
CREWS Report Series 98 - 5

SPECIFYING THE REUSE CONTEXT OF SCENARIO
METHOD CHUNKS

C. Rolland*, V. Plihon+*, Y. Ralyté*

*Université Paris1-Sorbonne
CRI

17, rue de la Sorbonne
75231 Paris Cedex 05, France

{rolland, ralyté}@univ-paris1.fr

+Université de Toulon et du Var
GECT
BP 132

83957 La Garde Cedex, France

plihon@univ-tln.fr

Appeared in the proceedings of the 10th International Conference CAiSE'98, B. Lecture Notes in
Computer Science 1413, Pernici, C. Thanos (Eds), Springer. Pisa, Italy, June 1998

SPECIFYING THE REUSE CONTEXT OF SCENARIO METHOD CHUNKS 1

C. Rolland*, V. Plihon+*, Y. Ralyté*

*Université Paris1-Sorbonne
CRI

17, rue de la Sorbonne
75231 Paris Cedex 05, France

Tel : + 33 (0)1 44 24 93 65
Fax : + 33 (0)1 45 86 76 66

{rolland, ralyté}@univ-paris1.fr

+Université de Toulon et du Var
GECT
BP 132

83957 La Garde Cedex, France
Tel : + 33 (0)4 94 14 25 41
Fax : + 33 (0)4 94 14 21 65

plihon@univ-tln.fr

1 This work is partly funded by the Basic Research Action CREWS (ESPRIT N°21.903). CREWS stands for
Cooperative Requirements Engineering With Scenarios.

SPECIFYING THE REUSE CONTEXT OF SCENARIO METHOD CHUNKS

Abstract : There has been considerable recent interest in scenarios for accompanying many of the
various activities occurring in the development life cycle of computer based systems. Besides the
integration of scenarios in methods such as Objectory and software tools such as Rationale Rose has
proven useful and successful. Consequently, there is a demand for adapting existing methods to
support specific design activities using scenario based approaches. The view developed in this paper
is that scenario based approaches should be looked upon as reusable components. Our concern is
therefore twofold : first, to represent scenario based approaches in a modular way which eases their
reusability and second, to specify the design context in which these approaches can be reused in order
to facilitate their integration in existing methods. The paper concentrates on these two aspects,
presents an implementation of our proposal using SGML to store available scenario based
approaches in a multimedia hypertext document and illustrates the retrieval of components meeting
the requirements of the user by the means of SgmlQL queries.

1. Introduction

Scenario based approaches have proven useful in a large number of situations occurring in the system
development life cycle. In the HCI community, scenarios have been proposed as detailed descriptions of
a usage context so design decisions can be reasoned about [Caroll95] or as small examples of an
existing product which are used to anchor discussion about different design theories [Young87]. In
Software Engineering, use case approaches have been developed to derive the object oriented
specification of a system from narrative descriptions of interactions with its users. In the Information
Systems community scenarios have evolved to the concept of a rich picture which gives the social
setting of a required system so arguments can be developed about the impact of introducing technology,
and the matching between user requirements and task support provided by the system [Kyng95]. Finally
in Requirements Engineering, scenario scripts based approaches have been proposed to support the
checking of dependencies between a requirements specification and the user/system environment in
which it will have to function [Potts94].

These examples demonstrate that a scenario based approach aims primarily at supporting some specific
design activity. By essence these approaches are not standalone products but instead, they have vocation
to be integrated in existing methods to support some specific steps of the design process with the
advantage of increasing usability. As a specific scenario based approach provides support to a specific
design activity, it might be possible to integrate it in various different methods dealing each with this
particular design activity. Our view is that scenario based approaches should be looked upon as
reusable components. This reuse perspective has been already illustrated, for example by the use case
approach originally developed by Jacobson [Jacobson95a], [Jacobson95b], and then, integrated in a
number of existing methods including the Fusion method [Coleman94], OMT [Rumbaugh91],
[Rumbaugh94] and UML [Booch97]. However reuse has been performed in an ‘ad hoc’ manner while
there is a demand [Jarke97] for a more systematic way of understanding when, why and how, which
kind of scenario has to be used. Thus, if we want to support the reuse of the large corpus of available
scenario based approaches we shall solve the problem of characterizing the context in which they can
be reused.

In this paper we are concerned by these two issues : (a) to represent scenario based approaches as
reusable components and (b) to specify the context of use of available scenario based approaches in
order to facilitate their reuse in different methods to support the design activities they are dedicated to.

Our proposal2 is based on an analogy with object oriented reuse and comprises two aspects :

(1) to define a scenario based approach as a collection of methods fragments that we call scenario
method chunks (scenario chunks for short) and to make them available in a scenario method base.
(2) to characterize the context of use of scenario chunks in chunks descriptors and to store them in the
scenario base together with the chunks themselves. This shall ease the retrieval of scenario chunks
meeting the requirements of the method base user.

Our view is therefore to organize the scenario method base at two levels, the method knowledge level
and the method meta- knowledge level and to tightly couple scenario chunks with the meta-knowledge
describing their context of use. The method level tells us how to apply a specific scenario chunk
whereas the meta-level provides knowledge about the conditions under which the scenario chunk is
applicable. Our notion of chunk descriptor is close to the view of [De Antonnellis91] and very similar to
the one of faceted classification schema [Pietro-Diaz87] developed in the context of software reuse.

We have implemented the proposed approach using SGML (Standard Generalized Markup Language).
The two knowledge levels of the method base are parts of the same SGML document in order to
facilitate their joint manipulation. Our motivation for using SGML has been on the one hand, its ability
to represent hyper-text documents and on the other hand, the availability of sgmlQL which is an SQL
like language tailored to query SGML documents. This provides the required facilities to query the
scenario method base and retrieve the scenario chunks which match specific reuse conditions.

In the rest of the paper, we develop in detail the scenario method knowledge and the scenario meta-
method knowledge as well as their implementation. Section 2 deals with the former, presents the notion
of scenario chunk, illustrates the different levels of granularity of chunks and exemplifies them by
describing several existing scenario based approaches. Section 3 deals with the meta-knowledge
representation, defines and exemplifies the notion of chunk descriptor. Section 4 covers the
implementation of the scenario method base in SGML. In section 5 we illustrate through examples of
queries in sgmlQL how scenario chunks can be retrieved from the method base. Finally we draw some
conclusions in section 6.

2. Scenario method knowledge level

We adopted a modular approach to represent the scenario method knowledge, in the method base, in the
form of scenario method chunks, scenario chunks for short. A scenario chunk may represent an entire
approach such as the Jacobson’s use case approach or part of it, for example the chunk to define
abstract use cases. This eases the reusability of chunks and their integration in methods. A chunk tightly
couples a product part and a process part. In the product part, the product to be delivered by a scenario
chunk is captured whereas in the process part, the guidelines allowing to produce the product are given.
As we are interested in scenario chunks, at least one of the product parts involved in a chunk must be of
the scenario type. The guidelines to define the use case model proposed in the OOSE methodology
[Jacobson92], to capture and use scenario scripts [Potts94], to construct interaction diagrams
[Rumbaugh96], or abstract usage views [Regnell95] are examples of such scenario chunks.

2.1 The notion of scenario chunk
Our definition of a scenario chunk is based on the process view of the NATURE process modelling
formalism [Rolland94], [Plihon95] and consistent with the notion of ‘step’ in [Thomé93] . According to
this view a process can be seen (figure 1) as a black box which transforms an initial situation into a
result which is the target of the intention of the process. The situation represents the part of the product
undergoing the process and the intention reflects the goal to be achieved in this situation. The target of

2 This work is partly founded by the ESPRIT project CREWS (N°21903).

the intention is the result produced by the process execution. As the target is embedded in the intention,
this leads to the characterisation of a process by a couple <situation, intention> which is called context
(see the example in figure 1).

