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Abstract

Scenario based requirements analysis is an inquiry based collaborative process which
enables requirements engineers and other stakeholders to acquire, elaborate and
validate system requirements. A scenario, in most situations, describes the normative
or expected system behaviour during the interactions between the proposed system
and its environment. To account for non-normative or undesired system behaviour, it
is vital to predict and explore the existence or occurrence of ‘exceptions’ in a scenario.
Identification of exceptions and inclusion of additional requirements to prevent their
occurrence or mitigate their effects yields robust and fault-tolerant design solutions.

In this paper, we outline the architecture of a toolkit for semi-automatic generation of
scenarios. The toolkit is co-operative in the sense that it aids a requirements engineer
in systematic generation and use of scenarios. The toolkit provides domain knowledge
during requirements acquisition and validation of normative system behaviour. It also
provides systematic guidance to the requirements engineer to scope the contents of a
scenario.

Furthermore, we have identified three kinds of exceptions: generic, permutation and
problem exceptions, and have derived complex taxonomies of problem exceptions.
We propose to populate the toolkit with lists of meaningful and relevant ‘what-if’
questions corresponding to the taxonomies of generic, permutation and problem
exceptions. The exceptions can be chosen by the requirements engineer to include
them in the generated scenarios to explore the correctness and completeness of
requirements. In addition, the taxonomies of problem exceptions can also serve as
checklists and help a requirements engineer to predict non-normative system
behaviour in a scenario.

Keywords:

Socio-technical system, Co-operative requirements engineering, Scenario based
requirements engineering, Scenario generation, Exceptions.
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1. Introduction

Scenarios, in our context, are descriptions of required interactions between a desired
system1 and its environment. Scenario-based requirements engineering helps
requirements engineers and other stakeholders develop a shared understanding of the
system’s functionality. Scenarios, derived from a description of the system’s and
stakeholder’s goals, capture the system’s expected or normative behaviour. However,
to ensure robust and flexible design solutions, it is essential to investigate the
occurrence of ‘exceptions’ in the system and its environment. The exceptions are
sources of non-normative or exceptional system behaviour as they prevent the system
from delivering the required service.

The ESPRIT 21903 CREWS (Co-operative Requirements Engineering With
Scenarios) long-term research project proposes the use of scenarios for both
requirements acquisition and validation. Furthermore, it identifies the presence and
occurrence of exceptions and emphasises the importance of exploring these
exceptions during scenario analysis to ensure correct and complete requirements.
First, to help requirements engineers generate a limited set of salient scenarios, this
paper describes the architecture of a toolkit for semi-automatic generation of
scenarios. Next, we have identified three basic types of exceptions: generic,
permutation and problem. The generic and permutation exceptions are the exceptions
that arise in the basic event-action-sequence of a scenario or a combination of
scenarios. Problem exceptions arise due to the interactions of a software system with
its social, operational and organisational environments and provide additional
knowledge with which to explore the non-normative behaviour. Furthermore, we have
derived complex taxonomies of problem exceptions. We propose to populate the
toolkit with lists of ‘what-if’ questions corresponding to these taxonomies of generic,
permutation and problem exceptions. The requirements engineer can select the
relevant exceptions in the toolkit to include them in generated scenarios in order to
guide the process of scenario-analysis with other stakeholders. In addition, a
requirements engineer can use the taxonomies of problem exceptions as checklists
during scenario analysis or in any other technique of requirements analysis.

The architectural design and computational mechanisms of the CREWS toolkit build
on results from the earlier ESPRIT 6353 ‘NATURE’ basic research action (Jarke et al.
1993). NATURE identified a large set of problem domain templates or abstractions,
or Object System Models (OSMs) which we discuss later on. Each OSM encapsulates
the knowledge of normative system-behaviour of all application-domains which are
instances of  that OSM or problem domain template. A scenario of an application
domain which is derived from the NATURE’s OSM, thus, has normative information
content. The identification of exceptions and their inclusion in a scenario to explore
the non-normative system behaviour, as proposed in CREWS, contributes to the non-
normative content of a scenario. Figure 1 represents a model of scenario generation in
terms of contributions from NATURE and CREWS. Such information-rich scenarios
generated from the CREWS toolkit can be useful to guide thinking and discussion
during scenario analysis about possible design solutions or mechanisms to eliminate
the occurrence of exceptions or mitigate their effects when they occur.

