
CREWS Report 97-02

appeared in
’Third International Workshop on Requirements Engineering: Foundation for
Software Quality RESFQ’,
June 16-17, 1997, Barcelona, Spain

A Software Tool and Method for Scenario
Generation and Use

 Neil Maiden, Shailey Minocha, Keith Manning and Michele Ryan

Centre for HCI Design
City University

Northampton Square
London EC1V 0HB

Tel: +44-171-477 8984
Fax: +44-171-477 8859

E-Mail: [S.Minocha, N.A.M.Maiden]@city.ac.uk



A Software Tool and Method for Scenario
Generation and Use

 Neil Maiden, Shailey Minocha, Keith Manning and Michele Ryan

Centre for HCI Design, City University
Northampton Square, London EC1V 0HB

E-Mail: N.A.M.Maiden@city.ac.uk
Abstract

Scenarios, in most situations, are descriptions of required interactions
between a desired system and its environment which detail normative
system behaviour. There is considerable current interest in the use of
scenarios for acquisition, elaboration and validation of system
requirements. However, despite this interest, there remains a lack of
methods and software tools to generate and use scenarios during the
requirements analysis phase. In this paper, we outline the architecture of a
toolkit for semi-automatic generation of scenarios. We have derived
complex taxonomies of exceptions to help a requirements engineer to
predict non-normative system behaviour in a scenario. We have outlined a
method of cause-consequence analysis to explore the occurrence of
problem exceptions and their effects on system behaviour.
Keywords: Scenario-based Requirements Engineering, Scenario
Generation, Requirements Acquisition and Validation, Exceptions.

1. INTRODUCTION
Our studies of current scenario use in requirements engineering

indicate that there is lack of systematic guidance for scenario use during
requirements acquisition and validation, or even to generate useful and
complete scenarios in the first place. It is our belief that more method and
tool support for systematic scenario generation and use is needed in the
short term to realise the many potential advantages of scenario use during
requirements engineering.

The ESPRIT 21903 ‘CREWS’ (Co-operative Requirements
Engineering With Scenarios) long-term research project is tackling the
scenario problem head-on. First, to help requirements engineers generate
a limited set of salient scenarios, it proposes a toolkit for semi-automatic
generation of scenarios. Next, it identifies the presence and occurrence of
three types of exceptions during scenario analysis to ensure correct and
complete requirements. The exceptions are sources of non-normative or
exceptional system behaviour as they prevent the system from delivering



the required service. One of the toolkit’s modules, known as Scenario
Wizard, guides the user of the toolkit to systematically explore all the
courses in a scenario. The scenario wizard is based on a scenario
walkthrough method to ensure systematic exploration of a scenario to
resolve incompleteness and inconsistencies in the requirements
specifications.

The architectural design and computational mechanisms of the
CREWS toolkit build on results from the earlier ESPRIT 6353
‘NATURE’ basic research action [4]. NATURE identified a large set of
problem domain templates or abstractions, or Object System Models
(OSMs) which we discuss later on. Each OSM encapsulates the
knowledge of normative system-behaviour of all application-domains
which are instances of  that OSM or problem domain template. A scenario
of an application domain which is derived from the NATURE’s OSM,
thus, describes normative course of behaviour through the scenario. The
identification of exceptions and their inclusion in a scenario to explore the
non-normative system behaviour, as proposed in CREWS, contributes to
the non-normative content of a scenario. Such information-rich scenarios
generated from the CREWS toolkit can be useful to guide thinking and
discussion during scenario analysis about possible design solutions or
mechanisms to eliminate the occurrence of exceptions or mitigate their
effects when they occur.

2. THE CREWS APPROACH

The toolkit and walkthrough method support a simple scenario-based
requirements engineering paradigm. In its simplest form we envisage the
use of scenario alongside a requirements document containing atomic
requirements statements stored in a requirements management tool such
as Requisite PRO, or as a part of our toolkit. Each scenario enacts or
simulates a part of the requirements specifications document.
Stakeholders walkthrough the scenario to acquire new system
requirements or to validate the completeness and correctness of existing
requirements. Desirable changes to requirements statements are identified
during the walkthrough. We believe that the more complete the scenario
the better the requirements acquisition and validation activities will be.
This completeness can come from ensuring that all the basic and
alternative courses of scenarios are explored and exploited in a systematic
manner.