Scenario
Chunk

Situation
(input)

Target
(output)

Intention

ex : Problem
description

ex : Define (Use Case model)target

ex : Use Case model

Figure 1 : The behavioral view of a scenario chunk

Following this view, a scenario chunk has two parts (figure 2)3 : its interface which is the couple
<situation, intention> and a body. We chose these designations by analogy with object descriptions in
object oriented approaches. The interface is the visible part of the chunk. It tells us in which situation
and for which intention the chunk is applicable. The body explains how to proceed to fulfill the intention
in that particular situation. The body provides guidelines to guide the process and relates the process to
the product parts involved. For example, the interface of the scenario chunk representing the Jacobson’s
use case approach is the context <(Problem Statement), Define Use Case Model > where the situation is
represented by a document called problem statement and the intention, to define use case model, is
based on this problem statement. The target of the intention, use case model defines the result to be
produced by the application of the chunk. The body provides the guidelines to achieve the intention of
defining a use case model out of problem statements (see figure 4 that we will explain later on).
Additionally, as shown in figure 2, each scenario chunk in the method base has a unique name. It may
be represented graphically and /or described informally in natural language. It is also possible to
provide some examples of anterior application of this scenario chunk. A scenario chunk is classified
either into formal or informal. In the former case the guidelines are formally defined whereas they are
informal textual recommendations in the latter.

Interface
Situation

Intention

Guideline

Scenario
Chunk

Body

Product Part

has

has

is based on

Product

has
target

refers
to

Name

Graphical
representation

Informal
description

Example

Type

Figure 2 : The scenario chunk structure

As illustrated in the example above, the intention contains the reference to the target. In fact the
structure of an intention (figure 3) is more complex than a simple verb. The proposed formalization of
the notion of intention permits a fine grain characterization of the chunk which was felt necessary to
support efficient retrieval of scenario chunks.

3 The structure description is based on E/R like notation.

Intention
Verb

Target

Manner

Object Result

#
is a is a

Figure 3: The intention structure

The intention is decomposed [Prat97] into a verb, a target (a product part) the verb is acting on and a
manner. Depending on the role played by the product part for the verb, we make the distinction between
objects and results. An Object exists in the situation of the corresponding context whereas a Result is
produced by the achievement of the intention. “Refine use case”, is an example of intention in which the
target “use case” is an object because it already exists in the situation whereas “Identify actor” is an
example where the target “actor” is a result. It is developed during the execution of this intention. The
precise notation of these intentions is as follows : <(Use Case), Refine (Use Case)Obj>, <(Problem
Statement), Identify (Actor)Res>.

In addition to the verb and the target, the intention may have a manner which specifies in which way the
intention is satisfied. A manner is a strategy or an approach used to fulfill the intention. « One-shot
refinement » or « stepwise strategy » are examples of manners.

The proposed definition of a scenario chunk is applicable to any method chunk. The distinction between
a scenario chunk from any other method chunk is due to the nature of the product parts. In the latter the
product can be of any type whereas in the former either the situation or the target of the intention must
refer to a product part of the scenario type. For example, the two chunks with the following interfaces
<(Problem Statement), Define (Use Case Model)Res> and <(Use Case Model), Interpret <(Use Case
Model)Obj> are scenario chunks. Both manipulate scenarios which are called use cases, the former
having the use case model as the target of the intention to Define Use Case Model whereas the use case
model is the object of the Interpret intention.

The application of the NATURE contextual approach to the representation of method knowledge has
the important effect of making chunks modular. A chunk prescribes the way to proceed in a situation to
fulfill an intention. A scenario chunk can be qualified as cohesive because it tells us the situation in
which it is relevant and the intention that can be fulfilled in this situation. A chunk is loosely coupled to
other chunks because it can be used in the appropriate situation (created as the result of another module)
to satisfy the intention. Thus, the linear arrangement of method modules is replaced by a more dynamic
one. Finally, the hooks to combine a scenario chunk with another chunk (whichever is its type) are parts
of its interface : the situation and the target. Two chunks can be assembled if the situation of one of
them is compatible with the target of the other.

2.2 The body of a scenario chunk
The interface of a scenario chunk characterizes the conditions of its applicability whereas its body
details how to apply it. The interface plays a key role for retrieving a scenario chunk out of the method
base while the body is used when applying the method in which the chunk has be integrated. Our
approach relies upon the interface structure presented above but does not imply a particular way of
describing the chunk body. In the sequel, we illustrate partially the solution we chose for the
implemented method base.

We follow the NATURE approach and define the chunk body as a hierarchy of contexts called a tree.
As illustrated in figure 4 contexts relate one to the other through three types of links : refinement links
which permit the refinement of a large-grained context into finer ones, composition links which allow to
decompose a context into component contexts and action links which relate the contexts to the actions
which directly perform transformations on the product. Each type of link has a corresponding type of
context, namely executable, choice and plan contexts. A detailed description of contexts can be found in
[Rolland96]. Let us briefly illustrate them through the example of tree presented in figure 4.

A choice context offers choices supported by arguments. The context <({Use Case}), Refine Use
Case> in figure 4 introduces three alternatives to a Use Case refinement : (1) to generalise a set of use
cases into an abstract use case <({Use Case}), Generalise {Use Case} into Abstract Use Case>, (2) to
specialise an abstract use case into concrete use cases <(Abstract Use Case), Specialise Abstract Use
Case into Concrete Use Case> or (3) to extend a use case with a use case extension <(Use Case),
Complete Use Case with Use Case Extension>.

A plan context corresponds to an intention which requires further decomposition. The plan context
<(Problem Statement), Define Use Case Model> in figure 4 is composed of three contexts, namely
<(Problem Statement), Identify Actor>, <(Problem Statement, Actor), Define Use Case> and <({Use
Case}), Refine Use Case>. This means that, while constructing a use case model, the requirements
engineer has first to identify the actors, then to construct use cases, and finally, to refine the use cases.
The component contexts of a plan context can be organized within graphs in a sequential, iterative or
parallel manner (see the top bubble in figure 4).

An executable context corresponds to an intention which is directly applicable through actions which
transform the product under development. Performing the action changes the product and may thus
generate new situations. In figure 4 the context <(Problem Statement), Identify a Primary Actor> is an
executable context. The intention to "Identify a Primary Actor " is immediately applicable through the
performance of an action which creates a new "primary actor" in the use case model under development.
Notice that when the chunk is informal, its body is reduced to a textual explanation on how to perform
the action (see figure 5).

Contexts can therefore be related through refinement and composition links to form a tree. A tree is
considered complete when all its leaves are executable contexts. The scenario chunk in figure 4 is a tree
in which the root context <(Problem Statement), Define Use Case Model> is decomposed and refined
throughout the hierarchy of contexts to the set of executable contexts. Thus, the global intention to
define use case model is transformed into a set of actions which transform the product to develop the
use case model. For the sake of clarity, the tree is only partially represented in figure 4.

<(Problem Statement);
Define Use Case Model>

<(Problem Statement, Actor),
Define Use Case>*

<(Problem Statement),
Identify Actor >*

<({Use Case}),
Refine Use Case>*

Composition
Link Choice

Context

Executable
Context

Plan Context

<(Pb.St.);
Identify Actor>

<(Pb.St., Primary Actor);
Define Use Case>

<({Use Case});
Refine Use Case>

Precedence Graph:

c1

c2

c4

c3

c5
c6

c7

Begin End

<(Use Case),
Complete Use Case with
Use Case Extension >

<(Abstract Use Case),
Specialise Abstract Use Case

into Concrete Use Case>

<({Use Case}),
Generalise {Use Case}

into Abstract Use Case>

... ...

... ...

... ...

... ...
c1

c2
c3

Refinement Link
c3: a1 or a2 and a3 ...
a1 : there is a
non implemented
optional functionality
a2 : ...

<(Pb. Statement),
Identify Primary Actor >*

<(Pb. Statement),
Identify Secondary Actor >*

Action: create actor

Action
Link

c1 : The mode is width first and all the actors have not been identified yet
c2 : ...

Figure 4 : Excerpt of a scenario chunk [Jacobson92]

Finally, our concrete experience in constructing the SGML scenario knowledge base has raised
difficulties due to the lack of formal descriptions of either the process or the product models of the
scenario approaches. Moreover, approaches rarely include the process dimension. To cope with this
situation, we classify scenario chunks into formal and informal (see figure 2) and propose to associate
to informal chunks textual explanations on how to fulfill the intention of this type of scenario. For
example, in figure 5 we present a scenario chunk defined according to Kyng’s approach [Kyng95]. This
chunk proposes to describe work situations in which the users identify some problems and bottlenecks.
The author does not detail how to work with these scenarios, he only explains what type of information
these scenarios have to contain.

