
Act i ve dtate (transition 11) or if it receives an Abort Denied message it returns back to the Pl an-
Cont ext - Act i ve state.

The interaction protocol sketched above defines the dynamic relationships between the
performance domain and the enactment domain. Synchronization between the domains is achieved
via special sub-protocols and message types, e.g. the messages exchanged during the locking phase
before actual enactment starts. This ensures that the relevant tool resources are available and ready
to accept the requests coming from the enactment domain.

The interaction protocol (together with the environment model) supports both reactive and
proactive process enactment styles which are extensively demanded in literature, e.g. [50]. Reactive
control means that the process performer can operate freely on his tools and at some point initiate a
request to the enactment domain. Proactive control means that the enactment domain initiates the
operations and governs the possible user choices in the performance domain. The Unrestricted and
Restricted states of both domains reflect these two modes.

6 The PRIME Implementation Framework

The environment model (Section 4.3), the process-aware control integration mechanism and the
interaction protocol (Section 5) provide the conceptual foundations for establishing a process-
integration in engineering environments.

To facilitate the development of a process-integrated environment (PIE) we developed the
PRIME framework which meets the technical requirements for PIEs derived from those conceptual
foundations (Section 6.1). The main architectural components of PRIME are the generic tool
architecture (Section 6.2) and the generic enactment architecture (Section 6.3). The PRIME
components have been implemented as a reusable, object-oriented implementation framework
(Section 6.4).

® Since arbitrary interruption of context execution can cause data inconsistencies, we require that the
method engineer defines in the process model the situation in which process deviations are
alowed, i.e. in which the enactment can be aborted, and/or that she or he defines additional
actions to be applied for enabling a process deviation. The user can only abort the enactment of a
context if the process model allows the abortion. "Backtrack”" mechanisms which, in the case of
an Abort Request, set the enactment back to a situation in which no data inconsistencies are
caused by the interruption of the process enactment, are an open research issue.

32

6.1 Requirements for the PRIME Components

The components of a process-integrated environment have to consider the definitions in the
environment model for a model-conform process performance and must obey the interaction
protocol for synchronizing the states of the enactment and the performance domains. This poses
several requirements on the three main components of PRIME.

The control integration mechanism must be process-aware. It must distribute context requests
and feedback messages according to the context assignments expressed in the environment model.

Thetools of the performance domain haveto fulfill the following requirements:

RT1 Execution of executable contexts according to environment model: The activation of an
executable context in a tool must result in the invocation of the tool action related to
the executable context in the environment model. In addition, the results of executing
this action must be passed to the context invoker;

RT2 Execution of choice contexts according to environment model:. The activation of a
choice context must result in a user interface adaptation of the tools according to the
definition of the choice context in the environment model. The tool must adjust the
products and command elements displayed at the user interface according to the
context definition and highlight the selectable products and command el ements;

RT3 Detection of context activation according to environment model. The tool must be
able to compare the product parts and command e ements selected by the user with the
context definition.

RT4 Synchronization with enactment domain according to interaction protocol: The tool
must exchange messages with the enactment domain in accordance with the
interaction protocol defined in Section 5.2.

The enactment mechanism has to fulfill the following requirements:

RE1 Enactment of plan context definitions: The enactment mechanism has to interpret an
activated plan context. It has to deduce the context to be executed next and it has to
initiate its execution. In addition, the enactment mechanism has to interpret the
feedback information obtained from the context execution for determining the context
to be executed next;

RE2 Synchronization with performance domain according to interaction protocol: The
enactment mechanism must exchange messages with the performance domain in
accordance with the interaction protocol defined in Section 5.2.

33

6.2 Generic Tool Architecture

We have designed a generic tool architecture which fulfills the requirements RT1 - RT4 outlined
above. Figure 9 depicts the main architectural components and their relations of the generic tool
architecture of PRIME. The generic tool architecture has two central subsystems: The
StateManager (Section 6.2.1) and the ContextManager (Section 6.2.2).

Generic Tool Architecture

«genaciment req—— send msg
process

R0 | paponge < Statetanager message
Executive Cxt re Interface | .. b2 EXC h ang e

%_§:§‘ Choice Cxtreq ~ msg events

invocation A context events
er:ja:tm";?:t (match / execute i detection,
- = &results) n X
Reposito
ContextManager co te t

context defs. load/store

Context 1
specific) . Context | Context IOadlng
tooljprocess P invocation E t Match
models __ tool data Tool xeadion) Matcher
oduct data | specific
i Ioad/store‘ \ e read t t
- Y Y contex
modellin
domain. R execution
Tool Action 1 et iftention
EC
(=) update \
propagation update
y notification CO ntext
USerN 537
dq Tool Specific H
U fice update User Interface deteCtlon
Ser in[e -
facuons (graphical shapes,

stakeholder !
icons)

Figure 9: Generic tool architecture. <pohl9.ps, pohl9.tif >

6.2.1 The StateManager

The StateManager subsystem (upper right part of Figure 9) ensures that the message exchange
with the process engine is carried out in accordance with the interaction protocol described in
Section 5.2 (requirement RT4). It governs the overall control flow in the tool and maintains the
tool state in response to events received. There are two types of events:

- External events are initiated through the receipt of a message from the enactment domain
such as a request from the enactment domain to execute a context during plan context
enactment. The message receipt and ddivery is handled by the Messagel nterface which is
closely connected to the StateManager.

- Internal events are either generated by the ContextExecutor for reporting the results of a
context execution or by the ContextMatcher after the identification of a context to be
executed. If the identified context is a plan context or a context provided by another tool
(according to the environment model), the StateManager sends an enactment request together
with the situation data via the Messagelnterface to the enactment domain. Otherwise the
StateManager requests the execution of the context from the ContextExecutor.

6.2.2 The ContextManager

The task of the ConfextManager is threefold. During the start-up phase the ContextManager
retrieves all context definitions specified in the environment model for the tool category and stores
them in a context cache. The ContextExecutor subsystem is responsible for adjusting the tool
behavior and for providing user guidance according to the environment model (requirement RT1
and RT2). The ContextMatcher subsystem is responsible for the identification of method
fragments (requirement RT3).

The ContextExecutor: Adaptation of Tool Behavior

The ContextExecutor controls the execution of choice and executable contexts.

If the StateManager requests the execution of an automated service (executable context), the
ContextExecutor invokes the tool action associated to the executable context in the environment
model. The situation data obtained with the context execution request are mapped to the input
parameters. This is facilitated by defining the input parameters of the actions in the tool models
using the same product types as the ones used for defining the situation types associated to the
contexts in the process model.

If the StateManager requests the execution of a guidance service (choice context), the
ContextExecutor adapts the user interface of the tool according to the definition of the choice
context and the current situation data. More precisely, in the command region of the user interface
only those menu items and icons are displayed which are associated to an alternative of the choice
context and thus only the intentions associated to an alternative context are displayed. All other
menu items and icons not related to an intention of an alternative of the choice context become
unselectable. In the product region, all products corresponding to the situation data of the choice
context are highlighted to draw user attention on them. Furthermore, all products which may
contribute to a situation of an alternative context are displayed as selectable, whereas all other
product parts become unselectable. To support the choice of an alternative, the user can aways
initiate the display of the arguments associated with the alternatives of a choice context. On user
request, the ContextExecutor displays the pros and cons for each alternative of the choice context
defined in the environment model in a special guidance window (see Section 8.4 for an example).

35

In the following we illustrate the adaptation of the tool behavior during the execution of a choice
context. The right part of Figure 10 shows an entity relationship (ER) editor which currently
executes the choice context CC RefineEntity with the entity type publication as actual situation data.
Theleft part depicts parts of the corresponding environment model.

related stuation _ ["Con ey | elated infention e ion mem.f,n meta mode/ | | actual situation i not selectable :
A H H

: |A IA display_of_intention | (blaCk - red) E (gray)

TR 3

!

1 I .

altemative

1
based_on

| | Command

Choice provrdes chorce _context Tool prowdes command
Context Category| | /

Control | [Pull-Down| |f Conty
Key Menu Ic

1
| ER_Editor reatejfalink.xpm
1 1
based_on alt1 | proy_com2 1

1
1
alt2 N : Ed!
Entity Typel (EC_DiscriminateEntity) D\scnm\nateEnm display_int. display_int.
]
PCﬁSubtypeEnm
1
1

EC_CreatelsALin

environment model re_innton ez)
(simplified)

provides_CC1

OneEntity, CC Reﬂ neEnmy

Figure 10: Adaptation of tool behavior according to the environment model.

The choice context CC RefineEntity defines three different aternatives (EC Createls-ALink,
EC DiscriminateAttribute, and PC_Subtypekntity) for the refinement of an entity. The menu items
displayed correspond to the definitions in the environment model. For example, according to the
associations specified in the environment model, the intention of the aternative context
EC CreatelsALink appears as menu item in the Edit pull-down menu and as icon in the icon bar
using the bitmap CreatelsALink.xpm in the ER editor (Figure 10).

In the product area, the entity type proceedings representing the actual situation data is
highlighted. According to the environment model, the situations of all three alternative contexts are
only based on entity types. Consequently, the ContextExecutor has marked all other objects as
unselectable (displayed in gray) and thus only the entity types book, copy of publication, and user
are selectable (displayed in white).

The ContextMatcher: Invocation of Method Fragments

During the execution of a choice context, the user selects and deselects product parts and activates
command elements. The task of the ContextMatcher is to compare the user interactions with the
context definitions which are defined as alternatives of choice context active. More precisaly, it
matches the activated command elements with the intentions associated to an alternative context

36

of the choice context and the selected product parts with the situations of the alternative contexts'.
Whenever the selected product parts and the intentions match with the definition of an alternative
context, the ContextMatcher requests the execution of the context from the StateM anager.

meta model

1 display_of_intention_\
1

related_situation related_intentios
0 1
1 alternative

\
1
1
“ ! 1 Command
1
1
\

TR,
- = - ,
Choice | provides_choke context| Tool —|provides_command =
Context Ccategory[! Document Edit | Tools Preferences ﬂelpl
f
1

- Create IsA Link
Hsormninale Eatily

Bublyps fntily

A
1
1
1
1
1
L
1

1
1
1
1 1
1 .| Control | [ffti-Down] [Control
. 4 Key Menu Icon

CC_Refine provides_CC1
Entity

ER_Editor

altt

\
\ i
environment model
(simplified)
Matching selected product parts and through user interaction selected objects
commands (intentions) with context definitions {products and commands)

Figure 11: Matching a confext.

Figure 11 illustrates the context matching. The ER editor is in the choice context
CC RefineEntity. After the user has sdected the menu item Create-IsA-Link, the ContextMatcher
compares the sdected product parts (the two entities publication and book) and the intention
associated with the selected menu item with the alternative contexts of the choice context defined in
the environment model®. Comparing the selected product parts and command elements, the

ContextManager detects that the selected items match with the definition of the executable context
EC CreatelsALink.