The wizard, as a part of the toolkit, guides the systematic generation
and exploration of a scenario for both its normative and non-normative
behaviour. The guiding/advisory mechanism of the wizard is based on the
scenario walkthrough method. This method is currently being developed.
A part of this method is the cause consequence analysis which helps the
requirements engineer to explore the presence and effects of exceptions in
a scenario.

Scenario-based requirements engineering is dependent on a sound
understanding of the relationship between a scenario and a requirement.
We have identified 8 unique dimensions for navigating in the space of the
socio-technical system comprising of the machine (software system) and
its environment. These dimensions are: Content, scope or coverage or
boundary, structure, atomicity, quantification of non-functional
requirements, abstraction, design knowledge and view or nature. We are
deriving transformation rules or guidelines for generating scenarios from
requirements and vice versa through this multi-dimensional navigation.
These guidelines would be incorporated in our method of scenario
analysis.

3. CLASSIFICATION OF EXCEPTIONS:
PREDICTING USEFUL ALTERNATIVE COURSES

Each scenario describes one or more threads of ‘normative’ behaviour
of a software system and consists of agents (human or machine), actions
having start events and end events, stative pre- and post-conditions on
actions, objects, their states and state transitions and a goal state. It
represents a normative usage-situation of a system, which can be a normal
sequence of tasks that a user performs to achieve a desired goal.
Alternatives or variants to this basic course of events, such as errors that
can occur are described as ‘alternative courses’ [3]. Thus every scenario
may have an alternative course, that is, a non-normative state (condition),
or, a non-normative event (behaviour) may occur in a scenario. The non-
normativeness of a usage context or a scenario implies an inappropriate,
or undesirable, or unsafe state or behaviour of a system. Each non-
normative state or event, critical or non-critical, is an effect or
consequence of an underlying cause or multiple causes existing in the
system or in the surrounding environment. Each cause of an inappropriate
system performance may be composed of two or more necessary
conditions or exceptions.

Exceptions must be explored during requirements analysis as this can
help in clarifying and elaborating requirements, and identifying additional



or missing requirements for robust design alternatives. The new
requirements/constraints that arise to eliminate the exceptions or mitigate
their effects on the system performance should be included in the system
specifications. We have identified three types of exceptions: generic,
permutation and problem exceptions. Each provides the toolkit with a
theoretical basis for asking informed ‘what-if’ questions to prompt the
user to explore different alternative courses through a scenario. Generic
exceptions are those exceptions that relate to the basic components of a
scenario. When different scenarios (permutations of scenarios) are
combined or linked to one another, several exceptions can arise in terms
of the mappings between the basic components of a scenario, that is,
actions, agents, key objects, events, states, etc. These exceptions are
termed permutation exceptions. Permutation exceptions can be identified,
for example, when one analyses the temporal semantics of two scenarios,
that is, comparing the event-action sequence in the two chains in terms of
time.

Problem exceptions are, in essence, unexpected events or states which
occur in the environment and give rise to alternative courses through a
scenario. Examples include mistakes which actors make, failures in
mechanical or software systems, breakdowns in communication between
actors and unusual situations which arise in organisations. Problem
exceptions which are sufficient for the occurrence of an undesired
behaviour are said to be the causes. Alternative courses arising from this
causes are the consequences of these problem exceptions.

We are undertaking an extensive classification of problem exceptions
taken from disciplines as diverse as cognitive science, safety-critical
systems, and human factors for system design. Rather than develop a
single classification scheme for all problem exceptions we are developing
6 orthogonal classifications, each of which has a particular focus and an
existing literature from which it is derived. The first 5 classifications
define problem exceptions which are specific to human agents, machine
(non-human) agents, interactions between a human agent and a machine
agent, communication between two or more machine agents, and
communication between two or more human agents. The sixth, final
classification describes exceptions which are specific to the organisation,
its environment, or models of the organisation and environment. As a first
effort, we intend these classifications to cover the whole spectrum of
software systems and their environments as a basis for comprehensive
coverage by the toolkit and the walkthrough method. The remainder of
this section explores these 6 classifications in more detail, and gives



examples of useful ’what-if’ questions to generate from each of these
classifications:

Human Exceptions: People are often responsible for numerous alternative
courses through a scenario. We have classified a large number of
exceptions which can give rise to such courses from existing taxonomies
of human error from cognitive engineering [1,11,12] and human factors
research [13]. For example we classify human exceptions as either
physiological, anatomical or cognitive. In turn our classification follows
Reason’s model of human error [12] and classify cognitive exceptions as
knowledge-, rule-or skill-based, each of which gives rise to a large
number of individual problem exceptions such as mental lapses, attention
failures and insufficient knowledge to complete a task;