< ({Key Insight}, {Summary}),
Capture Work Situation Description >

Situation :
Product Parts :{Key Insight},{Summary}

Description :Key Insight and Summary
are reflecting the initial study of the
work place.

Intention :
Verb : Capture
Result :Work Situation
Description

Informal description :
The aim of the chunk is to
support the description of
work situations to identify
problems and bottlenecks in
these situations.

Informal Bod y :
«Work Situation Descriptions are descriptions of relevant, existing
situations within the users work-place. The users find that these
situations are important parts of their work and that currently they
constitute a bottleneck, are error prone, or for other reasons need to be
changed...» [Kyng 95]

Figure 5 : Scenario chunk from Kyng's approach

2.3 Scenario chunk granularity
Figure 6 sums up the three different levels of granularity of scenario chunks : contexts, hierarchies of
contexts called trees which may be parts of a scenario approach.

composed of

is a

is a

is a

Scenario
Chunk

Scenario
Chunk

Scenario
Approach

Scenario
Approach

Tree

composed of

#

1,11,N

1,N 1,N

Context

Figure 6 : Structure of the scenario knowledge in the scenario method base

Each of these chunks can be considered either independently or as part of an overall scenario approach.
A scenario based approach is viewed itself as a chunk (is-a link in figure 6). Indeed, both the approach
itself and its component chunks are reusable. Typically, a scenario approach contains guidelines for the

creation, the transformation and the refinement of scenarios into more conceptual products. For
example, in the OOSE methodology [Jacobson92], we identified two scenario chunks, one to construct
the use case model and a second one to construct the analysis model out of the use case model. The
composition of these two chunks corresponds to a scenario approach which is also proposed in the
method base as another chunk.

3. Scenario method meta-knowledge level

The scenario method knowledge is about descriptions of available scenario method chunks. The scenario
method meta-knowledge we are dealing with in this section aims at specifying the context in which
method knowledge can be (re)used.

Assuming that the scenario base has been constructed, the question addressed now is « how to ease the
retrieval of scenario chunks meeting the requirements of a method engineer who wants to extend an
existing method with scenario features ? ». This raises the need for understanding when, why and how a
specific scenario chunk can be reused i.e. to specify the context of its use. Our literature survey
[Rolland97] as well as the industrial visits performed within the companies of the CREWS steering
committee [Jarke97] have shown that this knowledge is not available. Both have also demonstrated that
there is an explicit need for making this knowledge available. Our view is that the knowledge about the
context of use of scenario chunks shall be formalized and stored in the scenario method base with the
scenario chunks themselves. We call this knowledge method meta-knowledge as it provides information
characterizing the use of scenario method knowledge. The scenario method base is therefore organized
at two levels, the method meta-knowledge level and the method knowledge level. In the process of
reusing scenario chunks, these two levels serve in separate steps. The method meta-knowledge supports
the retrieval step whereas the knowledge is the material effectively reused and integrated in the existing
method.

In this section we are concerned with the meta-knowledge representation. We shall illustrate the use of
this meta-knowledge in section 4 through sgmlQL queries acting on the implemented method base.

We use the notion of descriptor [De Antonnellis91] as a means to describe scenario chunks. A
descriptor plays for a scenario chunk the same role as a meta-class does for a class. Our concept of
descriptor is similar to the one of faceted classification schema [Pietro-Diaz87] developed in the context
of software reuse.

We extend the contextual view used to describe the chunk interface to structure the meta-knowledge in
the descriptor. Indeed, we view the retrieval process as being contextual : a user of the method base is
faced to reuse situations at which he/she looks with some intention in mind. Therefore, the descriptor
seeks to capture in which situation a scenario chunk can be reused to fulfill which intention. If we
remember that scenario based approaches primarily aim at supporting specific design activities in
different ways, the descriptor situation shall refer to this design activity whereas the intention expresses
a design goal related to this activity. As an example, the descriptor of the Jacobson’s chunk described in
section 2 shall refer to ‘analysis’ as a design activity supported by the chunk and ‘capture user/system
interactions’ as the intention within this activity which can be supported by the use case approach
provided by the chunk. Then, our descriptor is contextual as it captures situational and intentional
knowledge defining the context of reuse a scenario method chunk.

 Figure 7 gives an overview of the knowledge captured in the method base for every chunk. The chunk
body is actually the fragment of method to deal with a specific type of scenario whereas the chunk
interface describes its conditions of applicability, the situation required as input of the chunk, and the
intention the chunk helps to fulfill. These two aspects constitute the scenario method knowledge whereas
the meta-knowledge is captured in the scenario descriptor. The descriptor expresses the reusability

conditions of the chunk by characterizing the design activity in which it can be reused (the situation
part) and the design intention that can be supported by the scenario chunk (the intention part). It
describes the broad picture in which the scenario approach captured in the chunk can take place. In the
sequel, we develop the chunk descriptor in detail.

Chunk
Body

Chunk interface

Chunk descriptorMethod meta-knowledge level

Method knowledge level

Chunk reusability

Chunk applicability

Chunk internal

Figure 7 : Chunk overview

3.1 The descriptor structure
Figure 8 depicts the descriptor structure. A chunk descriptor has a situation part and an intention part
that we consider in turn.

Intention
Verb

Complex
manner

Target

Object Result Non-Scenario
Based

Scenario
Based

Scenario
Chunk

Scenario
Chunk

Situation

#

1,N

FormDescriptionMedium
FormDesciption Notation
...
ContentsContext
...
Purpose
LifeCycleSpan
...

is a
is a is a

is a

Application
Domain

Design
Activity

Chunk
Descriptor

has

Situation

Intention

Interface
has

is a

Figure 8 : The chunk descriptor structure

The situation part of a chunk descriptor

The situation part of a descriptor comprises two aspects (figure 8) : the application domain and the
design activity in which the scenario chunk is relevant. For instance, considering the Jacobson’s chunk
(figure 4) which describes how to proceed for defining a use case model, the domain of the descriptor is
Object Oriented Applications and its design activity is Analysis. This means that this chunk can be
reused in Object Oriented Application for facilitating the Analysis step.

While populating the scenario method base, we have identified a list of application domains in which
scenarios are used. Table 1 presents the current list of domains in the implemented scenario base. HCI
(see [Caroll95] for a survey) and OO applications [Cockburn95], [Glinz95], [Jacobson92], [Lalioti95],

[Regnell95], [Robertson95], [Rubin92], [Rumbaugh91], [Wirfs-Brook95], [Leite97] are the two
domains where scenarios are nowadays extensively used.

Usability Engineering
OO applications
Requirements Engineering
HCI (Human Computer Interfaces)
Workflow applications
Critical systems
Information systems
Socio-technical applications

Table 1 : Application domains for scenario use

Similarly we have identified a list of design activities, (similar to the one proposed in [Caroll95], Table
2) each of which is supported by at least one scenario chunk.

Design Activity Scenario Based Approach
Analysis [Caroll 95],[Cockburn 95], [Glinz 95], [Jacobson 92], [Kyng 95],

[Regnell 95], [Robertson 95], [Rubin 92], [Rumbaugh 91], [Wirfs-Brook
95]

Envisionment [Jacobson 92], [Nielsen 95],[Kyng 95], [Karat 95]
Requirement Elicitation [Holbrook 90], [Jacobson 92], [Johnson 95], [Kyng 95], [Potts 94],
Design Rationale [Nielsen 95], [Kyng 95]
Validation [Holbrook 90], [Glinz 95],[Lalioti 95], [Nielsen 95]
Software Design [Holbrook 90],[Hsia 94]
Software Testing [Kyng 95]
Team Work Building [Filippidou 97]
User-Designer
Communication

[Holbrook 90], [Jacobson 92], [Potts 94], [Erickson 95]

Documentation /
Training

[Kyng95], [Potts94]

Table 2 : Design activities covered by different scenario chunks

The intention part of a chunk descriptor

The chunk descriptor intention expresses how the scenario approach encapsulated in the chunk
participates to the achievement of the design activity. For example, the intention of the descriptor of the
Jacobson’s chunk presented in figure 4 is ‘capture user/system interactions’ as the chunk provides a
scenario based approach supporting the capture of the interactions between the future system and its
users. The descriptor intention is an expression of the role that a scenario approach can play in a
particular design activity. We found in our survey of both literature and practice a large panel of roles,
all being informally expressed and therefore difficult to classify and organize to support the retrieval
process in the method base. Table 3 gives some examples of our findings.