According to the environment model this context is provided by the ER editor itsdf. Thus, the

StateManager passes the context execution request to the ContextExecutor of the ER editor which
executes the context according to its definition.

Note that the execution of any context is based on the interpretation of the environment model
by the ContextExecutor and the ContextMatcher. Changes in the method definitions require thus no

" The matcher currently applies a best fit approach. It thus associates a situation slot with the most
specific selected product part.

® For efficiency reasons the matching is performed whenever a command dement (intention) has
been selected by the user.

37

re-programming and can mostly be achieved on a modeling level (see Section 9 for a detailed
discussion about the integration of method changes).

6.3 Generic Enactment Architecture

The generic enactment architecture drives process enactment by interpreting the process relevant
parts of the environment model. The architecture handles enactment requests of the performance
domain and initiates the enactment of the requested method fragments. Similarly to the tool
architecture, the enactment architecture consists of two central components: the ED_StateManager
and the ED ContextManager.

The ED StateManager realizes the interaction protocol described in Section 5.2 from the
perspective of the enactment domain. It controls the current enactment state according to the
Statechart defined for the enactment domain (Section 5.2; requirement RE2).

During the enactment of a plan context, the D ContextManager is responsible for deducing the
context to be performed by interpreting the plan context definition. It also initiates the execution of
the deduced context (requirement REL).

The generic enactment architecture was designed with the purpose of enabling experimentation
with different process enactment languages. For an easy integration of existing enactment
mechanisms (e.g. for "plugging” in a SLANG net interpreter) the ED ContextManager offers
generic interfaces which provide functions to

- Inform the enactment mechanism about the activation of a plan context;
- Send a context execution request (executable or choice context) to the performance domain;
- Process the context execution results received from the performance domain.

From the dynamic point of view, the invocation of these functions is encapsulated in a single
state, namely the Deduce- Cont ext state (see Section 5.2).

6.4 Implementation of the PRIME Framework

The generic parts of the architecture described in Section 6.2 and Section 6.3 have been
implemented as an object-oriented implementation framework in C++ on two different platforms
(Sun Solaris Unix and Windows NT). Figure 12 provides an overview of the PRIME
implementation framework. The white parts depict the generic components of the framework
which are re-used without any adaptations for implementing a process-integrated modeling
environment for a particular application domain such as requirements engineering or chemical
engineering. The black parts denote application domain specific components.

The process repository stores the environment model (the product, process and tool models and
the integration associations). It has been implemented on top of a relational DBMS (Sybase 11

38

server). The environment meta model presented in Section 4 has been transformed into a relational
schema consisting of 27 tables.

Thefour meta-modeling tools facilitate the creation and maintenance of product models, method
fragments, tool models, and their interrelations in the repaository.

The generic tool framework of the performance domain facilitates the implementation of
interactive, process-integrated tools. It provides libraries for context management, state
management, and user interface adaptation. We have carefully separated the user interface library
from the context and state management libraries to allow an easy adaptation of the framework to
another user interface toolkit. The context management library consists of a repository layer for
loading context definitions from the repository and components for matching and executing
contexts. The state management library provides components for handling the receipt and delivery of
messages (including parsing and unparsing of messages) and for maintaining the current tool state
according to the interaction protocol. Both libraries comprise about 70,000 lines of C++ code. The
user interface library provides a user interface bridge for the ILOG Views toolkit. The components
of this library map, among others, command el ements defined in the environment model to ILOG
Views specific menu classes. The user interface library comprises about 15,000 lines of C++ code.

Conformance to common usability standards is largely ensured by the ILOG Views toolkit
which supports both Motif and Windows look-and-feel. Moreover, the definition of common menus,
short-keys, command icons, and standard shapes ensures that similar functionality can be uniformly
accessed in al tools.

We initially expected a general degradation of tool performance due to the processing of each
object (de-)selection and menu activation by the context matcher. But even in tests with more than
200 product objects and choice contexts with more than 100 alternative contexts no noticeable
increase in the response time to user events could be observed. This is mostly due to the fact that
after loading the tool relevant context definitions from the process repository during the tool startup
phase, they are maintained in a context cache within the tool. The loading of the context definitions,
however, dightly increases the startup time (about one second in average; depending on the number
of contexts defined for atool).

39

modeling domain performance domain

process repository &
meta modeling tools

=
process

rel. schema of
modeler €. schema o

environment
product metamodel RDMS

generic toof
framework

tool actions, shapes “JRIcEE C++
command elements IIIEHER: L 55 Views

bridge (15kiog

modeler
method, product; (Sybase 11)

tool tool, env. models
modele S

environ products and
model N traceability
oce el information

context context
executor matcher C++

0 kio
PD-state-manager (70kiog
message interface

) process-aware
message interface control integration
ED-state-manager .

mechanism
ED-ContextDeducer
C++

(35kiog

enactment mechanism

generic process

engine framework

enactment domain

Figure 12: Implementation of the PRIME framework.

The generic process engine framework of the enactment domain facilitates integration of an
enactment mechanism for a given plan context definition language by providing abstract base classes
for context deduction. To embed a specific enactment mechanism these base classes have to be
specialized. The implementation of the generic process engine framework shares considerable parts
with the generic tool framework such as the base classes of the state manager and the message
handling components. Altogether, the implementation framework for the enactment mechanism
comprises about 35,000 lines of C++ code.

The process-aware control integration mechanism has been realized using the standard socket
library (both for Solaris Unix and Windows NT), and in an alternative implementation using the
more convenient services provided by SUN'’s ToolTalk [54] (only Solaris Unix). The process-aware
trader defined on top of these mechanisms maintains knowledge about the running tool instances. It
controls the message exchange between the performance and enactment domain based on this
knowledge and the interpretation of the environment model. For example, it sends a context
execution request to the tool responsible for executing the requested context.

7 Integration of Legacy Tools

To achieve a process-integration of a legacy tool, the requirements RT1 - RT4 described in
Section 6.1 must be fulfilled. Since most existing tools do not meet these requirements,

appropriate wrappers must be designed and implemented. The wrappers make use of the
application programming interfaces (APIs) provided by the tools and add additional functionality
to atool which achieves a process-integration of the legacy tool by fulfilling the requirements RT1
- RT4.

We first daborate on the kinds of APIs a legacy tool must provide in order to be fully process
integrable (Section 7.1). We then describe an extension of the generic tool architecture of the
PRIME implementation framework which facilitates the integration of legacy tools (Section 7.2).
We illustrate the use of the extended architecture to redlize the process-integration of VISIO, a
commercial CAD tool, in the PRIME-based environment TECHMOD (Section 7.3).

7.1 Required Application Programming Interfaces (APIs)

The tool requirements sketched in Section 6.1 require that a legacy tool has to provide certain
APIs (application programming interfaces) to be process integrable:

Al A service invocation API required for activating the actions provided by the tool including
passing of the actual parameters on which the action should be performed (requirement RT1);

A2 A feedback information API required for accessing the results obtained from executing an
action (requirement RT1);

A3 A command element API required for introducing new/additional command elements like
menu options or graphical icons defined in the environment mode! (requirement RT2);

A4 A product display API required for highlighting the product parts constituting the actual
Situation of a choice context (requirement RT2);

A5 A selectability API required for adapting the user interface of the tool according to the
definitions of the active choice context and its alternative contexts (requirement RT2);

A6 A selection notification API required for obtaining notifications about user sdections of
products and command elements. This is a prerequisite for matching the user interactions
with the context definitions and thereby supporting the activation of a predefined context
(requirement RT3);

Achieving a synchronization with the enactment domain (requirement RT4) does not require a
special tool API. Definition conform synchronization can be ensured by a wrapper which uses the
APIs Al - A6 in accordanceto the interaction protocol definition.

If alegacy tool provides the six APIs sketched above, a process-integration of the legacy tool
can be achieved by designing and implementing appropriate wrappers.

The process-integration of legacy tools which only provide a subset of the required APIs is by
far not easy. To support the process-integration of such tools, a more comprehensive framework is
required. Such aframework should support the process-integration along four major lines:

41

- Providing a check list and criteria for assessing the degree of process-integration which can
be achieved for a legacy tool based on the APIs provided by the tool and its technical
implementations;

- Providing generic wrapper components which can be reused (adapted) for achieving a
process-integration of a legacy tool;

- De€fining the relations between the generic wrappers and the assess criteria to support the
selection of the wrappers based on the assessment of the tool;

- Reating those wrappers to the generic tool architecture to enable as much reuse as possible.

Establishing a comprehensive framework for the process-integration of any kind of legacy tool
is a mgjor future research activity. The definition of such a framework could start from the solution
provided for legacy tools which provide the required APIs. In the following we describe the process-
integration of legacy tools which provide the six APIs defined above and can thus can be fully
process-integrated.

7.2 Integrating Legacy Tools Using the Generic Tool
Architecture

There are two main alternatives for designing and implementing the wrappers. The wrappers can
be designed in a way which foresees a direct interaction between the wrappers and the enactment
domain. Alternatively, the wrappers can be designed to wrap the legacy tools into the generic tool
architecture provided by the PRIME implementation framework. In this case, the enactment
domain interacts with the generic tool architecture which itself wraps the legacy tool. The latter
alternative stands to reason since the functionality to be provided by the wrappers is, to a large
degree, covered by the functionality provided by the generic tool architecture. Examples are the
consideration of the interaction protocol, the context matching and the context execution.

The main problem hindering a simple wrapping of legacy tools into the generic tool architecture
is that even if a tool provides the APIs with the functionality sketched above, the signature of the
functions provided by the various APIs and the invocation protocols for using the APIs significantly
differ between legacy tools. We have thus investigated in an extension of the generic tool
architecture which facilitates the process-integration of legacy tools and minimizes the
implementation efforts and the legacy tool specific influence on the generic tool architecture.

As depicted in Figure 13 we extended the generic tool architecture of the PRIME
implementation framework with two adapter layers which encapsulate the generic parts of the
architecture (StateManager, ContextExecutor, ContextMatcher, Object Table, Intention Table).
Technically, the adapter layers are redlized as a set of classes whose abstract interfaces (virtual
methods) are used by the generic parts of the PRIME implementation framework.

42

To achieve a process-integration of a legacy tool, these classes are specialized by overwriting
the virtual methods by specific methods which bridge the functionality provided by the adapter
layers and the APIs provided by the legacy todl.

The ActionAdapter (lower |eft part of Figure 13) maps the actions defined in the tool model to
the service invocations provided by the legacy tool. Consequently it makes use of the service
invocation and feedback information APIs (Al and A2). More precisely, the adapter classes between
thetool actions and the context executor are specialized using the corresponding APIs to assign each
executable context defined for the legacy tool to its service. A main task of the adapter class is
thereby to map the product data embedded in a situation instance to the data format of the input
parameters required by the service invocation API of the legacy tool and vice versa.