                                                          
1 System, here, is not just a pure software system but is a socio-technical system which has social, technical and
organisational dimensions with the user as an integral part of the system.
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Figure 1 Model of Scenario Generation in CREWS toolkit

First, in Section 2, we discuss several definitions of scenarios and explore their role in
requirements engineering. In Section 3, we discuss various types of exceptions which
are useful during scenario analysis. We then discuss problem exceptions and present a
classification of them. We present a subset of the six taxonomies of problem
exceptions that we have derived as answers to ‘what can go wrong ?’ question across
the six dimensions of the classification framework. The toolkit’s architecture and the
process of scenario generation along with an example are detailed in Section 4.
Finally, we present our present directions for future research work in Section 5.
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2. Scenarios and Scenario - based Requirements Engineering

Scenarios have been found to be useful in many disciplines. This is interesting to us
given the multi-disciplinary nature of requirements engineering. Examples, scenes,
narrative descriptions of contexts, mock-ups and prototypes are all different terms for
scenarios in the areas of human computer interaction (HCI), requirements engineering
and information systems. In HCI, a scenario is often defined as a detailed description
of a usage context which helps the designer to explore ideas, consider the
appropriateness of design and user support, and other aspects of the environment
(Carroll 1995). Scenarios, in the area of information systems, have been defined as
partial descriptions of system and environment behaviour arising in restricted
situations (Benner et al. 1992). In the context of requirements engineering (Hsia et al.
1994), scenarios have been defined as ‘possible ways to use the system to accomplish
some function the user desires’. A similar definition is described by Potts et al.(Potts
et al. 1994): ‘particular cases of how the system is to be used. More specifically, a
scenario is a description of one or more end-to-end transactions involving the required
system and its environment’. Scenario-analysis helps to evaluate design alternatives,
validate designs, notice ambiguities in system requirements, and to uncover missing
features or inconsistencies. In object-oriented analysis (Jacobson et al. 1992),
scenarios have been defined as ‘use-cases’, a use-case being a sequence of
transactions between an ‘actor’, who is outside the system, with the system. The use-
case approach focuses on the description of the system interactions with its
environment.

We can determine the basic characteristics of a scenario from these other disciplines.
A scenario is, in essence, a description of required interactions between a system to be
built and its environment to achieve some purpose. It can be seen as a behavioural
requirement, albeit one which is external to the system to be built, and does not relate
to its internal state changes that are unforeseen to the environment. Advantages of
such scenarios are numerous. They can be used to anchor communication and
negotiation amongst requirements engineers and other stakeholders for acquiring and
clarifying requirements. A typical scenario analysis session involves a walkthrough by
the requirements engineers and stakeholders to validate the task description or
functionality simulated in a scenario.

A scenario captures a ‘basic course of  events’. It represents a normative usage-
situation of a system, which can be a normal sequence of tasks that a user performs to
achieve a desired goal. Alternatives or variants to this basic course of events, and
errors that can occur are described as ‘alternative courses’ (Jacobson et al. 1992).
Thus every scenario may have an alternative course, that is, a non-normative state
(condition), or, a non-normative event (behaviour) may occur in a scenario. The non-
normativeness of a usage context or a scenario implies an inappropriate, or
undesirable, or unsafe state or behaviour of a system. Each non-normative state or
event, critical or non-critical, is an effect or consequence of an underlying cause or
multiple causes existing in the system or in the surrounding environment. Each cause
of an inappropriate system performance may be composed of two or more necessary
conditions or exceptions.
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Exceptions must be explored during requirements analysis as this can help in
clarifying and elaborating requirements, and identifying additional or missing
requirements for robust design alternatives. The new requirements/constraints that
arise to eliminate the exceptions or mitigate their effects on the system performance
should be included in the system specifications. This will help achieve completeness
of requirements as the system specifications would then have the desired system goals
as well as the constraints within which the system may operate while achieving these
objectives. These constraints would arise from quality considerations (including
safety), user interface guidelines, data-input limitations (data-entry validations), and
performance considerations (such as system response times).