Supporting the analysis of the users workplace and work situations
Expressing how a system being designed should look like and behave
Facilitating the discovery of user needs
Helping evaluating possibilities for usability and functionality
Supporting the identification of central problem domain objects
Helping to develop cohesion in the team
Facilitating the communication on the systems problems between users and designers
Helping to test whether the system satisfies or not all the user’s requirements
Supporting user training
Bridging the gap between the system presented as an artifact and the tasks the users want
to accomplish using it

Table 3 : Examples of scenario roles

Instead of using role names as described in the literature, we use a more formal description of intentions
based on [Prat97] leading to the intention structure presented in figure 8. This structure is compatible
with the one used for the chunk interface. It is extended in order to link the intention of the chunk and
the intention of its descriptor. The intention in the chunk descriptor is specified by the intention verb, the
target of by this intention and the manner to satisfy this intention (figure 8). Let us detail these various
elements of the intention structure in turn.

Similarly to the target in the scenario chunk interface (see figure 3), the target of the descriptor is
specified into object or result depending on the role played by the target for the verb. These roles have
been explained in section 2. Moreover, in the chunk descriptor intention we make the distinction
between non-scenario based target and scenario based target (see is a links in figure 8)
• Non-scenario based targets represent product parts other than scenarios. Functional system
requirements, non functional system requirements, object model, alternative design option, etc. are
examples of non-scenario based targets.
• Scenario based targets represent product parts of the scenario type. Use case, scenario script,
episode, work situation description or use scenario are examples of scenario based targets. In order to
ease the retrieval process, there is a need for characterizing scenario targets with enough details to
differentiate one from the other. Our characterization is based on the framework defined in the CREWS
project [Rolland97]. Properties such as the scenario formality, the level of abstraction, the nature of
interactions, the covered requirements or the scenario life cycle are proved necessary to select more
precisely the adequate scenario chunks. There are eleven properties which are surveyed in appendix 1.

The chunk descriptor intention is completed by a manner which is a complex manner by opposition to a
simple manner as used in the scenario chunk interface. A complex manner is recursively described as
an intention. The intention to Capture user/system interactions by defining a use case model with
Jacobson’s refinement strategy is an example of descriptor intention using a complex manner. The
manner (by defining a use case model with the Jacobson’s refinement strategy) is recursively defined
as an intention (defining) with a result (use case model) and a manner (with the Jacobson’s refinement
strategy). The intention is denoted as follows : Capture (User/System Interactions)Res (by Defining
(Use Case Model)Res (with Jacobson’s Refinement Strategy)Man)Man.

The descriptor intention always refers to a complex manner. This allows us to link the scenario chunk
intention to the descriptor intention. This is modeled in figure 8 by an is a link from the manner to the
chunk interface intention. In the example above, the intention to define use case model with Jacobson’s
refinement strategy is the intention of the Jacobson’s chunk presented in figure 4. It is embedded in the
descriptor intention as the manner of the intention to Capture user/system interactions. The scenario
approach captured in a given scenario chunk is formally defined as the manner to achieve a design

intention. Both the design intention and the manner to achieve it are expressed in the descriptor
intention.

3.2 Examples
In figure 9, we present the example of the descriptor corresponding to the Define Use Case Model
scenario chunk depicted in figure 4. This descriptor tells us that the corresponding scenario chunk is
useful in the domain of object oriented applications for supporting the analysis activity. The intention in
this situation is to capture the interactions between the user and the system. Moreover, the intention is
clarified by the manner to fulfill it. This manner defines precisely the way the scenario chunk will help
fulfilling the intention of user/system interaction capture : it is by defining a use case model in the
Jacobson’s style. Because the target of this intention (define use case model) is a scenario based one,
the descriptor specifies its discriminant properties, namely the FormDescriptionMedium (textual), the
FormDescriptionNotation (informal), the ContentsCoverage (Functional), the ContentsContext
(user/system interactions), the LifeCycleSpan (persistent) and the Purpose (descriptive).

<(OO Design, Analysis), Capture(User Interactions)Res

(by Defining [Use Case Model
FormDescriptionMedium =Text
FormDescriptionNotation =Informal
...
ContentsCoverage =Functional
ContentsContext =System Interaction
...
LifeCycleSpan = Persistent
Purpose = Descriptive] Res

(by Jacobson's Refinement Strategy)Man) Man >

Situation :
Application Domain : OO Application
Design Activity :Analysis

Intention :
Verb : Capture
Result, Non-Scenario Based:
User/system Interactions
Complex Manner :by Defining
Use Case Model...

Complex Manner is an Intention :
Verb :Define

Result, Scenario Based :Use Case Model
Properties : Form...

 Contents....
Atomic Manner : by Jacobson’s

Refinement Strategy

Figure 9: Example of the Jacobson’s chunk descriptor

As another example of chunk descriptor, figure 10 presents the descriptor associated to the informal
Kyng’s scenario based approach whose chunk was sketched in figure 5.

<(Socio-technical Application, Analysis), Discover (Problematic Work Situation) Res

(by Capturing [Work Situation Description
FormDescriptionMedium = Text
FormDescriptionNotation = Informal
...
ContentsCoverage = Functional, Non-Functional,

Intentional
ContentsContext = Organisational Context
...
LifeCycleSpan = Persistent
Purpose = Descriptive] Res

(in Participative Workshop) Man) Man >

Situation :
Application Domain : Socio-
technical Application
Design Activity : Analysis

Intention :
Verb : Discover
Result, Non-Scenario Based:
Problematic Work Situation
Complex Manner : by Capturing
Work situation...

Complex Manner is an Intention :
Verb : Capture
Result, Scenario Based : Work Situation

 Description
 Properties : Form...

 Contents....
Atomic Manner : in Participative Workshop

Figure 10 : Descriptor of the Kyng’s chunk

4 Using SGML to implement and query the scenario method base

SGML (Standard Generalized Markup Language) [Goldfarb90] is an international standard language to
describe a document using a set of mark ups defined in a grammar. SGML documents are structured as
trees. We found the language adequate for representing our scenario method base. Besides SgmlQL
[Lemaitre95] is available to query an SGML base of documents. We sketch in this section the SGML
structure of our implemented scenario method base and will sketch the query process in the next section.

4.1 Overview of the SGML structure of the scenario method base
The structure of the scenario method base is described in a DTD (Data Type Definition). The whole
DTD is a document type. It is composed of elements which are characterised by a mark up identifier,
constraints on the existence of the opening and closing tags and the definition of their structure, i.e. the
component elements. An element can recursively be composed of other elements. Based on this
principle, the scenario method base is represented as a document type named METHODBASE (see
Table 4) which is composed of the element named DESCRIPTIONS. This element consists in a set of
descriptions which are themselves called DESCRIPTION. Thus, the structure of the element
DESCRIPTIONS is represented by DESCRIPTION* where the « * » means many.

< ! DOCTYPE METHODBASE [
< ! ELEMENT DESCRIPTIONS - - (DESCRIPTION*)>
< ! ELEMENT DESCRIPTION - - (META_KNOWLEDGE_LEVEL,

KNOWKEDGE_LEVEL)>
< ! ELEMENT META_KNOWLEDGE_LEVEL - - (DESCRIPTOR)>
< ! ELEMENT KNOWLEDGE_LEVEL - - (CHUNK|APPROACH)>

...]>
Table 4 : overview of the SGML structure of the scenario base

This way of modelling is recursively applied to integrate all the elements composing the document type.
Thus, the DESCRIPTION element is characterised by a meta-knowledge level
(META_KNOWLEDGE_LEVEL) and a knowledge level (KNOWLEDGE_LEVEL) which are, as
presented in the previous sections, respectively composed of a descriptor (DESCRIPTOR), and of
either a chunk or an approach denoted by (CHUNK | APPROACH). The resulting structure of the
METHODBASE document type is the tree presented in figure 11.