Generic Tool Architecture

«genactment regq send ms
process Cxt feedback < ’
engine I Message StateManager

. Interface
Executive Cxt req P T >
Choice Cxt req msg events

A context events
detection,
& results)

ContextManager

invocation
(match / execute

enactment
domain

Repository
Interface
Context

specific
tool data Tool

context defs. load/store

Context | Context

tool/process
Executor | Matcher

models

product data

set read

Y Y
Ul Bridge

Intention
Table

modelling

. invocation
domain

Action Ui
Adapter Adapter

Legacy Tool

Figure 13: Adding adapter layers to the generic tool architecture for integrating legacy tools.

The UserInterfaceAdapter (lower right part of Figure 13) bridges the object and intention table
of the generic tool architecture with the user interface(s) of the legacy tool. For this purpose, the
APIs A3 - A6 of the legacy tools are used in the specialized adapter classes.

The UserlnterfaceAdapter ensures that the user interface of the tools corresponds with the actual
status of the intention and object tables. More precisely, the adapter ensures that in the user interface
only the command elements of the intention table can be activated and that all products which may
contribute to a situation of an alternative context are displayed as sdectable, whereas all other
products become unselectable. Moreover, it ensures that all products corresponding to the situation
data are highlighted. Since the object and intention table is updated by the Context Executor
according to the choice context definition and the actual situation data, the UserinterfaceAdapter
indirectly guarantees that the user interface of the tool is adapted according to the context definition
and the actual situation data. Moreover, the UserlnterfaceAdapter ensures that the user interactions
(selection and de-selection of products and intentions) lead to an update of the intention and object
tables. Thereby the detection and activation of a predefined context is achieved, since the Context
Matcher compares the intention and object table with the context definition.

To summarize, the extended generic tool architecture of the PRIME implementation framework
facilitates to a large degree the process-integration of legacy tools which provide the required APIs:

- Theimplementation effort for building a wrapper is significantly reduced. Only the classes of
the adapter layers have to be specialized for using the specific APIs of the legacy tool at
hand;

- Thetool builder responsible for wrapping a legacy tool does not have to care about possible
interdependencies between the use of the individual tool APIs and their interplay with the
enactment architecture since this is already defined and realized by the generic tool
architecture;

- The tool builder responsible for wrapping a legacy tool does not have to care about the
correct consideration of the environment model during context detection and context
execution. Similarly he does not have to worry about implementing wrappers which ensure a
correct tool behavior as defined in the synchronization protocol (correct message and event
handling). All this is guaranteed through the wrapping of the tool into the extended generic
tool architecture of the PRIME implementation framework.

7.3 Integrating Legacy Tools Using the Generic Tool
Architecture: An Example

The goal of the Collaborative Research Center SFB-476 IMPROVE (funded by the Deutsche
Forschungsgemeinschaft), is to establish computer-based support for the design of chemical
processes and chemical plants for producing new chemical products in the large scale [72], [73]. In
this project, integrated method guidance for the engineers defining and simulating conceptual
models of chemical processes and plants is achieved through a PRIME-based environment, called
TECHMOD (Traced Engineering of CHemical process MODels) [74], [76]. Within the SFB-476
IMPROVE many commercia tools are used to support the design and construction of a chemical

plant including CAD tools, smulators and model builders. To achieve integrated method guidance
those tools must be "process-integrated” with the TECHMOD environment.

We have experimented with the integration of three legacy tools. One of them, VISIO, offers all
six APIs defined above. In the following we sketch the process-integration of VISIO into the
TECHMOD environment and illustrate the use of the extended generic tool architecture.

VISIO isa CAD tool which provides special graphical icons and functions for constructing flow
sheet diagrams. Flow sheets are a common abstraction used in the chemical industry to describe
chemical processes. VISIO runs under WINDOWS 95/NT and provides OLE/COM application
programming interfaces for extensions.

To achieve a process-integration of VISIO we first defined the services and the command
elements provided by VISIO using the concepts of the tool meta model. The resulting VISIO tool
model was integrated with the method definitions. There was no difference in modeling the
capabilities of VISIO in comparison to the definition of the capabilities of a new tool, implemented
using the generic tool architecture.

For embedding VISIO in the generic tool architecture we specialized the ActionAdapter and the
UserinterfaceAdapter. The specialization (implementation) of the adapters was straightforward. The
tool action invocations initiated by the context executor were mapped by a specific adapter class to
the services provided by VISIO. Similarly, the user interface facilities of VISIO were assigned to the
user interface bridge. However, two unexpected “conceptual” problems (1 and 2) and three technical
problems (3 to 5) worth mentioning occurred:

1. Each VISIO action could potentially occur in 14 different menu bars, each of which had
consequently to be controlled by the wrapper. The consideration of all possible menu bars
obviously caused additional effort to "wrap" the intention table of the generic tool
architecture with the command and selectability APIs of VISIO.

2. Some VISIO actions could be activated by drag-and-drop mechanisms. Since the PRIME
implementation framework does not support drag-and-drop mechanisms, we have
deactivated the drag-and-drop mechanism of VISIO

3. We originally planned to run VISIO and the PRIME implementation framework as separate
operating system processes where the former was invoked through the COM/WIN32 API as
Automation Server by the latter which acted as Automation Client. However, in this mode
VISIO (for some non-obvious reasons) does not provide the possibility to register for
notifications of menu selection events. The VISIO APl (which is required for context
matching) is only available for "in-process" extensions of VISIO. The API can thus only be
used if the PRIME implementation framework is linked to VISIO during start-up as dynamic

°® We are currently extending the tool meta model and the implementation framework to support
command activation using drag-and-drop mechanism.

link library (DLL). Consequently, we had to transform the formerly static libraries of the
PRIME implementation framework into DLLS;

As a consequence of melting VISIO and the PRIME implementation framework there were
now two event loops within one operating system process: One of VISIO and the other one
of the PRIME implementation framework (for handling message events from the enactment
domain). Since these event loops initially interfered with each other, the PRIME event loop
had to be adjusted;

VISIO assumes that layout information of diagrams is stored in normal files in a proprietary
data format whereas PRIME stores the logical product information of the flow sheet diagram
being built in the process repository. Consequently, the Action Adapter has to establish and
to maintain links between the layout data in the VISIO files and the corresponding product
data in our process repository.

The technical problems closdy correspond to the problems encountered when integrating
several implementation frameworks as described in [76].

To summarize, the process-integration of VISIO was facilitated to a large degree by wrapping it
with the generic tool architecture of the PRIME implementation framework. Since VISIO provided
the required APIs the wrapping of the tool services and the user interface was straightforward,
despite of the technical problems.

8 Building PRIME-Based Environments

We have identified six steps for building a PRIME-based process-integrated environment (PIE).
In the following we elaborate on each step (see Table | for an overview).

Table I Six steps for building a PRIME-based environment.

. Modeling | Implementation
Step | Description Tee 9 L e\F/)eI

1 Choose one or more plan context definition languages X
2 Define method guidance in the process model X
3 Definetool capabilities of the legacy and new toolsin X

the tool model
4 Define the environment model X
5 I mplement domain-specific tool functionality and/or X

wrapper for legacy tools
6 Integrate required enactment mechanism(s) X

46

8.1 Six Step Procedure for Building a PRIME-based
Environment

Step 1 - Choose One or More Plan Context Definition Languages: A plan context consists of a
set of contexts of any type. It defines a sequence of the embedded contexts by a control flow. For
defining the control flows one or more suitable languages have to be chosen. The choice of a
language depends on the expressiveness required. For example, a finite-state machine language
might be chosen if mainly sequential invocation should be defined, or an imperative programming
language might be chosen if many branches and conditional 1oops have to be defined.

To enable the embedding of a context in a plan context, templates have to be defined in the
chosen language(s) for representing the three context types, respectively their interfaces (situation
and intention). For example, in the case of the Petri-Net based language SLANG special place types
for expressing the situation and intention and sub-net templates for each of the three context types
have been introduced (see Section 4.1.2 for details).

Step 2 - Define Method Guidance in the Process Model: The method engineer defines the method
guidance using the concepts provided by the contextual process model. After defining the product
model, the method engineer identifies the relevant product constellations (modeled as situations).
In addition, she or he defines the goals to be achieved (modeled as intentions). By assigning an
intention to a situation she or he defines the contexts to be supported. Next the method engineer
specifies the guidance to be offered when the context is activated by specifying the
implementation for each context.

If the context is fine-grained enough to be implemented as a single action, the context is defined
as executable context and related to the action to be executed.

Decision points where user intervention is required are expressed by choice contexts. In
addition, the method engineer defines the pro and con arguments for the alternative of the choice
contexts and explanations for the contexts to be provided for the user during process execution (see
Figure 15).

Complex process fragments composed of several substeps are modeled as plan contexts. The
control flow of a plan context is defined using a language chosen in step 1.

Step 3 - Define Tool Capabilities in the Tool Model: The tool model serves as high-level
specification of the tool capabilities.

In case of developing new tools the identification of the required tool categories is mainly
determined by the structure of the underlying product model. For each sub product model (document
type) atool category is defined like an ER editor for ER diagrams. The tool category is then related
to the products and to all actions operating on these products in the process model. For example, all

47

actions dealing with ER diagrams or its components would be related to the tool category ER editor,
whereas all actions operating on data flow elements would be assigned to a DFD editor. In addition,
for each tool category the shapes used to display the products, the display association between the
products and the shapes, and the command elements to be provided must be defined.

For modeling a legacy tool, the capabilities accessible through its APIs are represented in the
tool model. The legacy tool is defined as rool category and the actions (and their input parameters)
accessible through the service invocation APl are defined as action types including the output
parameters accessible through the feedback API. Moreover, the command elements accessible
through the command element API and the product representations accessible through the product
display API are defined. All those definitions are related to the tool category of the legacy tool.

Step 4 - Define the Environment Model: Once the relation of atool category to its products and
actions has been established in the tool model, the tool category can be made responsible for a set
of executable by instantiating the provides executable context association. In addition, the choice
contexts to be executed by the tool category are related to the tool category via the association
provides choice context. Each alternative of an associated choice context must be related to a
command element of this tool category (via the association display of intention) to define how
the intention of each alternative should be displayed (activated).

The process of modeling the tool capabilities (step 3) and then relating them to the executable
and choice contexts iterates until all executable and choice contexts are associated with a tool
category.

Step 5 - Implement Domain-Specific Tool Functionality and/or Wrappers for Legacy Tools:
Depending on whether a new tool is being built or an existing legacy is being wrapped the
implementation tasks differ.