Despite the extensive use of scenarios in requirements acquisition (Jacobson et al.
1992) and validation (Sutcliffe 1997), it has been reported (Gough et al.1995) that
generation of a useful set of scenarios is tedious and time-consuming. Few guidelines
exist to aid definition of the structure and contents of a scenario. A requirements
engineer must have a considerable understanding and knowledge of the problem
domain and the scope of scenario analysis to efficiently generate scenarios. Also,
without methodical guidance, it is difficult to detect the non-normative behaviour or
the presence and effect of exceptions in a scenario during the inquiry process of
scenario analysis.

It is our aim, in this paper, to demonstrate how the toolkit proposed in CREWS uses
NATURE’s OSMs to provide systematic guidance to the requirements engineer to
generate scenarios detailing normative system behaviour. The identification of
categories of exceptions and proposed taxonomies of problem exceptions, as a part of
research work in CREWS, can further facilitate the requirements engineer to append
exceptions to the generated scenarios through the toolkit.
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3. Types of Exceptions and Taxonomies of Problem Exceptions

Each scenario describes one or more threads of ‘normative’ behaviour of a software
system and consists of agents (human or machine), actions having start events and end
events, stative pre- and post-conditions on actions, objects, their states and state
transitions and a goal state. We have identified two types of exceptions that can be
identified using the basic semantics of a scenario. These are generic and permutation
exceptions. The third category of exceptions that we have identified are the problem
exceptions. Problem exceptions are those exceptions that arise due to the software
system’s interaction with the external environment, that is, with the social
environment (humans and their interactions), with other software or hardware systems
in a distributed environment, or with the organisational environment, including
business processes and goals. The identification of problem exceptions gives an
integrated exploration of exceptions that can arise in the environments around the
software system.

Generic exceptions are those exceptions that relate to the basic components of a
scenario simulating a behavioural requirement. A sample set of what-if questions
listing the generic exceptions to explore the non-normativeness in the event-action
sequence of a scenario is: action is not started by a start-event ?; action is not
completed, that is, it does not have an end-event ?; action does not result in state-
transition of the key object ?; stative pre-conditions are not satisfied ?; stative post-
conditions are not satisfied ?; or the goal state is not achieved ?; etc.

When different scenarios (permutations of scenarios) are combined or linked to one
another, several exceptions can arise in terms of the mappings between the basic
components of a scenario, that is, actions, agents, key objects, events, states, etc.
These exceptions are termed permutation exceptions. Permutation exceptions can be
identified, for example, when one analyses the temporal semantics of two scenarios,
that is, comparing the event-action sequence in the two chains in terms of time. A
representative set of what-if questions to guide the identification of such exceptions is:
an event that should precede an event happens later ?; two agents perform the same
action at the same time ?; the start-events of the actions in two scenario chains are the
same and happen at the same time ?; the state-transition of the same key object takes
place at the same time involving two different agents ?, etc.

A problem exception is a state (condition) or an event that is necessary but not
sufficient for the occurrence of an undesired or non-normative behaviour of the
system. It can exist within a system or can occur during the execution of the system or
it can exist in the environment of the system. It is ‘something wrong’ in the system
(including the operator or ‘user’) or the environment. It could be a hardware
component fault, a design fault in hardware or software, a software fault, an operator
(human) or an organisational condition or action, or an undesirable feature of the
human-computer interface.

If a problem exception is regarded as being sufficient for the occurrence of an
undesired behaviour, it is said to be the cause. In a complex system, it is difficult to
identify a single cause (or a problem exception) for its malfunctioning or unplanned
behaviour. This is because the existence of one or more problem exceptions give rise
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to the occurrence of another set of problem exceptions by propagation and chain
reaction through the system interfaces generating an undesired state of the system.