It is possible to attach attributes to elements to characterise them. For example, the attribute TYPE
attached to the element CHUNK characterises its type (FORMAL, INFORMAL). An attribute has a
name, a type (enumerated or not) and may be optional (#REQUIRED, #IMPLIED). Underneath is the
Sgml description of the mandatory attribute TYPE of CHUNK.

< ! ATTLIST CHUNK TYPE (FORMAL | INFORMAL) #REQUIRED>

The overall description of the document type defined for the scenario base is provided in the appendix 2.
In the following section, we illustrate the Sgml document contents with the Jacobson’s chunk and its
associated descriptor.

DESCRIPTIONS

DESCRIPTION*

DESCRIPTOR_SITUATION DESCRIPTOR_INTENTION CHUNK

APPLICATION_
DOMAIN

DESIGN_
ACTIVITY

VERB
COMPLEX_
MANNER

APPROACH

CHUNK*

INTERFACE

CONTEXT_SITUATION

PRODUCT_PART*

CONTEXT_INTENTION

LINK*

BODY

INFORMAL_
RECOMMENDATION

PRODUCT

TARGET

ACTION
_LINK

COMPOSITION
_LINK

REFINEMENT
_LINK

ARGUMENT?

CONTEXT

ACTION

CONTEXT_
INTENTION

META_KNOWLEDGE_LEVEL KNOWLEDGE_LEVEL

DESCRIPTOR

Role
Type
Scenario_Characteristic
Product

Name
Graphical_
Representation
Informal_Description
Example

Name
Graphical_
Representation
Informal_Description
Example

SITUATION_
DESCRIPTION?

VERB
SIMPLE_
MANNERTARGET

CONTEXT

GUIDELINE

Figure 11 : Overview of the SGML structure of the scenario method base

4.2 Examples of Sgml chunks and chunk descriptors
Let us start with chunk descriptors. As explained in section 3, a chunk descriptor has a situation part
and an intention part. According to our approach, the situation part (see DESCRIPTOR_SITUATION
in Table 5) is characterised by an application domain (APPLICATION_DOMAIN) and by a design
activity (DESIGN_ACTIVITY) which explain respectively, the area and the design activity in which the
chunk can be reused. In our example, the area is Object Oriented Applications and the activity is
Analysis.

<DESCRIPTOR_SITUATION >

<APPLICATION_DOMAIN>Object oriented applications</APPLICATION_DOMAIN>

<DESIGN_ACTIVITY>analysis</DESIGN_ACTIVITY>

</ DESCRIPTOR_SITUATION >

Table 5 : Example of descriptor situation

The intention part of the descriptor (DESCRIPTOR_INTENTION) is illustrated in Table 6. It is
composed of :

- a verb (VERB), to Capture in our example,
- a target (TARGET) which can either play the role of a result or of an object. This information

is denoted in the attribute role of the target by the values « result » and « object ». In the intention
Capture user/system Interactions, the target User Interactions is considered as a result.
Moreover, the target is either a scenario-based product (like Use Case Model in Table 6) or not
(like User/system Interaction in Table 6). In the former case the target has a number of characterising
properties represented as attributes (FormDescriptionMedium, FormDescriptionNotation, ...) attached
to the TARGET element.

- a manner (COMPLEX_MANNER)
As presented in section 3, the manner of the intention in the chunk descriptor is a complex manner
(COMPLEX_MANNER) whereas the one of the intention in the chunk interface is a simple manner
(SIMPLE_MANNER). A simple manner is represented by a string (#PCDATA) whereas the complex

one has the structure of an intention. In Table 6, « Jacobson’s Refinement Strategy » is a simple
manner whereas « by Defining Use Case Model by Jacobson's Refinement Strategy » is a complex one.

<DESCRIPTOR_INTENTION>

<VERB>Capture</VERB>

<TARGET role = « object »

 type = « non scenario-based »>user interactions</TARGET>

<COMPLEX_MANNER>

 <VERB>Defining</VERB>

<TARGET role = « result »

 type = « scenario_based »

 FormDescriptionMedium = « text »

 FormDescriptionNotation = « informal »

FormPresentationAnimation = « false »

FormPresentationInteractivity = « none »

ContentsCoverage = « functional »

ContentsContext = « system interaction »

ContentsAbstraction = « type »

ContentsArgumentation « false »

LifeCycleSpan = « persistent »

LifeCycleOperation = « refinement »

Purpose = « descriptive »>Use Case Model</TARGET>

<SIMPLE_MANNER> by Jacobson’s Refinement Strategy</SIMPLE_MANNER>

</COMPLEX_MANNER>

</DESCRIPTOR_INTENTION>
Table 6 : Example of Sgml descriptor intention

Now that we are aware of the Sgml description of the meta-knowledge level of the scenario method
base, let’s concentrate on the knowledge level. The knowledge level (KNOWLEDGE_LEVEL) (see
figure 11) is represented in the Sgml structure either by a chunk element (CHUNK) or by an approach
(APPROACH) which is composed of chunks (CHUNKS*).

As illustrated in Table 7, the chunk (CHUNK) element contains two parts : an interface (INTERFACE)
and a body (BODY). It has general characteristics, namely a name, a type (formal, informal), an
informal description and a reference to a graphical representation.

<CHUNK name = « Define Use Case Model by Jacobson’s Refinement Strategy »

 type = « formal »

 informal description = « Defining a use case model by Jacobson’s refinement strategy
consists in identifying actors, then in constructing use cases out of this actors and finally in refining
the use cases constructed before »>

<GRAPHICAL_REPRESENTATION>

</ GRAPHICAL_REPRESENTATION>

 <INTERFACE>

<CHUNK_SITUATION>

<PRODUCT_PART>Problem Statement</PRODUCT_PART>

<SITUATION_DESCRIPTION>The problem statement is an initial textual and
informal description of the expectations about the future system. It contains some requirements and
constraints resulting from interviews with the end users </SITUATION_DESCRIPTION>

</CHUNK_SITUATION>

<CHUNK_INTENTION>

<VERB>Define</VERB>

<TARGET role= « result »

 type = « scenario-based »>Use Case Model</TARGET>

<SIMPLE_MANNER>by Jacobson’s Refinement Strategy</SIMPLE_MANNER>

</CHUNK_INTENTION>

<BODY><PRODUCT name = « Use case model product »

 informal description = « A use case model is composed of one to n actor(s) and one to n use
case(s). An actor is associated to one and only one use case model. Jacobson distinguishes two kinds
of actors : the primary actors who execute the use cases and the secondary actors who play an
indirect role in the execution of use cases.

A use case belongs to one and only one use case model, it is characterised by a topic and a
description. There are five different types of use cases: the abstract, the concrete, the basic, the
alternative, and the extension use cases. Concrete use cases use abstract use cases ; basic use cases
have alternative use cases, and extension use cases extend other use cases. »>

<PRODUCT_GRAPHICAL_REPRESENTATION>

</PRODUCT_GRAPHICAL_REPRESENTATION></PRODUCT>

<GUIDELINE>

<LINK><COMPOSITION_LINK>
</COMPOSITION_LINK></LINK>

<LINK><COMPOSITION_LINK>
</COMPOSITION_LINK></LINK>

<LINK><COMPOSITION_LINK>
</COMPOSITION_LINK></LINK>

</GUIDELINE> </BODY></CHUNK>
Table 7 : Example of Sgml description of a chunk

The interface is composed of two parts : a situation (CHUNK_SITUATION) and an intention
(CHUNK_INTENTION).

The situation of the chunk interface (CHUNK_SITUATION) is composed of two elements :
- one or several product parts referenced by PRODUCT_PART* in the Sgml tree, and

 - a description (SITUATION_DESCRIPTION) which is optional.
All these elements are strings (#PCDATA).

The intention of the chunk (CHUNK_INTENTION) is composed of a verb (VERB), a target
(TARGET) and a simple manner (SIMPLE_MANNER). This is exemplified in Table 7.

Following our definitions in section 2, the body is composed of two parts, the product and the guideline.
• The product (PRODUCT) is characterised by a name, an informal description, an example of

instantiation of the product and a reference to a graphical representation which is a picture stored in
the Sgml document. This graphical representation is referenced in Table 7 by JacobProd.gif and is
presented in figure 12.