In both cases the tool implementation framework significantly facilitates the implementation
effort. It reieves the tool builder from taking care about the general control flow, the message
exchange with the enactment domain, the context execution and the context detection. The generic
mechanisms ensure that whenever an executable context shall be executed the associated action is
invoked, and that whenever a choice context shall be executed the user interface is adapted
according to the choice context specification, and that the user interactions are matched against the
context definitions of the environment model.

The components beyond the generic implementation framework are the domain specific tool
actions, the specific user interface classes for displaying products using specific shapes, and the
repository layer for storing and retrieving tool specific product data.

For new tools the domain-specific tool components have to be implemented. The
implementation of a typical action requires about one to two pages of C++ code. The effort for
implementing a new product shape or control icon heavily depends on the user interface toolkit used,
but normally it does not exceed two pages of code.

For legacy tools wrappers for the domain-specific tool functionality have to be implemented by
overwriting specific adapter classes of the implementation framework. According to our experience,
wrapping alegacy tool action or user interface e ement requires approximately five to ten times less
code than implementing it from scratch (depending on the API provided by the legacy tool).

Step 6 - Integrate Required Enactment Mechanisms: For each plan context definition language
chosen in step 1, an enactment mechanism (interpreter) has to be embedded in the generic process
engine framework. This is achieved by specializing the abstract base class representing the
Deduce- Cont ext state (see Section 5.2). The amount of work required depends on whether an
enactment mechanism is available and whether it provides the required interfaces. If there exists
an enactment mechanism providing the required interfaces, the effort required for the integration
ismarginal.

8.2 An Example: Building the PRIME-CREWS Environment

We illustrate the six steps by describing the implementation of the requirements engineering
environment PRIME-CREWS. All tools of the PRIME-CREWS environment were built from
scratch.

Step 1 - Choose One or More Plan Context Definition Languages. \We first experimented with
the Petri-Net language SLANG. It was fairly easy to represent the concepts of the contextual
process meta model in SLANG (see Section 4.1.3). By applying SLANG to define the method
guidance (step 2) it turned out that defining complex control flows like branches and loops was
not always straightforward. We had to introduce many additional control transitions and places
which merely served for emulating common control constructs like loops and branches. We
therefore used the imperative language C++ for defining such contexts since C++ offers more
suitable constructs.

Step 2 - Definition of Method Guidance in the Process Model: The product model underlying the
PRIME-CREWS environment is structured according to the three dimensions of requirements
engineering [77]. It adds a conceptual goal model, and a model for structuring multi media
artifacts such as real world scenes to the product models provided by its pre-cursor environment
PRO-ART (ER model, data flow model, hypertext model, gIBIS-like decision model, the RSM-
model; see [4], [78] for details). Moreover, PRIME-CREWS extends the dependency model of
PRO-ART by adding link types for interrelating the scenes and the conceptual models. On top of
these product models 159 situation types have been defined. By relating these situation types to
the defined intentions, 245 executable contexts, 38 choice contexts, and 82 plan contexts have
been defined. The initially small number of choice contexts and plan contexts progressively
increased due to the acquisition of method knowledge during our trial applications (see Section
9.4 for an example).

49

Step 3 - Definition of the Tool Capabilities in the Tool Model: For each of the eight product sub
models we defined a tool category, namely the ER editor, DFD editor, hypertext editor, decision
editor, dependency editor, RSM editor, goal editor, and the whiteboard editor. In addition, three
product independent tools were defined: the model browser providing an overview on the product
models, the task manager for managing pending tasks, and the topic manager for collecting and
structuring open topics. Moreover, the actions provided by each tool category have been defined.
Altogether we defined 245 elementary actions.

In addition we have predefined a set of common command eements such as the pull-down
menus Document, Edit, Tools, Preferences, Help and specific icons for opening a model, adding a
model element etc. These command elements are used by all tools. Thereby we ensured that an
intention provided in more than one tool is activated by the same command e ements. Moreover, we
defined a set of generic shapes which can be used in all tools such as rectangular, circles, oval boxes,
triangles and uni/bidirectional arrows.

Step 4 - Definition of the Environment Model: In the environment model, the actions of the
eleven PRIME-CREWS tool categories were related to the 245 executable contexts defined in the
process model. Moreover, the choice contexts were related to the various tool categories,
including the assignment of at least one command element to each alternative of choice context.

Step 5 - Implementation of Domain-Specific Tool Functionality: All tools have been
implemented using the generic tool architecture of the PRIME implementation framework. For
each tool category the associated actions have been implemented by specializing the
corresponding classes of the generic framework. Similarly, command e ements, special shapes and
the product layer have been implemented. Through the use of the generic framework all the tools
have the same structure and they share about 60-70 percent of their code.

Step 6 - Integration of the Required Enactment Mechanisms: \We have realized enactment
mechanisms for C++ and SLANG. In the case of C++, the plan contexts were specified as
subclasses of the abstract class Cpl uspl usPl anCont ext . Each of these subclasses specializes
the deduceNext Cont ext method. This specialization defines the control flow of the
corresponding plan context. The specialized method is invoked by the generic process engine
architecture during the enactment of the plan context. For enacting plan contexts defined in
SLANG we have implemented a limited SLANG interpreter and embedded it into the generic
process engine architecture. In both cases the enactment mechanisms could be easily plugged into
the generic process engine architecture.

8.3 Lessons Learned

Building a domain specific PIE comprises four modeling and two implementation activities.
Whereas the modeling activities are typically performed by the method engineer, the

50

implementation activities are executed by the tool builder. We summarize our experience gained
from building the PRIME-CREWS and TECHMOD environments.

8.3.1 Method Engineer: Defining and Adapting Process, Tool and
Environment Models

It turned out that defining processes using the three context types offers some significant
advantages to the method engineer in comparison with just applying, e.g., a Petri-Net based
process modeling language. The three context types provide a guideline for the method engineer
on how to structure process models, regardiess of the specific enactment language chosen. In
addition, and in contrast to other process modeling approaches, the method engineer is forced to
make decision points explicit (by defining choice contexts).

The explicit definition of the tool capabilities forces the method engineer to think about the
"right" granularity of tool functions defined as executable contexts. Moreover, the method engineer
is aware of the existing tool support.

The integration of services provided by the tools and the services defined in the process model
can be easily achieved. Moreover, the explicit definition of the tool capabilities empowers the
method engineer to consider the available tool support during the method definition. The explicit
tool definitions support her or him in defining method fragments with the right granularity.

Most importantly, the explicit definition of processes and tool capabilities enables an easy
adaptation of the guidance offered by the environment. This is essential if the support offered has to
be adjusted to project-specific needs and in (experimental) settings, in which new knowledge about
good process performance is constantly elicited and learned.

8.3.2 Tool Builder: Implementing Domain-Specific Process-Integrated
Tools

The implementation of 16 process-integrated tools for the PRIME-CREWS and TECHMOD
environments confirmed our assumption that the concepts of the tool model and their interrelation
with the concepts of executable and choice context are sufficient for defining tool services. There
was no single situation in which atool service could not be adequately described using executable
or choice contexts. Moreover, the developers were forced to define process knowledge explicitly
in plan contexts instead of embedding it in the code of the tools. In other words, the "process in
the tool syndrome" [34] was avoided.

The implementation of the tools was significantly facilitated by the generic tool architecture and
the reuse of the generic implementation framework. It turned out that the generic architecture
enabl es the programmer to extend the tool functionality without investing time in understanding the

51

structure of the tool or having it implemented. For example, the implementation of an action
(executable context) was possible without being aware of the other tool actions and/or worrying
about the control flow of the program.

Moreover, the predefined "slots' of the framework and their interfaces enforced the
programmers to produce modular code. Thus tool maintenance was eased. Each tool could be easily
maintained and extended by any programmer. In addition, the architecture improved the
communication between the programmers and served us as means for distributing the work between
them.

Of course, the programmers have to be trained in implementing process-integrated tools using
the PRIME implementation framework. This requires about 2 weeks in average.

In comparison with the development of earlier prototypes we observed a time reduction by at
least a factor of two for implementing a tool like the DFD editor (for PRIME-CREWS) or the
FlowSheet editor (for TECHMOD), athough the programmers of the new tools had not
implemented the previous ones.

8.4 A Sample Session with PRIME-CREWS

In the following we highlight the benefits a PRIME-based PIE offers for the application engineers.
We describe the enactment of the plan context PC SubtypeEntityAndAdjustDFD defined in
Section 4.1.3 in the PRIME-CREWS environment to illustrate how a PRIM E-based environment

- Supports the application engineer in activating method fragments (Section 8.4.1);
- Explains new method fragments to the application engineer (Section 8.4.2);

- Executes automated process steps (executabl e contexts; Section 8.4.3);

- Provides methodical advice during choice context execution (Section 8.4.4);

- Supports the engineer in providing correct feedback information (Section 8.4.5).

As background for the example we assume that the PRIME-CREWS environment is used for
modeling a library system. Anita, the application engineer, is receiving method guidance for
subtyping the entity type publication in the current ER diagram into books which can be checked out
for four weeks and journals which cannot be checked out.

In the following, the paragraphs written in normal font describe the application engineer’s
interactions, while the paragraphs written in italics give an explanation of what happens at the
technical level of the PRIME framework™.

' The description of the user interactions and the explanation of what happens at the technical level
take a much longer timeto read than it would take to experience the advantages yourself by using
the PRIME-CREWS environment.

52

8.4.1 Tool Supported Invocation of Method Fragments

Anita selects the entity type publication and the Subtype Entity menu item in the ER editor (see
Figure 14). Since the interactions match with a context definition, Anita has activated the
execution of a context, in this case of the plan context PC SubtypeEntityAndAdjustDFD. Note that
she needs not to be aware about the plan context definition, since a plan context is activated in a
process-integrated tool just like any other tool functionality (context).

(=] PRO-ART 2.0 ERD Editor —— LIbERD. [+ [T]

5 Bicwi| EREINON " Priaa i
ot | Cimst=ism Liok |

' | Discriminate Entey | 2

[Bubbype Enty | =

Figure 14: Activation of the plan context PC SubtypeEntityAndAdjustDFD
in the ER editor.

The ContextMatcher of the ER editor matches the sdected entity and the activated menu item
with the situation and intention of the context definitions. It identifies the activation of the plan
context PC_SubtypeEntityAndAdjustDFD and sends an enactment request to the enactment domain
with the context identifier and the situation instance (the selected entity publication) as parameter.
The process engine becomes active, loads the definition of the plan context
PC_SubtypeEntityAndAdjustDFD from the process repository, and initializes the input places of the
corresponding SLANG net with the parameters received with the enactment request. For example,
the situation place Entity_To_Be Subtyped is filled with a data token representing the entity type
publication (illustrated in Figure 14).

8.4.2 Method Advice: Explanations of Method Fragments

As a result of the plan context invocation, PRIME-CREWS displays an explanation of the
activated plan context to Anita. The textual description explains the overall goal of the method
fragment and the segquence of steps to be performed. Anita can now decide whether the method
advice should be displayed the next time the context is invoked or not.