Figure 2 illustrates the chain of events leading to an unplanned behaviour of a system.
A problem exception can act as a source when it is an initiating state or condition for
the system’s deviation from intended behaviour. It can also be a trigger when its
occurrence activates another problem exception (the source) or a set of problem
exceptions. A combination of the source(s) and trigger(s) may cause the system’s
undesired behaviour or it may give rise to another set of problem exceptions. The
effects or consequences of the propagation of such a causal chain of source - trigger -
problem exception(s) - non-normative system function(s) would be the system’s
inability to deliver its required service.

Figure 2 Conceptual Model of Non-Normative System Behaviour

Earlier work (Hsi and Potts 1995) concentrated on identifying the obstacles during
scenario analysis where obstacles imply as those conditions that can result in the non-
achievement of the goal state in a scenario. We, in contrast, have a broader scope for
problem exceptions which could be missing data entry validation checks, or non-
adherence to user interface guidelines, hardware or software faults, design flaws or
errors, hazards2, obstacles, critical incidents, etc. leading to system failures, mishaps,
loss events, accidents, etc. We now propose a classification of problem exceptions.
The classification is general in the sense that, while populating it, we plan to cover the
whole spectrum of software systems and their environments - from safety critical
systems such as avionics and nuclear power plants, or process control environments,
to non-safety critical office systems. This is an interesting research challenge we have
undertaken, and success is by no means guaranteed.

Classification Framework of Problem Exceptions

There are several taxonomies of problem exceptions in the areas of cognitive science
and engineering, safety engineering, and usability engineering in the literature. It is
difficult to categorise their domains over orthogonal axes as some of the studies
overlap, especially, taxonomies of human error and human mental models
(Rasmussen and Vicente 1989), (Norman 1988), (Reason 1990), (Hollnagel 1993).
We are making an attempt to bring all these diverse themes of work together in a
single classification framework. Secondly, our aim is to apply the derived taxonomies
of problem exceptions under this general classification scheme to the area of
requirements engineering through scenarios.

Any scenario, which represents a sequence of actions, can involve human agent(s) (H)
and machine agent(s) (M). A human agent may also communicate with another human
agent and a machine may pass information to another machine in a distributed system.
                                                          
2 We will follow the terminology of Leveson’s book (Leveson 1995, Chapter 9) for all safety terms such as error,
failure, risk, hazard, reliability, etc.

0ROBLEM�%XCEPTION

�4RIGGER	

0ROBLEM�%XCEPTION�S	
�3OURCE	

0ROBLEM�%XCEPTION

�3OURCE	�OR��4RIGGER	
�Þ��NONNORMATIVE�SYSTEM�FUNCTION�S	Þ�� %FFECT�S	



8

The minimum set of interactions between H and M are: H, M, HM, HH and MM.
Each interaction pattern in this set can give rise to an inappropriate or undesired
system performance. Based on this set of possible interactions, we identify five types
of exceptions (Figure 3): Human exceptions, Machine exceptions, exceptions that
arise due to Human-Machine Interaction, exceptions that arise due to Machine-
Machine Communication or exceptions that arise due to Human-Human
Communication. Apart from these five categories, we have identified a sixth type -
Organisation exceptions, that is, exceptions that arise due to organisational structure
or social conditions.