Primary
Actor

executes

has

Concrete
Use Case

Extension
Use Case

Alternative
Use Case

Actor

uses

Basic
Use Case

extends
Use Case

Use Case
Model

composed-ofcomposed-of

1,1

1,1

1,N

1,N

0,N

0,N

0,N

1,1

1,N

1,N

1,N

1,1
1,1

0,N

Abstract
Use Case

Secondary
Actor

supports

Topic Description

Figure 12 : JacobProd.gif

• The guideline (GUIDELINE) can be either represented by an informal description
(INFORMAL_RECOMMENDATION) or by a set of links (LINK*) depending on whether the
chunk is informal or not. In the case of a formal chunk, the guideline has the form of either a context
or a tree of contexts. It is represented in the Sgml structure by the set of links, connecting the
contexts one with the others in the tree. Depending on the type of its source context, a link can be
either a composition, a refinement or an action link (Table 7). The tree structure can be visualised
through the graphical representation (GRAPHICAL_REPRESENTATION) element of the
structure. This graphical representation is referenced in Table 7 by JacobProc1.gif and is presented
in figure 13.

<(Problem Statement),
 Define (Use Case Model)Res (by Jacobson's refinement strategy)Man>

<(Pb. St., Actor),
 Define (Use Case)Res>*

<(Pb. St.),
Identify (Actor)Res >*

<({Use Case)},
Refine (Use Case)Obj>

< (Pb. St., Actor, UCTopic),
Elaborate (Basic Use Case

Description)Res>

<(Pb. St., Basic Use Case),
Elaborate (Alternative Use Case Description)Res>

<(Use Case),
Complete (Use Case)Obj with
(Use Case Extension)Res>

<(Abstract Use Case),
Specialise (Abstract Use Case)Obj

into (Concrete Use Case)Res>

<({Use Case}),
Generalise ({Use Case})Obj

into (Abstract Use Case)Res>< (Pb. St.),
Identify (Primary Actor)Res >*

< (Pb. St.),
Identify (Secondary Actor)Res >*

< (Pb. St., Actor, UCTopic),
 Construct (Concrete Use Case)Res>

< (Pb. St., Actor, {UCTopic}),
Construct (Abstract Use Case)Res>

<(Pb. St., Actor, {UCTopic}),
Identify (Abstract Use Case

Topic)Res>

<(Pb. St., Abstract UCTopic),
Elaborate (Abstract Use Case

Description)Res>

< (Pb. St., Use Case),
 Identify (Extension Use

Case Topic)Res>

<(Pb. St. Extension UCTopic),
Elaborate (Extension Use Case Description)Res>

< (Pb. St., Actor),
 Identify (Use Case Topic)Res>*

< (Pb. St., Actor, UCTopic),
 Construct (Use Case)Res>

Figure 13 : JacobProc1.gif

5. Examples of SgmlQL queries

This section illustrates the way SgmlQL queries can support the process of reusing scenario chunks.
This illustration is based on a reuse scenario that can be described in the following way. Let’s assume
that Mr Bean,. a requirements engineer is in charge of a project for developing an object oriented
application. In the early phase of the project the project used the Enterprise Modelling approach
[Bubenko94] to model the rich picture of the organisational context in which the system will operate.
The result of this step is a set of high level goals. Mr Bean is now faced to the operationalisation of
these goals i.e, the specification of the system functions which fulfill these goals. The project constraint
is that the system functional specification should be done in an object oriented manner. Mr Bean’s belief
is that the project should benefit from using a scenario based approach. The argument in favour of such
an approach is twofold : (1) the system is too large and complex to be tackled in a global way and, (2)
the domain experts are not familiar with semi-formal or formal notations and prefer to communicate
with requirements engineers in an informal manner.

Thus, we propose to help Mr Bean by querying the Sgml scenario method base to retrieve chunks that
match his requirements i.e. chunks which help bridging the gap between goal models and object oriented
specifications. We first propose to extract from the method base all the chunks whose situation is based
on goals. The query is formulated as follows :

Q1 : Select the chunks having goals as product parts of their situation.
select text($a->NAME)
from $d in every DESCRIPTION within $myfile4, $a in every APPROACH within $d,
$pp in first PRODUCTPART within $a
where text($pp) match « goals » ;

The answer to this query proposes two chunks, the :
• Holbrook’s, and
• Cockburn’s ones.

4 A preliminary query (global $myfile = file « MethodBase.sgml ») should be typed in order to indicates which
sgml document (here MethodBase.sgml) is queried.

Mr Bean is not familiar with the Cockburn’s approach, but he heard of the Holbrook’s one and wish to
explore further the possibilities offered by this approach. As the constraint is to produce an object
oriented specification, the question is to identify which is the output of the Holbrook’s chunk. Q2 gives
the answer to this question.

Q2 : Select the target generated by the « Holbrook » chunk.
select text(first TARGET within $cm)
from $d in every DESCRIPTION within $myfile, $descro in every DESCRIPTOR within $d,
$cm in every COMPLEXMANNER within $descro, $a in every APPROACH within $d
where text($a->name) match « Holbrook » ;

The target is:
Use Scenario

An access to the PRODUCT part of the chunk in the Sgml document (to the HolbProd.gif in particular)
convinces Mr Bean that unfortunately, the output of the Hoolbrook’s chunk is not an object oriented
specification. Thus, we suggest to search for another scenario based chunk that supports the
transformation of input scenarios into object-oriented models. This can be done with query Q3 ,
presented below.

Q3 : Select chunks which are using scenario or scenario-based product as input and generate an
analysis model as output.
select text($c->NAME)
from $d in every DESCRIPTION within $myfile, $descro in every DESCRIPTOR within $d,
$c in every CHUNK within $d, $pp in first PRODUCTPART within $c
where ((text($pp) match « scenario») or (text($pp) match « use-case»)) and
(text(first TARGET within $descro) match « analysis model ») ;

This query results in the selection of the chunk named « Define analysis model ». Mr Bean is happy and
decides to explore further on the solution consisting of combining the Holbrook’s chunk based on use
scenarios with the Define analysis model chunk supporting construction of an analysis model out of
scenarios.

Even short and schematic, this example illustrates the use of SgmlQL queries for retrieving scenario
base chunks meeting the requirements of a user. It suggests at least two comments : (1) the need for a
thesaurus to support an efficient query process and (2) the possibility to capitalise from experience, for
instance, by inserting in the method base the new approach when fully generated. This insertion can be
done using specific commands provided by SgmlQl.

6. Conclusion

In this paper we propose an approach for supporting the reuse of scenario based chunks made available
in a scenario method base. The motivation for developing such an approach was twofold : first, there
exists a large corpus of available scenario-based approaches that has not been formalised yet, and
secondly there is an explicit need for incorporating scenario-based approaches in existing methods.
FUSION, OMT and UML are examples of such enhancements that the method engineers would like to
reproduce.

The proposed approach advocates a modular representation of scenario chunks and an intentional
description of their reuse context. The former results is cohesive chunks which are applicable in specific

situations for specific purposes whereas the latter provides contextual information identifying in which
specific design situations for which specific design intentions the chunks are reusable. The paper also
reports on the implementation of a scenario method base in SGML and illustrates the reuse process
through an example.

 Future work shall concentrate on developing guidelines to integrate scenario chunks in existing methods
and the implementation of these guidelines in the Sgml context. Besides, in order to support the process
for retrieving chunks matching specific requirements we are developing a set of SgmlQL macro-queries.
Finally we shall work on an HTML presentation of the query responses.

7. Références

[Booch97] : G. Booch, J. Rumbaugh, I. Jacobson, «Unified Modeling Language », version 1.0, Rational

Software Corporation, Jan. 1997.

[Bubenko94] : J. Bubenko, C. Rolland, P. Loucopoulos, V. De Antonellis, « Facilitating ‘Fuzzy to Formal’

Requirements Modelling », Proc. of the First International Conference on Requirements Engineering, April

1994, Colorado Springs, Colorado.

[Carroll95] J.M. Caroll, « The Scenario Perspective on System Development », in J.M. Carroll (ed.), Scenario-

Based Design: Envisioning Work and Technology in System Development (1995).