Machine Exceptions: Software-intensive systems themselves are often
responsible for alternative courses through a scenario. Again we have
classified problem exceptions which can give rise to such courses [5].
Exceptions can relate to the entire machine (e.g. power failures, hanging
machines) or their component parts (e.g. stuck item, loose item, broken
item);

Exceptions due to Human-Machine Interaction: Unforeseen human-
computer interactions can also lead to numerous alternative courses which
are relevant when defining system requirements for error-handling. This
time our classification draws on taxonomies of interaction failures from
human-computer interaction [9,10] and consequences from poor interface
design (e.g. [5]). For example, poor design and non-adherence to design
guidelines can give rise to usability problems, poor feedback mechanisms,
or inadequate error-recovery mechanisms;

Exceptions due to Human-Human Communication: Scenarios often
involve more than one actor or human agent. Communication breakdowns
between people have important consequences (for example the London
Ambulance Service failure), and are an important source of alternative
courses for scenarios. We have classified problem exceptions specific to
human-human communication based on theories from computer-
supported collaborative working. Examples of exceptions which can give
rise to alternative courses include communication breakdowns or
misunderstandings;

Exceptions due to Machine-Machine Communication: Scenarios also
often involve more than one machine agent, and exceptions specific to
their communication can also give rise to alternative courses. Again we



are classifying such exceptions as the basis for a useful set of what-if
questions.

We are now populating the toolkit with problem exceptions arising from
these 6 classifications. Each exception is defined using current object-
oriented concepts as either the state of an agent (human or machine), an
operation undertaken by an agent (again either a human or machine) or
attributes of messages which pass between human or machine agents. We
have so far identified over 200 problem exceptions. Furthermore, to make
problem exceptions more useful during scenario use, each problem
exception has two attributes, one defining the possible likelihood of the
exception in different classes of problem domain, and the other defining
the severity of consequence of the exception arising in the problem
domain. This represents a major advance over current classifications, and
will improve systematic generation of useful scenarios. We have also
added a third attribute to indicate possible consequences of the exception
when the consequence can be predicted. Yet another extension is the
inclusion of generic requirements, which are tentative recommendations
for requirements which avoid or overcome undesirable problem
exceptions. A detailed example of a generic requirement is included in the
example of the toolkit’s use. Here we present a sample of the taxonomies
of problem exceptions, their possible consequences and a proposed set of
generic requirements in Table 1.

The requirements engineer can select the relevant exceptions in the
generated scenarios to guide the inquiry process of scenario analysis. The
exceptions will enable the requirements engineer to ask the ‘right’
questions from other stakeholders to either predict or investigate any
unplanned system behavior. Additionally these taxonomies will serve as
checklists for the requirements engineer to guide thinking and stimulate
the thought process to uncover ‘new’ requirements and clarify known
requirements. This will help detect incompleteness or ambiguity in
requirements. Earlier work  [2] concentrated on identifying the obstacles
during scenario analysis where obstacles imply as those conditions that
can result in the non-achievement of the goal state in a scenario. We, in
contrast, have a broader scope for problem exceptions which could be
missing data entry validation checks, or non-adherence to user interface
guidelines, hardware or software faults, design flaws or errors, hazards,
obstacles, critical incidents [5], etc. leading to system failures, mishaps,
loss events, accidents, etc.

Category /
Sub-Category

Sources of
Exceptions

Consequences Generic Requirements



Human
Exception  -
Physiological

Work Environment  -
Noise, lighting, work
timings, shift
arrangements,
temperature,
ventilation

Performing wrong or undesirable
actions due to environmental
disturbances, improper or no verbal
communication  with fellow human
operators due to noise

Improvement of
environmental conditions
through better
organisational planning

Cognitive Mental Model of the
system - incorrect
mental model,
incomplete task
knowledge

Unable to cope with ‘emergency’
situations, poor or no diagnosis,
incorrect decision-making

Explore training
requirements, job suitability
and replacements if required
as per the required skills

Skills Task knowledge- lack
of expertise,
inadequate
experience, lack of
training or poor
quality of training

Poor or no diagnosis, incorrect
decision-making, performing wrong or
undesirable actions

Explore role-responsibility
allocation structure for task
suitable operators as per
skills and experience,
explore training
requirements

Machine
Exception -
Hardware /
Peripheral
Equipment

Power supply -
failure or fluctuations

Whole system or network comes to a
halt, malfunctioning of controls and
instruments due to power fluctuation