Figure 3 Classification Scheme of Problem Exceptions

A human agent, as an integral component in the social environment of the software
system, takes decisions, performs actions, etc. During this interaction, a deviation of
normal behaviour of a human agent may result in an inappropriate system
performance. The causes of deviations in the human agent’s actions or behaviour are
called human exceptions. These exceptions have been termed as the causes of  human
errors in cognitive engineering (Reason 1987), (Reason 1990), (Norman 1988) and
human factors engineering (Sutcliffe and Rugg 1994). For example, human exceptions
may arise due to insufficient knowledge, memory lapses, incorrect mental model, etc.
When the failure of a machine due to conditions such as power failures, or hanging, or
getting disconnected from the network, etc. give rise to an inappropriate system
performance, then such technical causes are called as machine exceptions or technical
exceptions. These are the sometimes considered as causes of technical failures in the
literature (Leveson 1995). Design errors, or non-adherence to user interface
guidelines, etc. may give rise to situations when a human agent is unable to take a
decision or diagnose a problem while interacting with a machine. This results in an
undesired system performance. Such exceptions are termed as arising due to human-
machine interaction mismatches (Nielsen 1993), (Rasmussen et al. 1994), (Hollnagel
and Kirwan 1996). These may arise due to usability problems, poor feedback
mechanisms, or inadequate error-recovery mechanisms. When a human agent is not
able to communicate appropriately or as desired to another human agent, either
through speech, documents, or any other media and which may cause an unacceptable
system performance, then such causal factors are called human-human communication
exceptions (Reason 1990). Exceptions due to human-human communication may arise
due to communication mismatch between peers as a result of unclear task allocation or
lack of co-ordination at management level. The importance of verbal communication
between controllers in the London Ambulance Service’s control room was overlooked
in the infamous computer-aided despatch system disaster, and was one reason for the
system’s ultimate failure (Dowell and Finkelstein 1996). A situation may arise when a
machine is unable to communicate correctly to another machine in a network or

0ROBLEM
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distributed system. This may be caused due to an exception of the type - machine-
machine communication.

Causal Relations of Problem Exceptions

The presence of one exception may give rise to another and so on, triggering a chain
of non-normative events leading to an undesirable or inappropriate system
performance. We illustrate this causal relations of problem exceptions leading to an
unplanned behaviour through an example.

Consider the case when an operator of a process control system is not able to
optimally control certain parameters (human exception) as s/he does not have the
access rights for some functions/information of the machine (equipment), or is not
trained enough to perform the allocated job, or is working in stressful conditions.
These reasons of an operator’s inability to perform an allocated responsibility actually
reflects on the role allocation structure and planning of the organisation (organisation
exception). The human error caused by the cumulative effect of human exception
(source) and organisation exception (trigger) may lead to the malfunctioning of the
control system (machine exception) and, ultimately, cause a system breakdown. In this
case, the sequence of events can be represented as:

Human Exception (source) ⊕ Organisation Exception (trigger) ⇒ Human Error ⇒
Machine Exception ⇒ System Breakdown.

This aim of this example is not to demonstrate a generic path for causal relations of
problem exceptions but it illustrates the occurrence of interaction between the
different types of problem exceptions. The example has two important messages:
First, if a problem exception is known, the requirements engineer can explore its
effect(s) on system behaviour by exploiting these causal relations to simulate the
causal chain of events in the normative task-flow in a scenario. For example, when
power failure is identified as a problem exception, the requirements engineer will
explore all that can be caused due to a power failure in the scenario of the application
domain in question. Following this causal explanation and determining the possible
effects of power failure and the severity of these effects, the requirements engineer
will add requirements to the scenario description to eliminate the occurrence or to
diminish the effect of power failure on the system’s environment. In a safety-critical
system, in order to avoid a  power failure, an additional and significant requirement
would be to include the availability of uninterrupted power supply machines in the
system specifications. However, in the context of a book-lending library, this problem
exception may be tackled by including the availability of paper-forms or other
mechanisms where the library staff members can manually issue books, fine
borrowers, or borrowers can reserve books, etc.

Alternatively, if the consequences are known from any previous histories of
undesirable system behaviour, the requirements engineer can start from the
consequences to determine the cause(s) or problem exceptions by following the causal
path of events. These techniques of forward and backward searches, as illustrated
here, can be integrated in the method of scenario analysis. This approach of causal
analysis is very similar to hazard analysis techniques such as HAZOP in safety
engineering (Leveson 1995). We are currently developing a method to incorporate
causal analysis within scenario based requirements engineering.
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Taxonomies - Populating the Classification framework