[Cockburn95] A. Cockburn, « Structuring use cases with goals », Technical report, Human and Technology,

7691 Dell Rd, Salt Lake City, UT 84121, HaT.TR.95.1, http://members.aol.com/acocburn/papers/

usecases.htm (1995).

[Coleman97] : D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, P. Jeremaes, «Object-

Oriented Development : The FUSION Method », Prentice Hall, 1994.

[De Antonellis91] : V. De-Antonellis., B. Pernici, P. Samarati, (1991) «F-ORM METHOD : A Methodology for

Reusing Specification», In Object Oriented Approach in Iforamtion Systems, Van Assche F., Moulin b.,

Rolland C. (eds), North Holland, 1991

[Erickson95] : T. Erickson, « Notes on Design Practices : Stories and Prototypes as Catalysts for

Communication », in J.M. Carroll (ed.), Scenario- Based Design: Envisioning Work and Technology in

System Development (1995).

[Filippidou97] : D. Filippidou, P. Loucopoulos, «Using Scenarios to Validate Requirements in a Plausibility-

Centred Approach », Proc. Of the 9Th Conference on Advanced Information Systems Engineering,

Barcelona, Catalonia, Spain, June 1997.

[Glinz95] M. Glinz, «An Integrated Formal Model of Scenario based on Statecharts», Lecture Notes in

Computer Science’95,pages 254-271, 1995.

[Goldfarb90] : C. F. Goldfarb, « The SGML Handbook », Oxford Clarendon Press, 1990.

[Holbrook90] C. H. Holbrook_III, « A Scenario-Based Methodology for Conducting Requirement Elicitation»,

ACM SIGSOFT Software Engineering Notes, 15(1), pp.95-104, 1990.

[Hsia94] Hsia P, Samuel J, Gao J, D., Toyoshima, Y. and Chen ,C . (1994) «Formal Approach to Scenario

Analysis», IEEE Software, 11, 33-41

[Jacobson92] I. Jacobson, M. Christerson, P. Jonsson and G. Oevergaard, « Object Oriented Software

Engineering: a Use Case Driven Approach », (Addison-Wesley, 1992).

[Jacobson95a] I. Jacobson, « The Use Case Construct in Object-Oriented Software Engineering », in John M.

Carroll (ed.), Scenario-Based Design: Envisioning Work and Technology in System Development (John

Wiley and Sons, 1995) 309-336.

[Jacobson95b] I. Jacobson, M. Ericsson and A. Jacobson, « The Object Advantage, Business Process

Reengineering with Object Technology» (Addison-Wesley Publishing Company, 1995).

[Jarke97] : M. Jarke, K. Pohl, P. Haumer, K. Weidenhaupt, E. Dubois, P. Heymans, C. Rolland, C. Ben

Achour, C. Cauvet, J. Ralyte, A. Sutcliffe, N. A. Maiden and S. Minocha, « Scenario use in european

software organisations - Results from site visits and Questionnaires », Esprit Reactive Long Term Research

Project, 21.903 CREWS, Deliverable W1 : Industrial Problem Capture Working Group, 1997.

[Johnson95] P. Johnson, H. Johnson and S. Wilson, « Rapid Prototyping of User Interfaces driven by Task

Models », in John M. Carroll (ed.), Scenario-Based Design: Envisioning Work and Technology in System

Development (John Wiley and Sons, 1995) 209-246.

[Karat95] : J. Karat, « Scenario Use in the Design of a Speech Recognition System », in J.M. Carroll (ed.),

Scenario- Based Design: Envisioning Work and Technology in System Development (1995).

[Kyng95] : M. Kyng, Creating Contexts for Design, in John M. Carroll (ed.), « Scenario-Based Design:

Envisioning Work and Technology in System Development » (John Wiley and Sons, 1995) 85-107.

[Lalioti95] : V. Lalioti and B.Theodoulidis, «Use of Scenarios for Validation of Conceptual Specification»,

Proceedings of the Sixth Workshop on the Next Generation of CASE Tools, Jyvaskyla, Finland, June 1995.

[Leite97] : J.C.S. do Prado Leite, G. Rossi, F. Balaguer, A. Maiorana, G. Kaplan, G. Hadad and A. Oliveros,

«Enhancing a Requirements Baseline with Scenarios», In Third IEEE International Symposium On

Requirements Engineering (RE'97), Antapolis, Maryland (IEEE Computer Society Press, 1997) 44-53.

[Lemaitre 95] : J. Lemaitre, E. Murisasco, M. Rolbert, SgmlQL, « Un langage d'interrogation de documents

SGML », Proceedings of the 11th conference on Advanced DataBases, August 1995, Nancy, France.

[Nielsen95] : J. Nielsen, Scenarios in Discount Usability Engineering, in John M. Carroll (ed.), « Scenario-

Based Design: Envisioning Work and Technology in System Development» (John Wiley and Sons, 1995)

59-85.

[Plihon95] : V. Plihon, C. Rolland, « Modelling Ways-of-Working » Proc. Of the 7th Int. Conf. On « Advanced

Information Systems Engineering », (CAISE), Springer Verlag (Pub.), 1995.

[Potts94] : C. Potts, K. Takahashi and A.I. Anton, « Inquiry-based Requirements Analysis », in IEEE Software

11(2) (1994) 21-32.

[Prat97] : N. Prat, «Goal Formalisation and Classification for Requirements Engineering », Proceedings of the

Third International Workshop on Requirements Engineering: Foundations of Software Quality REFSQ’9 ,

Barcelona, june 1997.

[Prieto-Diaz87] : R. Prieto-Diaz, P. Freeman, « Classifying Software for Reusability», IEEE Software, Vol 4

No 1, 1987.

 [Regnell95] : B. Regnell, K. Kimbler and A. Wesslen, «Improving the Use Case Driven Approach to

Requirements Engineering», in the Second IEEE International Symposium On Requirements Engineering,

York, England (I.C.S. Press, March 1995) 40-47.

[Roberston95] : S.P. Robertson, « Generating Object-Oriented Design Representations via Scenarios Queries»,

in John M. Carroll (ed.), Scenario-Based Design: Envisioning Work and Technology in System

Development (John Wiley and Sons, 1995) 279-308.

[Rolland94] : C. Rolland, G. Grosz, « A General Framework for Describing the Requirements Engineering

Process », IEEE Conference on Systems Man and Cybernetics, CSMC94, San Antonio, Texas, 1994.

[Rolland96] : C. Rolland, N. Prakash, «A proposal for Context-Specific Method Engineering», IFIP TC8

Working Conference on Method Engineering, Atlanta, Gerorgie, USA, 1996

[Rolland97] : C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyte, A. Sutcliffe, N.A.M. Maiden, M. Jarke, P.

Haumer, K. Pohl, E. Dubois and P. Heymans, «A Proposal for a Scenario Classification Framework»,

ESPRIT Reactive Long Term Research Project 21.903 CREWS, Deliverable I1: Initial Integration

Workpackage (1997).

[Rumbaugh91] : J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, «Object-Oriented

Modeling and Design», (Prentice Hall, 1991).

[Rumbaugh94] : J. Rumbaugh, « Getting started, using use cases to capture requirements », Journal of Object

Oriented Programming, Sept. 1994.

[Rumbaugh96] : J. Rumbaugh and G. Booch, « Unified Method », Notation Summary Version 0.8 (Rational

Software Corporation, 1996).

[Rubin95] : K.S. Rubin and A. Goldberg, «Object Behaviour Analysis», Communications of the ACM 35(9)

(1992) 48-62.

[Thomé93] : B. Thomé, « Systems Engineering : Principles and Practice of Computer-based Systems

Engineering », in B. Thomé (ed), John Wiley & Sons (1993).

 [Wirfs-Brock95] : R. Wirfs-Brock, « Designing Objects and their Interactions: A Brief Look at

Responsability-driven Design », in John M. Carroll (ed.), « Scenario-Based Design: Envisioning Work and

Technology in System Development» (John Wiley and Sons, 1995) 337-360.

[Young87] : M. R. Young, P. B. Barnard, « The Use of Scenario in Human-Computer Interaction Research:

Turbocharging the tortoise of Cumulative Science », CHI + GI 87 Human Factors in Computing Systems

and Graphics Interface, Toronto, 1987.