53

For each executable, choice, or plan context the method engineer should provide a textual
description. This description is retrieved when the method fragment is invoked and displayed in the
method advisor window. By clicking on the name of the sub context (in the case of a plan context)
or aternative context (in the case of choice context) the user can access more detailed information
for each step in a hypertext-like manner. The display of the method advice for a new defined context
is enabled by default. It can be disabled by the user for further invocations after it has been displayed
once.

Anita acknowledges the information obtained from the method advice window and presses the
disable button. Thereby she states that whenever this context is activated again, the textual
description should not be displayed automatically. Moreover, by pressing the Start Context button
she activates the enactment of the plan context (she could also have stopped the enactment of the
plan context).

According to the plan context specification, first the sub plan context PC_SubtypeEntity is
activated.

The plan context PCSubtypeLntity guides Anita during the specialization of the entity type. She
creates two sub entities, namely the entity book and the entity j our nal , for the entity
publ i cati on (not explained in detail here). In addition, the sub-entities are automatically related
to the super-entity via IsA-links.

8.4.3 Automated Process Performance

According to the plan context definition, an automated process step (executable context) is
performed after the plan context PC SubtypeEntity is finished. This automated process step
retrieves all DFD elements from the repository which might be effected by the subtyping of the
entity. It thus represents a traceability strategy which ensures the use of recorded trace information
(inthis case the dependencies between the entity and the DFD elements).

By performing the executable context EC_GetDependentObjects provided by the dependency
editor all data flow elements which are rdlated to the entity publication via a dependency link are
retrieved from the repository™. Among the objects returned are the data store PUBLICATION and
its adjacent data flows. They build the situation of the choice context CC_SdectDFDElement which
is deduced as the next context to be executed by the process engine and passed to the dependency
editor, who is, according to the environment model, responsible for executing this context.

I PRIME-CREWS's mechanisms and models for supporting traceability between specification
objects (such as entity types and data stores) via a comprehensive dependency structure described
in[4] in detail.

8.4.4 Method Advice: Supporting User Choices

The dependency editor adapts its user interface according to the definition of the
CC SelectDFDElement context and the actual situation data. It displays the four intentions of the
aternatives as defined in the environment model and displays the tokens of the situation place,
namely theretrieved DFD objects and the entity proceedings.

To get more information on the four alternatives, Anita requests additional guidance from the
dependency editor by selecting the guidance menu item.

The arguments for choosing an aternative are retrieved from the process repository and
displayed in the method advice window (Figure 15). Again, it is possible to browse through the
aternatives.

(== vnatmertod Aduiie [~
i L Bt Tosl Pra by
Comtant

|PRO-ART 2.0 Dependency Bd| tor/Browser — Honama| | CC IR Dl s b

S

Aualian i
|DFD Bt FUBLICATION Sam; psbicaleniade tast. - = FLBLIC |
Imenton

SeleciDF DEl reni

| »
' This cheice content affery the folkreng shermsttres fortreating [
[DT> ehesments which sight be alfested by o ety sk png
sl LB Adapt DF [Elemen
PURLK This phiey Cordeart guides birer o chergs the TP el errerrd when
i i carreRponding cainy Tvpe Wil subtg el e g, by el
] s aalpine dts (zun
- . 5 . 4
Floa Bash i o -_.L- SidToTacking

FUBICATION = il 0 \“‘._ I_C,.D _."'/] e = PUSLICATION 5 % 4 4 T nof sare wheiker e ety sdbiypog hae

L ol

%

Sur sedecied DFD slement, pan £ an e tsk st

oo b ety mithyping

. A Hpare th tae o rchenee onfee
Taibker } vedrscnet DFD) element. chasse s alermafve
i | A Cuall Adlepaandio
Ahsays dispb sefrod anese t s Conies 7 -]
omes |

Figure 15: Dependency editor performing the choice context CC SelectDIFDElement.

Anita looks at the arguments for the four alternatives and decides to adapt the flow publication
defined between the store PUBLI CATI ON and the process bubble Check Out. By selecting the shape
representing the flow in the dependency editor and choosing the menu item AdaptDFDElement from
the Edir menu, Anita initiates the execution of the plan context PC AdaptDFDElement. This
complex plan context guides Anitain the adaptation of the selected data flow (not explained here).

After the adaptation is finished, the choice context CC SelectDIFDElement is again activated in
the dependency editor. Now only the store PUBLICATION and flow publication from process book
to store PUBLICATION can be sdected. These products are highlighted by the tool using dark
borders (Figure 15).

Due to the control flow of the plan context, the token which represents the adapted flow has
been consumed by the execution of the choice context described above. In the dependency editor

55

only product parts which are part of the actual situation (for which a token exists in the
DFD_Element place of the plan context) are displayed as sdectable.

As the next item to be adapted Anita sdects the flow publication (between the process bubble
add book and the store PUBLI CATI ON) and the menu option AddtoTaskList since she is currently
not sure whether this element is actually effected.

This interaction matches with the executable context EC_AddToTaskList which is executed by
the task manager (brokered via the process engine).

Finally, she finishes the plan context enactment by choosing the alternative Quit DFD
Adaptation.

8.4.5 Assuring Correct Feedback Information

The adaptation of the user interface during the execution of the choice context
CC SelectDFDElement ensures that the items selected by Anita are understood by the process
engine. It guarantees that an appropriate reaction to the feedback is defined by the process
fragment. Since the abortion of the adaptation of the DFD elements is offered as one alternative,
Anita can deviate from the guidance provided by the plan context execution whenever she wants,
but in a defined way.

8.4.6 Feedback Obtained from Users

In our early validation studies with the PRIME-CREWS and TECHMOD environments, most
users reported that the reflection of the actual method definitions and the current enactment state
in the behavior of the tools provides very helpful guidance; especially the adaptation of the user
interface according to the method definitions and the support offered for invoking predefined
method fragments. Since attention is automatically drawn to the applicable product parts and
services, wrong and unintended interactions are avoided. The uniform activation of tool services
(executable and choice contexts) as well as process fragments (plan contexts) was regarded as a
significant improvement.

In contrast to our previous prototypes (and most other process-centered environments) the
number of different interfaces the user has to cope with was reduced. Now the user essentially
interacts with the enactment domain via the normal development tools (not through isolated
guidance interfaces). This was also reported as a major improvement.

56

9 Change Integration in a PRIME-Based
Environment

Method guidance continuously evolves due to various reasons such as changes in organizational
and/or project policies, increase and/or revision of method knowledge, adding and/or modification of
tool functionality. The process of adapting a process integrated environment (PIE) to such changesis
thus as (or even more) important as building a PIE from scratch.

One major drawback of current process-centered engineering environments is that method
guidance is hard-coded in the tools. The adaptation to changes is thus difficult and labor-intensive, if
not impossible. Embedding a new tool in an environment is generally difficult since the method
guidance encoded in the tool interferes in most cases with the method definitions. Moreover, since
method guidance, tool capabilities and their interrelations are not explicitly represented, it is hard to
determine how a method change affects the tools and vice versa.

In contrast, a PRIME-based PIE facilitates the incorporation of a changein two major ways.

First, the conceptual modeling of processes, tools, and their integration in the environment
model empowers a change definition on the modeling level. Once a change is defined at the
modeling level, the effect of the change can be analyzed. Moreover, the environment meta model
supports the selective retrieval and thereby the reuse of method fragments (contexts of any type) and
tool functionality and thereby eases the change implementation.

Second, the interpretation of the environment model by all PRIME components ensures that
changes can be mainly accomplished at the modeling level. The integration of most changes requires
only an adaptation of the method, tool, and/or environment models. If changes at the implementation
level are required, for example, if a new elementary process step shall be implemented, the
implementation is supported by the generic components of the PRIME implementation framework.

For integrating a change into a PRIM E-based environment, we propose a five step strategy:

(Step 1) Change definition in the environment model: The environment model has to be adapted
according to a change request. In other words, the changeisfirst defined at the modeling level;

(Step 2) Analysis of change affects: The meta models are used to analyze the existing definitions
in the current environment model and to retrieve those parts of the definition which are effected by
the changes made in step 1;

(Step 3) Adaptation of effected tool and/or method definitions: The effected tool and/or method
definitions have to be adapted in a way that the tool and method definition are consistent;

(Step 4) Establishing a consistent environment model: Newly defined or changed method
fragments and/or tool capabilities must be interrelated to achieve a consistent environment model
definition;

57

(Step 5) Implementation of missing tool functionality: In some cases, a change cannot be fully
implemented through model adaptation and thus requires, in addition, the implementation and/or
wrapping of tool functionality.

The strategy outlined above can also be applied for transferring method guidance and tool
functionality between different application domains. As our experience with the development of the
TECHMOD environment indicates, many method fragments and tool functionality developed for the
requirements engineering environment PRIME-CREWS could be reused for the TECHMOD
environment. Maost of the required adaptations could be achieved through model changes.

In the next sections we daborate on the integration of a change request in a PRIME based
environment. Therefore, we classify change requests into three main categories, namely method
change requests (Section 9.1), tool change requests (Section 9.2), and responsibility change requests
(Section 9.3).

9.1 Integrating Method Change Requests

According to our experience, the adaptation of the method definitions is the most common change
request. Such changes are typically raised by the need to adjust the support offered to project-
specific needs, to implement new methodical knowledge or to enrich existing method fragments.

Step 1 - Change Definition in the Environment Model: For accommodating method changesin a
PRIME-based environment, the context definitions have to be adapted. According to our
experience method changes seldom require the definition of completely new method fragments.
Once a consolidated base of method fragments exists, method changes can be mainly achieved by
adapting existing contexts (for example, by adding a new alternative to a choice context or by
changing the control flow of a plan context) and/or composing existing contexts into an existing or
new plan context. The environment meta model provides an excellent starting point for retrieving
reusable method fragments. For example, if the method engineer defines the situation and/or
intention of the new context, she or he can retrieve all contexts which are potential reuse
candidates such as all contexts which are based on same or similar situation.

Step 2 - Analysis of Change Affects: Modifying existing and/or adding new executable and/or
choice contexts can require an adaptation of the tool models. By applying the consistency
constraints defined in Section 4.3 the concepts of the tool models which are effected by the
method changes can be retrieved. For example, by applying constraint E1 and E2 it can be
checked if a tool category is responsible for the action assigned to an executable context and if
there is a mismatch between the input and output parameters defined for the action in the tool
model and the situation defined for the action in the process mode. If no tool category is
responsible for executing the context, it can be checked whether a tool provides the required
action or whether the definition of a new tool action is required. Similar, by applying constraints
C1 and C2, it can be checked whether the tool responsible for the choice context is able to display

58

the intentions of all alternative contexts and whether all product types being part of a situation
type of any alternative context can be displayed.