Explore ‘avoidance’ or
recovery mechanisms, like
uninterrupted and
regulatory power supplies

Communication -
faulty network
connectivity,
transmission line
failures

System comes to a halt, faulty or
impossible machine to machine
communication in a distributed system

Better distributed system
planning by procurement of
improved networking
capabilities

Table 1  A sample set of problem exceptions, consequences and generic
requirements

4. CAUSE-CONSEQUENCE ANALYSIS OF
PROBLEM EXCEPTIONS OF THE SCEANRIO
WALKTHROUGH METHOD

The presence of one exception may give rise to another and so on,
triggering a chain of non-normative events leading to an undesirable or
inappropriate system performance. We illustrate these causal relations of
problem exceptions leading to an unplanned behaviour through  example.

Consider the case when an operator of a process control system is not
able to control certain parameters optimally (human exception) as s/he
does not have the access rights for some functions/information of the
machine (equipment), is not trained enough to perform the allocated job,
or is working in stressful conditions. These reasons of an operator’s
inability to perform an allocated responsibility actually reflects on the role
allocation structure and planning of the organisation (organisation
exception). The human error caused by the cumulative effect of human
exception (source) and organisation exception (trigger) may lead to the
malfunctioning of the control system (machine exception) and, ultimately,
cause a system breakdown.



This aim of this example is not to demonstrate a generic path for
causal relations of problem exceptions but it illustrates the occurrence of
interaction between the different types of problem exceptions. It also
leads to a technique of exploring problem exceptions in a scenario -
Cause Consequence Analysis (CCA). CCA starts with a problem
exception and determines the consequences that could result from it using
a forward search and the causes of the problem exception (if any) using
the backward search.

The procedure of CCA during scenario analysis starts with the
selection of a problem exception. The requirements engineer explores its
effect(s) on system behaviour by exploiting the causal relations to
simulate the propagation of the potential effects in the normative task-
flow in a scenario. This is the forward search approach of causal analysis
which involves identifying or predicting the problem exceptions following
a causal path upstream along the flow of events in a task, that is, given the
causes, determine the consequences.

Alternatively, if the consequences are known from any previous
histories of undesirable system behaviour, the requirements engineer can
start from the consequences to determine the cause(s) or problem
exceptions by following the causal path of events. This is the backward
search approach which involves investigating any previous histories of
undesirable performances or failures and identifying the causal factors or
problem exceptions, that is, determine the causes from the effects. These
techniques of forward and backward searches, as illustrated here, can be
integrated in the method of scenario analysis. This approach of CCA is
very similar to hazard analysis techniques in safety engineering [5].

5. CREWS TOOLKIT
As a part of the ESPRIT 6353 ‘NATURE’ basic research action [4], a

large set of problem domain templates or abstractions, known as Object
System Models (OSMs), have been identified to provide domain-specific
guidance to requirements engineers. Each model describes the
fundamental behaviour, structure, goals, objects, agents, constraints, and
functions shared by all instances of one problem domain category in
requirements engineering [8]. The 13 top-level OSMs are resource
returning, resource supplying, resource usage, item composition, item
decomposition, resource allocation, logistics, object sensing, object
messaging, agent-object control, domain simulation, workpiece
manipulation and object reading. As an example, car rental, video hiring
or book lending libraries are applications that belong to the problem



domain of resource hiring which is a specialisation of the resource
returning OSM.

In CREWS, it is proposed to use the OSMs to provide guidance for
scenario-based requirements acquisition and validation, and, in particular,
as the basis for automatic generation of the core scenarios. Generation
identifies permutations of OSM features to generate a set of possible
scenarios. The fundamental components of both OSMs and scenarios are
agents, events, objects, states and state transitions. These can be
manipulated, as a set, to determine different permutations, or scenarios,
for a problem domain. Each individual permutation is called a scenario
chain and, is, in essence, a single thread of behaviour in the software
system. It is described using agents, events, objects, states, actions and
state transitions, all of which are semantics of an OSM. The permutations
can be extended using exceptions to define unforeseen situations and
events in problem domains. The toolkit takes a compositional approach to
scenario generation. It extends each normative scenario using different
classes of exceptions. The result is a systematically generated scenario
which includes the most suitable classes and levels of problem
exceptions, and hence alternative courses. This systematic generation then
provides a transparent foundation for systematic scenario use. We
illustrate this use in the remainder of the paper. All screen layouts are
from the prototype of the toolkit. Detailed treatment of the mechanism of
scenario generation and the toolkit’s architecture is available in [6].