We have derived a set of taxonomies as answers to ‘what can go wrong’ question
along the six dimensions of the classification framework. We have considered the
taxonomies available in the literature while populating our classification scheme of
problem exceptions. We present a sample of these taxonomies in Table 1. A more
detailed and complete set of taxonomies is beyond the scope of this paper. To
supplement and validate the derived taxonomies, we are conducting field studies
through knowledge elicitation techniques (Maiden and Rugg 1996) to gather
information from experienced requirements engineers, system designers, and also end-
users. The taxonomies are proposed to be populated in the toolkit. The requirements
engineer can select the relevant exceptions in the generated scenarios to guide the
inquiry process of scenario analysis. The exceptions will enable the requirements
engineer to ask the ‘right’ questions from other stakeholders to either predict or
investigate any unplanned system behaviour. Additionally, these taxonomies will
serve as checklists for the requirements engineer to guide thinking and stimulate the
thought process to uncover ‘new’ requirements and clarify known requirements. This
will help detect incompleteness or ambiguity in requirements.

Exception Type Category Sources of Exceptions
Human Physiological Work Environment - Noise, lighting, work timings, shift arrangements, temperature, ventilation

Stress - Reactions to stress
Attention capacity - over attention or inattention, perceptual confusion
Adaptation - reaction to changes in system and environment
Mental Load - tired, stressful

Anatomical Physical Health - disability, sick or injured, poor physical co-ordination, fatigue
Cognitive Mental Model of the system - incorrect mental model, incomplete task knowledge

Causal Reasoning - delayed feedback from the system,  perceptive power for the consequences
Diagnostic Capability - depending on diagnostic support from the system, task knowledge

Psychological Morale - management policies and attitudes
Motivation - boredom due to repetitive tasks
Disturbance - environmental distractions due to noise, lighting, work place set-up, etc.

Machine Hardware / Peripheral
equipment

Power supply - failure or fluctuations

Peripheral devices / instruments - faulty or inaccessible
Communication - faulty network connectivity, transmission line failures
Work environment - inadequate or non-availability of support staff

Human Machine
Interaction

Screen layout Widget layout - improper choice or unsuitable  icons, user interface controls, user interface cues
or metaphors for the task and user
Information Presentation - over load and poor spread of information, inconsistent, wrong choice
of colours, colour combinations and fonts, non-conformance to human factor guidelines, data
entry validations, improper dialogue design and navigational flow, slow system response times in
information retrieval, unsuitable decision aids for the task and user
Design guidelines - non-conformance to platform-dependent GUI guidelines, internationalisation
requirements if applicable ?

Error Handling Feedback - non-indicative warning messages, alerting techniques such as alarms, flashing and
reverse video, delayed response times
Error recovery mechanisms - absent or slow

Input / Output devices Keyboards, pointing devices, sound, monitors, display panels, indicators, etc. - faulty or unsuitable

Table 1 A Sample Set of Problem Exceptions

4. CREWS Toolkit

As a part of the ESPRIT 6353 ‘NATURE’ basic research action (Jarke et al. 1993), a
large set of problem domain templates or abstractions, known as Object System
Models (OSMs), have been identified to provide domain-specific guidance to
requirements engineers. Each model describes the fundamental behaviour, structure,
goals, objects, agents, constraints, and functions shared by all instances of one
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problem domain category in requirements engineering. These models are similar to
analysis patterns (Coad et al.1995), problem frames (Jackson 1995), or clichés
(Reubenstein and Waters 1991). However, NATURE has produced the first extensive
categorisation of requirements engineering problem domains from domain analysis,
case studies, software engineering books, etc., in the form of over 200 OSMs with 13
top-level OSMs held in a hierarchical object oriented deductive database. The 13 top-
level OSMs are resource returning, resource supplying, resource usage, item
composition, item decomposition, resource allocation, logistics, object sensing, object
messaging, agent-object control, domain simulation, workpiece manipulation and
object reading. As an example, car rental, video hiring or book lending libraries are
applications that belong to the problem domain of resource hiring which is a
specialisation of the resource returning OSM. The proposed OSMs in NATURE have
been validated through empirical studies (e.g. Maiden, et al. 1995), and tools have
been constructed to use them in requirements structuring (Maiden and Sutcliffe 1993),
critiquing (Maiden and Sutcliffe 1994) and communication, and requirements reuse
(Maiden and Sutcliffe 1992).