Step 3 - Adaptation of Effected Tool and/or Method Definitions: The conflicts between the tool
definitions and the adapted method definitions detected in step 2 have to be resolved. This can
either be achieved by adapting the tool definitions or by changing the method definitions. In the
case of an executable context, for example, if the required action is not provided by any tool, the
method engineer can either define a new action and assign it to a tool category, or revise the
definition of the executable context. For example she or he can define a new plan context which
achieves the method guidance by composing more fine-granular actions provided by the tools.
Similarly, if there is a mismatch between the input and output definition of the actions either the
input/output parameters in the tool model are adapted or the definition of the executable context is
changed.

In the case of a new or changed choice context it might be the case that the tool which is or
should be responsible for executing the context does not offer all required command & ements and/or
shapes. To solve this inconsistency, either the tool model is enhanced by defining the missing
command eements and/or the shapes, or, the method engineer adapts the choice context definition
instead of changing the tool model, or the adjustment is achieved by a combination of baoth.

Step 4 - Establishing a Consistent Environment Model: The newly defined or changed method
fragments (contexts) and/or tool capabilities must be interrelated with each other. The definition
of the associations and the support provided by the meta models is described in Section 8.1, step 4.

Step 5 - Implementation of Missing Tool Functionality: 1T in step 3 the tool definitions have been
changed, the implementation must be adapted according to those changes. This means that either
the wrappers of the legacy tools must be adapted, or that the missing actions, shapes, and
command icons have to be implemented. As described in step 5 (Section 8.1) the PRIME
implementation framework significantly facilitates those implementations. In contrast to the
actions, shapes and command items, the menu entries and the short-key bindings are automatically
generated by the PRIME implementation framework.

9.2 Integrating Tool Change Requests

Tool modd modifications stem from enhancements or modifications of the available tool
functionality initiated through, e.g., a user request for a new tool action, or a completely new tool,
or the removal of an existing tool from the environment.

Step 1 - Change Definition in the Environment Model: Changes in the tool implementations must
be reflected at the modeling level by adapting the tool model accordingly. Ideally, changes are
first defined in the tool model and then, after establishing a consistent environment model,
implemented. For example, if a new tool action shall be implemented the action and the inpur and
output parameters should be defined in the tool model. Similarly, if an existing tool shall be

59

replaced by a new tool, the capabilities of the new tool should be defined in the tool model. The
environment model can then be used to detect and analyze the differences in the capabilities
provided by the old and the new tools, for example, to detect capabilities provided by the old tool
but not by the new one.

Step 2 - Analysis of Change Affects: Changes of the tool capabilities do normally not affect the
method fragment definitions. However, if a capability required for executing an executable and/or
choice context is changed, the method definitions are effected.

For example, if the signature of an action has been modified, it has to be assured (by checking
constraint E1 and E2) that the new definition still fits with the situation defined for the action in the
method definitions. In the case of a legacy tool, it has in addition to be checked if the wrappers till
work as desired. Otherwise the association of the tool category with the corresponding executable
context becomes invalid. Or, a modification of command elements and/or the visualization of
products may interfere with the associations defined between the tool categories and the choice
contexts, for example, if a command element has been removed or changed, it must be checked
whether and which alternatives of a choice context are effected.

Step 3 - Adaptation of Effected Tool and/or Method Definitions: The modification of the tool
capabilities can cause certain adaptations of the method fragments and the associations defined
between the fragments and the tool capabilities. Similar to the integration of method changes, the
adaptation can be achieved by modifying the tool and/or method definitions. For example, if a
certain tool capability like an action or a shape has been removed the associated contexts have to
be changed or new capabilities have to be defined in the tool model. Similar, to enable the
execution of new actions defined in the tool model corresponding executable contexts have to be
defined in the process model.

Step 4 - Establishing a Consistent Environment Model: see Section 9.1, step 4 for a description.

Step 5 - Implementation of Missing Tool Functionality: |f there are capabilities not provided by
the tools, those capabilities must be implemented. If additional capabilities provided by a legacy
tool shall be used, those capabilities must be wrapped as described in Section 7.

9.3 Integrating Responsibility Change Requests

Besides the method and tool changes, a change request can be concerned with assigning the
responsibility for a context execution to another tool.

Step 1 - Definition of Change in the Environment Model. A change in the responsibility for
executing an executable or choice context can be achieved by adapting the associations defined
between the tool and process models.

60

Step 2 - Analysis of Change Affects: Before changing an assignment of an executable or choice
context, the consequences of this change should be explored.

For example, if instead of atool category 7, atool category 75 shall be responsible for executing
an executable context, it should be checked if 7, actually provides the action related to the
executable context and if the definition of the input and output parameters corresponds to the
situation of the executable context. This can be achieved by checking the constraints E1 and E2
(Section 4.3). Similarly, when assigning a choice context to another tool category, the method
engineer can check by using the constraints C1 and C2 if the new tool category provides all
command e ements and product shapes required for displaying the alternatives of the choice context
to bere-assigned.

The steps three, four and five have only to be performed if the intended change requires the
definition of new tool functionality or the adaptation in the method definition. These cases are
described in Section 9.1 and Section 9.2 respectively.

9.4 Adapting Method Guidance: A Small Example

We illustrate the ability of PRIME-based environments to adapt to changes using an example of
the PRIME-CREWS environment. The example illustrates the adaptation of the method guidance
for specializing an entity and adjusting the effected data flow diagrams. According to our
experience, adapting the method guidance is by far the most frequent type of changeinaPIE.

The original method guidance for the specialization of an entity was defined in a plan context
PC SubtypeEntity which supports the creation of sub-entities and the IsA-Links between the super-
entity and its sub-entities.

A review of the requirements specifications produced with the PRIME-CREWS environment
reveals that specialization in the entity relationship diagrams are often not accuratdy reflected in the
corresponding data flow diagrams. Therefore, the method engineer defined a new plan context
PC SubtypeEntityAndAdjustDFD which guides the requirements engineer in the specialization of
the entity and the adjustment of the data flow diagrams. We described this plan context already in
Section 4.1.3 (see aso Figure 4).

In the following we briefly sketch how the definition of the new plan context was supported by
the modeling tools and achieved in the PRIME-CREWS environment.

Step 1 - Change Definition in the Environment Model. For defining the new plan context, the
method engineer (Fritz) first queried the environment model to obtain all contexts which deal with
the modeling of entities and the adaptation of data-flow diagram elements. From the 21 retrieved
contexts, Fritz selected four to be reused:

- Theplan context PC SubtypeEntity which guides the specialization of an entity;

61

- The plan context PC AdaptDFDElement which guides the adaptation of a single data-flow
diagram element;

- The executable context EC GetDependentObjects which selects objects with the specified
association from the repository;

- The executable context EC AddToTaskList by which an open topic is added to the workplace
specific task list;

Fritz reused these contexts for defining the new method guidance in a plan context. He first
defined the situation and the intention of a new choice context (CC SelectDFDElement) which
alows the requirements engineer to select the dependent DFD object and choose an adaptation
strategy. He then associated the alternatives PC AdaptDFDElement, EC AddToTaskList,
NoChangeRequired, QuitAdaptation 10 the new choice context. According to the environment model
definitions, the alternatives PC AdaptDFDElement, EC _AddToTaskList are executed by different
tools (the TaskManager and the DFD editor). He then embedded the choice context into the plan
context definition and completed the plan context definition by specifying the control flows and by
embedding additional contexts as shown in Figure 4.

Asillustrated by the example, the definition of a new plan context is often an activity by which
existing contexts are "glued” together.

Step 2 - Analysis of Change Affects: After finishing the method definitions, Fritz checked the
constraints on the current model definitions. As a result he noticed that the new choice context
CC SelectDFDElement is not related to any tool category.

Step 3 - Adaptation of Effected Tool and/or Method Definitions: In our example, there is no need
to adapt the tool models, since all required action and command elements are provided by the
defined tools.

Step 4 - Establishing a Consistent Environment Model: Fritz thus just had to relate the choice
context CC SelectDFDElement to the tool category which should be responsible for executing the
context, namely the dependency editor. This assignment required in addition, that the intentions of
the four alternative contexts are related to command el ements of the DFD editor (see Section 4.3.2
for details). Thereby the DFD editor was made responsible for executing the choice context.

Step 5 - Implementation of Missing Tool Functionality: The definition of the new method
guidance in our example did not require any changes at the implementation level. Even the new
tool interoperations required by the changes were achieved without any single source code change.

As our experience indicates, changing method guidance in a PRIME-based environment requires
much less effort than adapting the method guidance in existing process-centered environments or in
conventional CASE tools.

62

10 Conclusions and Outlook

We presented PRIME, a framework for PRocess-/ntegrated Modelling Environments. The
development of the PRIME framework was driven by the requirements for process-integrated
environments elaborated in Section 2. PRIME differs significantly from current PCEs in that it
provides method guidance through process-integrated tools which are able to adapt their behavior
to the method definition and to the actual process situation. Thereby the tools offer situated
guidance to the humans performing the process. PRIME enables the user to initiate the enactment
of method definitions and thereby empowers the user to play a more active role in process
performance.

The main contributions of the PRIME framework (in comparison with existing PCEs) can be
summarized as follows:

Integrated tool and process models (Section 4): We argued that tools should not longer be treated
as second class citizens and suggested to explicitly define the tool capabilities in addition to the
process models. Moreover, we proposed to integrate both types of models forming the so-called
environment model. The interpretation of the environment model by the components of the
PRIME framework and the integration of enactment and performance domains (Section 5) build
the conceptual foundations for the process-integration of the interactive engineering tools.
Process-integrated tools offer integrated, definition-conform method guidance and thereby
significantly improve the consideration of the project-specific definitions by the stakeholders
executing the process.

Implementation framework for process-integrated tools (Section 6): The implementation of the
generic tool architecture offers well-defined interfaces for embedding tool specific actions, shapes
and command elements. It thus defines a quasi standard way of implementing process-integrated
tools. Thetool architecture ensures a synchronization with the enactment domain according to the
interaction protocol definitions. Moreover, it facilitates the realization of project-specific changes
and the implementation of a new tool through the automated adaptation of the tool behavior to
changes in the environment model. This is mainly achieved through the ContextMatcher which
supports the user in the unified activation of contexts of any type and the ContextExecutor which
ensures that the contexts are executed as defined. In the case of an executable context, it performs
the associated action; in the case of a choice context it restricts the sel ectable products, command
elements and menu options according to the choice context definition and the current enactment
state. Both components ensure that changes in the environment model are automatically reflected
in the tool behavior.