The example problem domain is the lending library. Assume that three
object system models have been retrieved from the NATURE database
using its own pattern retrieval mechanisms [7]. These describe resource
hiring, resource repairing and object sensing. Resource hiring is an
abstraction of book lending, resource repairing is an abstraction of book
repair and journal binding, and object sensing is an abstraction of the
library's security gates. Because we are interested in book circulation
control the user selects the resource hiring model. The toolkit is able to
generate 4 initial scenarios from this model: Resource-Loan, Resource-
Return, Resource-Reserve and Resource-Unreserve. These are shown to
the user who can choose one or more scenario chains to add exceptions
and parameters for scenario generation (Figure 1).

Consider the Resource-Loan scenario chain. In natural language it
reads ‘a start-loan event takes place which starts a resource-loan action.
During this action a lender agent changes the state of a resource from
available to with-borrower-agent. The borrower agent is involved in the



resource-loan action’. Clearly the loan of a book is an example of such a
scenario. However it says nothing about the critical boundaries between
system and its environment, and in particular what agents are involved,
what are human and what are mechanical. For example, is the Resource-
Loan action fully manual or automatic or somewhere in between ? This is
where the toolkit’s agent-interaction patterns come in.

Fig. 1  Retrieval of OSMs and scenario chains

The toolkit offers 15 reusable agent-interaction patterns, each of
which describes a canonical pattern of communication actions between 1,
2 or 3 agents, each of which is a human or a machine. The use of these
patterns is driven from the observation that the same patterns of
communication occur during certain types of transaction, therefore likely
agent-interaction patterns can be predicted. For example there are
different types of lending systems. These can be fully manual (lender and
borrower agents are human) or automated (human lender and borrower
agents with one additional machine agent, or human borrower agent with
automated lender agent). Basic patterns of communication are reusable
across problem domain, and,  if linked to a scenario, enable the toolkit to
provide more meaningful guidance during a walkthrough. Returning to
the example, we shall assume that an automated lending system is desired.
Therefore there are two agents. The borrower is a human agent and the
lender agent is a machine/computer system. The result is shown in Figure
2. The gives our complete normative scenario for Resource-Loan.

The next stage is to start defining the parameters for alternative
courses through the Resource-Loan scenario. The user chooses relevant
generic exceptions to be included by selecting them from the list of what-
if  questions in the toolkit (Figure 3).



Similarly the user can select two or more chains to add permutation
exceptions to a combination of scenario chains, that is, permutations of
scenario chains. There is a flexibility of adding the permutation
exceptions to permutations of same scenario chains or permutations of
different scenario chains which have a related and dependent event-action
sequence. Figure 4 shows a sample of taxonomies of problem exceptions
that the user can choose from to be included in scenarios. The toolkit also
enables the requirements engineer to constrain the number and content of
generated scenarios through the entry of certain parameters. The scenario
content would also depend upon the requirements engineer’s choice of
what-if questions for the exceptions.

The user can revise the default generation parameters, and finally
request for generation of scenarios. The toolkit presents the user with a
list of the generated scenarios and the user chooses one or more scenarios
to walkthrough. This walkthrough can be modified to suit user needs, for
example whether or not to use sequence diagrams, or the format for
presenting alternative courses. Figure 5 presents a scenario of Resource-
Loan that is generated from the toolkit. The screen is divided into 2 main
parts. The left-hand side of the screen shows the simple normative course
which is generated for Resource-Loan, containing events, actions, agents,
objects and so on. Each of these elements can be clicked on at a time to
enable effective walkthrough of the scenario. We envisage that the toolkit
will also show a sequence diagram generated from the normative course
elements. The user will be able to interact with and edit this sequence
diagram directly if desired. The right-hand side of the screen shows
possible alternative courses which are generated for Resource-Loan.
These courses are as complete as possible (according to parameters set by
the user during scenario generation) to ensure complete and systematic
use of the scenario. Let us consider the scenario in more detail.

Assume that the user chooses the event element "Borrower Interacts-
With Machine". The toolkit displays all alternative courses to consider for
that element on the right-hand side of the screen, see Figure 6.



Fig. 2 Choosing agent-interaction patterns

Fig. 3  Choosing generic exceptions

Fig. 4  Choosing problem exceptions



Fig. 5 A generated scenario presented in terms of its components

Fig. 6  Exploring a generic exception alternative course

Fig.  7 Exploring a problem exception and candidate generic
requirements



The alternative courses are divided into those for generic exceptions,
permutation exceptions and problem exceptions. Each is given a unique
identifier to make traceability between requirements and scenarios easier
to do. The wizard determines that there are 3 generic exceptions to
consider for the chosen element. These exceptions encourage the user to
ask and explore possible alternative courses about events and actions in
the context of the Resource-Loan scenario, see Figure 6.