Appendices

Appendix 1 : Characterising scenarios
In [Rolland97] a framework for scenario classification is proposed to characterise scenarios according
to a certain number of facets which are grouped into views. Four views have been identified :

1. the form view,
2. the contents view,
3. the purpose view and
4. the life cycle view.

The form view answers the question ‘in which form is a scenario expressed ?’. The response is
provided through two facets namely the description facet and the presentation facet.

• The description facet characterises the level of formality and the medium used for the
scenario description. Texts, graphics, images, videos and software prototyping are examples
of media. Note that several media can be used at the same time for describing a scenario.

• The presentation facet tells whether a scenario is static or animated, and its interactivity
i.e. the capabilities offered to the user to control the way the scenario progresses through
time.

Consequently, in the descriptor the form view is represented by four properties of scenarios namely,
FormDescriptionMedium, FormDescriptionNotation, FormPresentationAnimation and
FormPresentation Interactivity.

The contents view answers the question ‘what is the knowledge expressed in a scenario ?’. The
response is provided through four facets namely the abstraction facet, the context facet, the
argumentation facet and the coverage facet.

• The abstraction facet indicates whether the scenario is concrete, abstract or mixed.
• The context facet explains in which kind of context the scenarios are used. System internal,

system interaction, organisational context and organisational environment are examples of
contexts where the scenarios can be used.

• The argumentation facet indicates whether argumentation concepts are used within the
scenarios or not.

• The coverage facet indicates the kind of information captured in the scenarios, i.e. whether it
is functional, non functional or intentional. The information concerning the structure, the
function and the behaviour are qualified as functional, the ones which are tackling
performance, time constraints, cost constraint, user support, documentation examples, back
up/recovery, maintainability, flexibility, portability, security/safety, design constraints, error
handling are non functional and the information concerning goal, problem, responsibility,
opportunity cause and goal dependency are said intentional.

This leads to the following properties of scenarios in the chunk descriptor : ContentsAbstraction,
ContentsContext, ContentsArgumentation and ContentsCoverage.

The purpose view answers the question ‘why using a scenario ?’. The response is provided through
three criteria. A scenario can be used

• in a descriptive purpose, i.e. for describing something which happens in the real world,
• in a exploratory purpose i.e. for constructing requirements elicitations, or
• in a explanatory purpose, i.e. when explanations about the rationale of these issues are

required.

The purpose perspective is associated in the chunk descriptor to the property called Purpose.

The life cycle view is characterised by two facets : the life span facet and the operation facet. It explains
‘how to manipulate scenarios’.

• The life span facet indicates whether the scenario is transient or persistent in the RE process.
• The operation facet defines if and how scenarios are captured, refined, integrated,

expanded, and deleted.

This is represented in the chunk descriptor by two properties, namely LifeCycleSpan and
LifeCycleOperation.

More details on the scenario classification framework and its application on several scenario based
approaches can be found in [Rolland 97].

Appendix 2 : The Scenario Method Base Structure
< ! DOCTYPE METHODBASE [

< ! ELEMENT DESCRIPTIONS - - (DESCRIPTION*)>
< ! ELEMENT DESCRIPTION - - (META_KNOWLEDGE_LEVEL ,

KNOWLEDGE_LEVEL)>
< ! ELEMENT META_KNOWLEDGE_LEVEL - - (DESCRIPTOR)>
< ! ELEMENT DESCRIPTOR - - (DESCRIPTOR_SITUATION,

DESCRIPTOR_INTENTION)>
< ! ELEMENT DESCRIPTOR_SITUATION - (APPLICATION_DOMAIN, DESIGN_ACTIVITY)>
< ! ELEMENT APPLICATION_DOMAIN - - (#PCDATA)>
< ! ELEMENT DESIGN_ACTIVITY - - (#PCDATA)>
< ! ELEMENT DESCRIPTOR_INTENTION - - (VERB, TARGET, COMPLEX_MANNER)>
< ! ELEMENT (VERB | TARGET) - - (#PCDATA)>
< ! ELEMENT COMPLEX_MANNER - - (VERB, TARGET, SIMPLE_MANNER)>
< ! ELEMENT SIMPLE_MANNER - - (#PCDATA)>
< ! ELEMENT KNOWLEDGE_LEVEL - - (CHUNK | APPROACH)>
< ! ELEMENT CHUNK - - (INTERFACE, BODY,

GRAPHICAL_REPRESENTATION)>
< ! ELEMENT INTERFACE - - (CONTEXT_SITUATION,

CONTEXT_INTENTION)>
< ! ELEMENT CONTEXT_SITUATION - - (PRODUCT_PART*,

SITUATION_DESCRIPTION?)>
< ! ELEMENT PRODUCT_PART - - (#PCDATA)>
< ! ELEMENT SITUATION_DESCRIPTION - - (#PCDATA)>
< ! ELEMENT CONTEXT_INTENTION - - (VERB, TARGET, SIMPLE_MANNER)>
< ! ELEMENT BODY - - (PRODUCT, GUIDELINE)>
< ! ELEMENT PRODUCT - - (GRAPHICAL_REPRESENTATION)>
< ! ELEMENT GRAPHICAL_REPRESENTATION - - (#PCDATA)>
< ! ELEMENT GUIDELINE - - (INFORMAL_RECOMMENDATION | LINK*)>
< ! ELEMENT INFORMAL_RECOMMENDATION - - (#PCDATA)>
< ! ELEMENT LINK - - (COMPOSITION_LINK | REFINEMENT_

LINK, ACTION_LINK)>
< ! ELEMENT COMPOSITION_LINK - - (#PCDATA)>
< ! ELEMENT REFINEMENT_LINK - - (#PCDATA, ARGUMENT?)>
< ! ELEMENT ARGUMENT - - (#PCDATA)>
< ! ELEMENT ACTION_LINK - - (ACTION)>
< ! ELEMENT ACTION - - (#PCDATA)>
< ! ELEMENT APPROACH - - (CHUNK*)>
< ! ATTLIST PRODUCT NAME (#PCDATA) #REQUIRED>
< ! ATTLIST PRODUCT INFORMAL_DESCRIPTION (#PCDATA) #REQUIRED>
< ! ATTLIST PRODUCT EXAMPLE (#PCDATA) #IMPLIED>
< ! ATTLIST TARGET ROLE (OBJECT | RESULT) #IMPLIED>
< ! ATTLIST TARGET TYPE (SCENARIO-BASED | NON SCENARIO_BASED)

#IMPLIED>
< ! ATTLIST TARGET FORMDESCRIPTIONMEDIUM (#PCDATA) #IMPLIED>
< ! ATTLIST TARGET FORMDESCRIPTIONNOTATION (#PCDATA) #IMPLIED>
< ! ATTLIST TARGET FORMPRESENTATIONANIMATION (#PCDATA) #IMPLIED>
< ! ATTLIST TARGET FORMPRESENTATIONINTERACTIVITY (#PCDATA)

#IMPLIED>
< ! ATTLIST TARGET CONTENTSABSTRACTION (#PCDATA) #IMPLIED
< ! ATTLIST TARGET CONTENTSCONTEXT (#PCDATA) #IMPLIED>
< ! ATTLIST TARGET CONTENTSARGUMENTATION (#PCDATA) #IMPLIED>
< ! ATTLIST TARGET CONTENTSCOVERAGE (#PCDATA) #IMPLIED>
< ! ATTLIST TARGET LIFECYCLESPAN (#PCDATA) #IMPLIED>
< ! ATTLIST TARGET LIFECYCLEOPERATION (#PCDATA) #IMPLIED>
< ! ATTLIST TARGET PURPOSE (#PCDATA) #IMPLIED>
< ! ATTLIST IMG SRC (#PCDATA) #REQUIRED>
< ! ATTLIST CHUNK NAME (#PCDATA) #REQUIRED>
< ! ATTLIST CHUNK TYPE (FORMAL | INFORMAL) #REQUIRED>
< ! ATTLIST CHUNK INFORMAL_DESCRIPTION (#PCDATA) #REQUIRED>
< ! ATTLIST CHUNK EXAMPLE (#PCDATA) #IMPLIED>

] >