Implementation framework for process engines (Section 6): The language used for defining plan
contexts depends on the type of support provided. For example, state-based languages are well
suited to define simple advice patterns, whereas the eff ective definition of more elaborated support
requires, to our experiences, the use of languages with a higher expressiveness such as Petri-Nets

63

or (visual) programming languages. Improving the method guidance could thus, at certain stages,
require the use of an additional plan context specification language and thus the integration of a
suitable interpreter in the PRIME-based environment. The integration of a new interpreter is
facilitated by the interfaces offered by the generic enactment architecture which ensures
interaction protocol conform synchronization with the performance domain.

Process-integration of legacy tools (Section 7): One cannot assume that for each required
functionality new process-integrated tools are implemented. Achieving a process-integration of
legacy tools the users are familiar with is thus essential. The PRIME framework significantly
facilitates the process-integration of legacy tools by wrapping the tool using appropriate user
interface and action wrappers into the generic tool architecture. Thereby a legacy tool is
empowered to offer integrated, definition-conform stakeholder guidance.

Change integration support (Section 9): Easy change realization and appropriate change
integration support are two important prerequisites for adapting requirements management
environments to project-specific needs. Change integration is facilitated by the PRIME
implementation framework in two major ways. First, model-based change definition and change
analysis are empowered through the conceptual modeling of processes, tools, and their integration
in the environment model. Second, the effort required for a change realization is significantly
reduced. The interpretation of the environment model by the PRIME components ensures that the
change implementation can mainly be achieved through model adaptations. If the integration of a
change affects the implementation level, the realization is significantly supported by the generic
tool and enactment architectures.

The generic components of PRIME have been implemented as reusable object-oriented
implementation framework (approx. 120,000 lines of C++ code). In addition, modeling tools for
supporting the definition of the tool, process and environment models have been implemented. The
PRIME implementation framework and the associated development and customization strategies,
were validated by implementing two prototypical process-integrated environments, PRIME-CREWS
and TECHMOD, consisting of 16 process-integrated tools (approx. 240,000 lines of tool specific
C++ code). Moreover, the PRIME framework was validated by applying the environments in small
case studies and trial applications.

Most users of the PRIME-CREWS and the TECHMOD environments reported that the
reflection of the actual method definitions and the current enactment state in the behavior of the
tools provides very helpful guidance. The user is reminded of the project-specific definitions and, as
a consequence, the definitions are much better considered during process execution. The uniform
activation of tool services (executable and choice contexts) as well as method fragments (plan
contexts) was regarded as a significant improvement. Project-specific guidance can thus be invoked
by the user without even knowing their existence. Moreover, in comparison with our previous
prototypes (and most other process-centered environments) the number of different user interfaces
was reduced. Now the user essentialy interacts with the enactment domain via the normal

development tools (not through isolated guidance interfaces). This was also reported as major
improvement.

We are currently extending the PRIME implementation framework to enable context detection
and invocation across tool boundaries. Moreover, to further reduce the implementation effort
required for building a process-integrated tool we enrich the PRIME framework with tool generation
approaches which enable the generation of tool specific functionality based on richer tool
specifications.

In addition, we are investigating in the application of the PRIME framework for the
implementation of project-specific trace capture strategies (see [22], [79] for details), and in the
development a comprehensive framework for the process integration of legacy tools. The framework
will define detailed criteria for determining the degree of process integration which can be achieved
for a given legacy tool. The process-integration of a legacy tool will be facilitated by generic
wrappers which can be adjusted according to the assessed capabilities of the tool. To empower as
much as possible reuse, the wrappers will be related to the generic tool architecture of the PRIME
implementation framework.

Acknowledgments: The authors like to thank their students S. Brandt, S. Ewald, M. Hoofe, T.
Rotschke, K. Schreck, A. Spiegel, and W. Thyen. Without their enthusiasm, the implementation of
the generic architecture and the PRIME-CREWS and TECHMOD environments would not have
been possible.

References

[1] M. Paulk, B. Curtis, M. Chrissis and C. Web@upability Maturity Model for Software:
Version 1.1, Technical Report SEI93-TR-24, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, February 1993

[2] W. E. DemingQut of the Crisis, Massachusetts Institute of Technology, Center for Advanced
Engineering Study, Cambridge, 1986

[3] M. Dowson,Consistency Maintenance in Process Sensitive Environments, In: Proc. Process
Sensitive Software Eng. Environments Architectures Workshop, Boulder, Colorado, USA,
September, 1992

[4] K. Pohl,Process Centered Requirements Engineering, RSP marketed by J. Wiley & Sons
Ltd., UK, 1996

[5] J. LonchampS$ofiware Process Modelling and Technology, Chapter An Assessment Exercise,
In: A. Finkelstein, J. Kramer and B. Nuseibeh (Eds.), Software Process Modelling and
Technology, Student Research Press, Wiley & Sons, England, 1994, pp. 335-356

[6] V. Ambriola, G. A. Cignoni and C. Montangerte Oikos Services for Object Management
in the Sofiware Process, In: B. Warboys (Ed.), Proc. of the Third Europ. Workshop on
Software Process Technology, Villard de Lans, France, February, Springer-Verlag, LNCS,
1994, pp. 2-13

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

65

S. Bandindlli, A. Fuggetta, C. Ghezzi and L. Lavazza, SPADE: An Environment for Software
Process Analysis, Design, and Enactment, In. A. Finkelstein, J. Kramer and B. Nuseibeh
(Eds.), Software Process Modelling and Technology, RSP, London, 1994, pp. 223-248

N. Barghouti, Supporting Cooperation in the MARVEL Process-Centered Sofiware
Development Environment, In: Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, New Y ork, New Y ork, USA,
1992, pp. 21-31.

N. Belkhatir, J. Estublier and W. L. Meo, TEMPO: Enhancing O.0. Paradigm for Modeling
Software Engineering Processes.In: W. Schéfer (Ed.), Proc. of the Eighth Intl. Software
Process Workshop: State of the Practice in Process Technology, Wadern, Germany, March
1993, pp. 37-39

P. Boveroux, G. Canals, J.-C. Derniame, C. Godart, P. Jamart and J. LonShéwmajpe
Process Modelling in the ALF System: an Example, In: V. Ambriola, A. Fuggetta and R.
Conradi (Eds.), Proc. of the First Europ. Workshop on Software Process Modeling
Technology, Milan, Italy, CEFRIEL, AICA, Working Group on Software Engineering, May
1991, pp. 167-179

M. Deiters and V. Gruhrfhe FUNSOFT Net Approach to Software Process Management,
Intl. Journal of Software Engineering and Knowledge Engineering, Vol. 4, No. 2, 1994

C. FernstromPROCESS WEAVER: Adding Process Support to UNIX, In: L. Osterweil (Ed.),
Proc. of the Second Intl. Conf. on the Software Process, Berlin, Germany, IEEE Computer
Society Press, February 1993, pp. 12-26

P. Heimann, G. Joeris, C.-A. Krapp and B. WestfeCBBNAMITE: Dynamic Task Nets for
Software Process Management, In: Proc. of the 18th Int. Conf. on Software Engineering,
1996, pp. 331-341

T. Mochel, A. Oberweis and V. Sangérgome/star: The petri net simulation concepts,

Journal of Mathematical Modelling and Simulation in Systems Analysis, Vol. 13, 1993, pp.
21-36

V. Ambriola, R. Conradi and A. Fuggettdssessing Process-Centered Sofiware Engineering
Environments, ACM Transaction of Software Engineering and Methodology, Vol 6, No 3,
1997, pp. 283-328

P. Armenise, S. Bandinelli, C. Ghezzi and A. Morzeht§urvey and Assessment of Software
Process Representation Formalisms, International Journal of Software Engineering And
Knowledge Engineering, Vol. 3, No. 3, 1993, pp. 410-426

B. Curtis, M. Kellner and J. OveProcess Modeling, Communications of the ACM, Vol. 35,
No. 9, 1992, pp. 75-90

A. Finkelstein, J. Kramer, and B. Nuseibeh (Eds:fiware Process Modelling and
Technology. Advanced Software Development Series, RSP marketed by J. Wiley & Sons Ltd.,
Taunton, England, 1994

A. Fuggetta and C. Ghezakate of the Art and Open Issues in Process-Centered Sofiware
Engineering Environment,. Journal of Systems and Software Vol. 26, 1994, pp. 53-60

F. Harmsen and M. Saekipmparison of four Method Engineering Languages, In: S.
Brinkkemper, K. Lyytinen and R. Welke (Eds.), Method Engineering: Principles of
construction and tool support -- Proc. of the IFIP TC8, WGB8.1/8.2 Working Conference on
Method Engineering, Atlanta, Georgia, USA, Chapman & Hall, London, England, August
1996, pp. 45-62

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

66

J.-P. Tolvanen, M. Rossi and H. Liu, Method Engineering: Current Research Directions and
Implications for Further Research, In: S. Brinkkemper, K. Lyytinen and R. Welke (Eds.),
Method Engineering: Principles of construction and tool support -- Proc. of the IFIP TCS,
WGB8.1/8.2 Working Conf. on Method Engineering, Atlanta, Georgia, USA, Chapman & Hall,
London., England, August 1996, pp. 296-317.

K. Pohl, R. D6mges and M. Jarkeywards Method-Driven Trace Capture, In: Proceedings
of the 9th International Conference on Advanced Information Systems Engineering, CAISE
'97, Barcelona, Spain, June 1997, pp. 103-116

G. Alonso, D. Agrawal, A. Abbadi and C. Mohdixuctionality and Limitations of Current
Workflow Managment Systems, |EEE Expert, 1996

M. Nagl (Ed.),Building Tightly Integrated Sofiware Development Environments: The IPSEN
Approach, LNCS 1170, Springer Verlag, 1996

A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer and B. Nuseilwebrsistency Handling in
Multi-Perspective Specifications, IEEE Transactions on Software Engineering, Vol. 20, No. 8,
1994, pp. 569 — 578

R. Démges, K. Pohl, M. Jarke, B. Lohmann and W. Marqu&®RiD-ART/CE: An

Environment for Managing the Evolution of Chemical Process Simulation Models, Modelling

and Simulation, Special Issue of ESM-96, Society for Computer Simulation International, pp.
1012-1017

S. Arbaoui and F. OquendWanaging Inconsistencies between Process Enactment and

Process Performance States, In: W. Schéafer (Ed.), Proc. of the Eighth Intl. Software Process
Workshop: State of the Practice in Process Technology, Wadern, Germany, IEEE Computer
Society Press, 1993, pp. 24-27

M. Dowson and C. Fernstrorfipwards Requirements for Enactment Mechanisms, In: B.
Warboys (Ed.), Proc. of the 3rd Europ. Workshop on Software Process Technology, LNCS,
Villard de Lans, Frankreich, Springer-Verlag, No. 772, February 1994, pp. 90-106

W. Emmerich,7 ool Construction for Process-Centred Sofiware Development Environments
based on Object Databases, PhD thesis, University of Paderborn, Germany, 1995

C. FernstromState Models and Protocols in Process Centered Environments, In: W. Schafer
(Ed.), Proc. of the Eighth Intl. Software Process Workshop: State of the Practice in Process
Technology, Wadern, Germany, IEEE Computer Society Press, 1993, pp. 72-77

C. Fernstrom and L. Ohlssalwgegration Needs in Process-Enacted Environments, In: Proc.
of the 1st Intl. Conf. on the Software Process, 1991, pp. 142-158

M. A. Gisi and G. E. Kaiselyxtending a Tool Integration Language, In: M. Dowson (Ed.),
Proc. of the First Intl. Conference on Software Process, Redondo Beach CA, IEEE Computer
Society Press, October 1991, pp. 218-227.