For example, what happens if the interaction between the borrower
and the machine does not complete, for whatever reason, or this
interaction does not result in the desired change to state of the book, for
whatever reason ? The user uses CCA to determine the likelihood, cause,
consequences and impact of each alternative course. The user did not
request permutation or problem exceptions for this type of event,
therefore none are shown. It is important to remember that the toolkit
does not try to predict all alternative courses. Rather it proposes some
alternative courses which the user can use as a ’seed’ from which to
explore other alternative courses using the cause-consequence analysis.
Use of cause-consequence analysis broadens the potential usefulness for
the toolkit.

Assume that the user walks on through the scenario and highlights the
agent ’machine’ in the normative course. This time the wizard
recommends that the user consider a number of alternative courses about
problem exceptions, see Figure 7. Two of these problem exceptions are:
the agent-machine has a power failure and the agent-machine has a power
fluctuation. The wizard again encourages the user to determine the
likelihood, causes, consequences and impacts of each alternative course.
However this time, if the alternative course is relevant, the wizard also
suggests candidate generic requirements to either avoid the problem
arising from the course or overcome the problem entirely. The problem
can be avoided by an uninterrupted power supply and overcome by the
availability of simple-to-use paper forms system to enable the lender to
continue the Resource-Loan action.

6.  CONCLUSIONS
The main goal of the CREWS long-term research project is to guide

systematic generation and use of scenarios for requirements acquisition
and validation. The toolkit and the scenario walkthrough method are
being developed to achieve this goal. Our approach to scenario generation
and its analysis for both normative as well as non-normative behavior by
the walkthrough method will help in determining any missing



requirements or possible flaws in design due to incomplete or inconsistent
requirements. We have developed a prototype of the toolkit. We are
demonstrating the prototype in industrial environments to acquire further
requirements for the toolkit, to make it responsive to user needs.

REFERENCES
[1] Hollnagel E. (1993) ‘Human Reliability Analysis Context and Control’,
Academic Press.
[2] Hsi I. and Potts C. (1995) ‘Towards Integrating Rationalistic and Ecological
Design Methods for Interactive Systems’, Georgia Institute of Technology,
Graphics, Visualisation and Usability Centre Technical Report, 1-15.
[3] Jacobson I., Christerson M., Jonsson P., and Overgaard G. (1992) ‘Object-
Oriented Software Engineering: A Use-Case Driven Approach’, Addison-
Wesley.
[4] Jarke M., Bubenko Y., Rolland C., Sutcliffe A.G. and Vassiliou Y. (1993)
‘Theories Underlying Requirements Engineering: An Overview of NATURE at
Genesis’, Proceedings 1st IEEE Symposium on Requirements Engineering, IEEE
Computer Society Press, 19-31.
[5] Leveson N.G. (1995) ‘Safeware: System Safety and Computers’, Addison-
Wesley Publishing Co.
[6] Maiden N.A.M. (1996) ‘Scenario-based requirements acquisition and
validation’, submitted to Journal of Automated Software Engineering .
[7] Maiden N.A.M. and Sutcliffe A.G. (1996) ‘Analogical Retrieval in Reuse-
Oriented Requirements Engineering’, Software Engineering Journal, 11, 281-
292.
[8] Maiden N.A.M., Mistry P. and Sutcliffe A.G. (1995) ‘How People categorise
Requirements for Reuse: a Natural Approach’, Proceedings 2nd IEEE
Symposium on Requirements Engineering, IEEE Computer Society, 148-155.
[9] Nielsen, J. (1993) ‘Usability Engineering’, Academic Press, New York.
[10] Norman D.A. (1988) ‘The Psychology of Everyday Things’, Basic Books,
New York.
[11] Rasmussen J., Pejtersen A.M. and Goodstein L.P. (1994) ‘Cognitive Systems
Engineering’, John Wiley & Sons, Inc.
 [12] Reason J. (1990) ‘Human Error’, Cambridge University Press.
 [13] Sutcliffe A.G. and Rugg G. (1994) ‘A taxonomy of error types for failure
analysis and risk assessment’, Technical Report no. HCID/94/17, Centre for HCI
Design, City University, London.