M.JarkeStrategies for integrating CASE environments. |EEE Software, March 1992, pp. 54-
61

C. Montangerofhe Process in the Tool Syndrome: Is It Becoming Worse? In: Proc. of the 9th
Intl. Software Process Workshop, Arlie, Virginia, USA, IEEE Computer Society Press,
October 1994, pp. 53-56.

S. M. Sutton and M. H. Pened®ocess Based Sofiware Engineering Environments

Architectures Session Report, In: Proc. of the Seventh Intl. Software Process Workshop:
Communication and Coordination in the Software Process, Yountville, CA, IEEE Computer
Society Press, 1991, pp. 14-21

G. Valetto and G. E. Kaiseknveloping Sophisticated Tools into Process-Centered
Environments, Journal of Automated Software Engineering, Vol. 3, 1996, pp. 309-345

[37]

[38]

[39]
[40]
[41]

[42]

[43]
[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]
[56]

67

I. Thomas and B. A. Ngmeh, Definitions of Tool Integration for Environments, |EEE
Software Vol. 8, No. 2, 1992, pp. 29-35

A. |. Wasserman, Tool Integration in Sofiware Engineering Environments, In. F. Long (Ed.),
Proc. of the Intl. Workshop on Software Engineering Environments, Berlin, Germany,
Springer-Verlag, 1990, pp. 137-149

A. Brown, A. Earl and J. McDermid, Sofiware Engineering Environments: Automated
Support for Sofiware Engineering. McGraw-Hill, 1993

M. Chen, and R. J. Norman, 4 Framework for Integrated CASE, |EEE Software, March 1992,
pp. 18-22

ECMA-NIST, A Reference Model for Frameworks of Softiware Engineering Environments,
No. TR/55 Version 3. ECMA & NIST, 1993

K. Pohl and K. Weidenhaupt, A Contextual Approach for Process-Integrated Tools, In: Proc.

of the 6th Eurpoean Software Engineering Conference (ESEC) and 5th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Zirich, Switzerland, September,
LNCS 1301, Springer Verlang, 1997, pp. 176-192.

G. Boudier, F. Gallo, R. Minot and I. Thomals, Overview of PCTE and PCTE+, In: J.-C.
Derniame (Ed.), Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symp. on
Practical Software Environments, Boston, MA, November 1988, pp. 28-30

L. Wakeman and J. Jowelt("TE -- The Standard for Open Repositories, Prentice Hall, 1993

EIA, The CDIF 1994 Interim Standard — Overview, No. EIA/1S-106, ISBN 0-7908-0012-8.
Electronic Industries Association, 1994

OMG, XMI Specification, Object Management Group, Inc., 1998,
ftp://ftp.omg.org/pub/docs/ad/98-10-05)

K. Pohl, R. D6mges and M. Jark@ecision Oriented Process Modelling, In: Proc. of the 9th
Intl. Software Process Workshop, Arlie, VA, IEEE Computer Society Press, October 1994,
pp. 124-128

N. S. Barghouti and B. Krishnamurtdw Open Environment for Process Modeling and
Enactment, In: W. Schéfer (Ed.), Proc. of the Eighth Intl. Software Process Workshop: State
of the Practice in Process Technology, Wadern, Germany, IEEE Computer Society Press,
1993, pp. 33-36

N. S. Barghouti and B. Krishnamurthlysing Event Contexts and Matching Constraints to
Monitor Software Processes, In: Proc. 17th Intl. Conf. on Software Engineering, Seattle,
Washington, USA, May 1995, pp. 83-92

S. Bandinelli, E. Di Nitto and A. Fuggettsypporting Cooperation in the SPADE-1
Environment, |IEEE Transactions on Software Engineering Vol. 12, No. 12, 1996, pp. 841-865

G. Junkermann, B. Peuschel, W. Schéafer and S. WIRLIN: Supporting Cooperation in

Software Development Through a Knowledge-Based Environment, In: A. Finkelstein, J.

Kramer and B. Nuseibeh (Eds.), Software Process Modelling and Technology, RSP, London,
1994, pp. 103-130

S. P. Reiss{onnecting Tools Using Message Passing in the FIELD Environment, |EEE
Software Vol. 7, No. 4, July 1990, pp. 57-67

M. Cagan,fhe HP SoftBench Environment: An Architecture for a New Generation of
Software Tools, Hewlett-Packard Journal, Vol. 41, No. 3, June, 1990, pp. 36-47

SunSoftThe ToolTalk Service (White Paper), Technical report, SunSoft Inc., June 1991
OMG, CORBA: Architecture and Specification, Object Management Group, Inc., 1995
K. Brockschmidt/nside OLE, Second Edition, Microsoft Press, Redmond WA, 1995

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]
[69]
[70]
[71]

[72]

68

M. Anderson and P. Griffiths, The Nature of the Sofiware Process Modelling Problem is
Evolving, In: Proc. of the 3rd European Workshop on Software Process Technology, EWSPT
94, LNCS 772, 1994, pp. 31-34

GOODSTEP-Team, The GOODSTEP Project: General Object-Oriented Database for
Software Engineering Processes, In: Proc. of the Asia-Pacific Software Engineering
Conference, Tokyo, Japan, 1994, pp. 410-420

S. Kély, K. Lyytinen and M. Rossi, MetaEdit+ -- A Fully Configurable Multi-User and
Multi-Tool CASE and CAME Environment, In: Proc. of the 8th Intl. Conference on Advanced
Information Systems Engineering, LNCS 1080, Heraklion, Crete, Greece, 1996, pp. 1-21

K. Lyytinen, P. Marttiin, J.-P. Tolvanen, M. Jarke, K. Pohl and K. Weidenhaupt, Case
Environment Adaptability: Bridging the Island of Automation, Proc. of the 8" Annual
Workshop on Information Technologies and Systems WITS '98, associated with the Intl.
Conference on Information Systems (ICIS), University of Jyvaskyla, Finland, Computer
Science and Information System Reports TR-19, December, 1998

G. Canals, N. Boudjlida, J.-C. Derniame, C. Godart and J. LonchHthp A Framework for
Building Process-Centred Sofiware Engineering Environments, In: A. Finkelstein, J. Kramer

and B. Nuseibeh (Eds.), Software Process Modelling and Technology, RSP, London, 1994,
pp. 153-186

R. Conradi, M. Hagaseth, J.-O. Larsen, M. Nguyen, B. Munch, P. Westby, W. Zhu, M.
Jaccheri and C. Liu;POS: Object- Oriented Cooperative Process Modelling, In: A.

Finkelstein, J. Kramer and B. Nuseibeh (Eds.), Software Process Modelling and Technology,
RSP, London, 1994, pp. 33-70.

D. Garlan and E. lliad,ow-cost, Adaptable Tool Integration Policies for Integrated
Environments, In. Proc. of the 4th ACM SIGSOFT Symposium on Software Development
Environments, Vol. 15, 1990

R. Orfali, D. Harkey and J. EdwardSse Essential Distributed Objects Survival Guide, John
Wiley & Sons, 1996

F. Griffel, Componentware: Konzepte und Techniken eines Softwareparadigmas, dpunkt
Verlag Heidelberg, Germany, 1998 (in German)

C. Rolland and G. Gros2, General Framework for Describing the Requirements
Engineering Process, In: Proc. of the Intl. Conf. on Systems, Man, and Cybernetics, San
Antonio, Texas, USA, IEEE Computer Society Press, October 1994

V. Plihon and C. Rollandyodelling Ways-of-working, In Proc. of the 7 Intl. Conference on
Advanced Information Systems Engineering (CAISE '95), Jyvaskyla, Finland, Springer
Verlag, 1995, pp. 126-139

C. Rolland, C. Souveyet and M. Moreula, Approach to Defining Ways of Working,
Information Systems, Vol. 20, No. 4, 1995, pp. 337-359

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Loren&gegs-Oriented Modeling
and Design, Prentice Hall, 1991

R. Klamma,Prescriptive Process Definitions: Definition, Implementation, and Validation in
Pro-ART, Master's thesis, RWTH Aachen, Aachen, Germany, 1995 (in German)

D. Harel,STATECHARTS: A Visual Formalism for Complex Systems, Science of Computer
Programming Vol. 8, 1987, pp. 231-274

M.Nagl and W. Marquardt, SFB-476 IMPROVE: Informatische Unterstiitzung tUbergreifender
Entwicklungsprozuesse in der Verfahrenstechik, In; M. Jarke, K. Pasedach, K. Pohl, (Eds.)
Informatik '97, Jahrestagung der Gesellschaft fur Informatik, Aachen, Germany, Springer
Verlag, 1997, pp. 143-154. (in German)

[73]
[74]

[75]

[76]

[77]
[78]

[79]

69

M. Nagl and B. Westfechtel (Eds.), Integration von Entwicklungssystemen in
Ingenieuranwendungen, Springer-Verlag, Berlin, Germany, 1998

M. Jarke and W. Marquardt, Design and Evaluation of Computer Aided Process Modelling
Tools, In: Intelligent Systems in Process Engineering, |PSE '95, Snowmass, USA, 1995

R. Domges, K. Pohl, and K. SchreakFilter-Mechanism for Method-Driven Trace

Capture, In: Proc. 10th Int’l. Conf. Advanced Information Systems Engineering (CAISE
'98, Pisa, Italy, June 1998, pp. 237-250

D. Garlan, R. Allan and J. Ockerbloo#xchitectural Mismatch or Why it's Hard to Build
Systems out of Existing Parts, In: Proc. 17th Intl. Conference on Software Engineering,
Seattle, Washington, USA, 1995, pp. 179-185

K. Pohl,The Three Dimensions of Requirements Engineering: A Framework and its
Application, Information Systems, Vol. 19, No. 3, 1994, pp. 243-258

P. Haumer, K. Pohl and K. Weidenhaupgquirements Eliciation and Validation with Real
World Scenes, IEEE Transaction on Software Engineering, Vol. 24, No.12, December, 1998

R. Domges and K. PoMdapting Traceability Environments to Project-Specific Needs,
Communication of the ACM, Vol. 41, No. 12, 1998