In CREWS, it is proposed to use the OSMs to provide guidance for scenario-based
requirements acquisition and validation, and, in particular, as the basis for automatic
generation of the core or initial scenarios. Generation identifies permutations of OSM
features to generate a set of possible scenarios. The fundamental components of both
OSMs and scenarios are agents, events, objects, states and state transitions (Potts et al.
1994). These can be manipulated, as a set, to determine different permutations, or
scenarios, for a problem domain. Each individual permutation is called a scenario
chain and, is, in essence, a single thread of behaviour in the software system. It is
described using agents, events, objects, states, actions and state transitions, all of
which are semantics of an OSM. The permutations can be extended using exceptions
to define unforeseen situations and events in problem domains. Furthermore, features
in OSMs are interconnected, thus enabling the imposition of useful constraints on
scenario generation. A computational mechanism to generate these permutations has
been designed to generate scenarios in this manner. It is being implemented in the
CREWS toolkit along with the facility to append exceptions to the scenarios.

We are currently developing a throw-away prototype of the CREWS toolkit. We plan
to conduct tests in the industry using a scenario-based requirements elicitation
technique (Sutcliffe 1997) to determine additional requirements for the toolkit in order
to scope the structure, content and forms of presentation. In addition, we will be
conducting usability studies for the look-and-feel of the user interface and
navigational flow of the toolkit. The prototype is currently being reviewed internally
in our centre along with its iterative development. We aim to submit our results of our
internal reviews and ‘real user’ testing of the prototype in the near future.

We now illustrate the process of scenario generation using the NATURE’s OSMs and
present the screen layouts of the prototype of toolkit to demonstrate it. Detailed
treatment of the mechanism of scenario generation and the toolkit’s architecture is
available in (Maiden 96). In this paper, we focus on the facility of adding exceptions
to the scenarios through the toolkit to analyse the non-normative system behaviour,
both in terms of its event-action analysis within a scenario as well as it’s interactions
with the external environment. The screen layouts in Figures 4 - 11 are from the
prototype of the toolkit.
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Example

Consider the example of an application domain as a book-lending library. In the
toolkit, first, the application domain facts are captured through an interactive dialogue
with the requirements engineer (the ‘user of our toolkit’). The requirements engineer
enters the details of agents, events, actions, etc. through a dialogue to provide domain-
specific information. These inputs are matched with the stored OSMs in the database
to retrieve them. The retrieval yields three OSMs: Resource Hiring, Resource
Repairing and Object Sensing. Each OSM has scenario chains in the database. The
requirements engineer selects the OSM of resource hiring. There are four core or
initial scenarios in this application domain: Resource-Loan, Resource-Return,
Resource-Reserve and Resource-Unreserve which are retrieved and are shown on the
display when the user selects an OSM (Figure 4). The requirements engineer has the
option to choose one or more scenario chains to add exceptions, parameters for
scenario generation such as constraining the number of scenarios to be generated, etc.,
and the agent interaction patterns. The agent-interaction patterns map the agents,
machine or human, to the agents in the scenario chain. Agent types and patterns of
interaction are critical for scenario generation. Object system models include
abstractions of agents but say little about them because agent types and interactions
are not facts which discriminate between categories of problem domain.

Figure 4 Retrieval of OSMs and Scenario Chains

Let us consider the initial scenario chain: Resource - loan. In natural language this
initial scenario reads ‘lender lends a resource to the borrower’. An example: in the
library domain, the resource is a book and a borrower requests for the issuing of a
book from the lender who is a library staff member. (Here, we are considering an
example of a library where the lender brings the book to the library desk and the
library staff member interacts with the computer system (machine) to issue the book to
the lender). On selecting a scenario chain, the requirements engineer has the flexibility
to choose either the generic exceptions, or the permutation exceptions, or to choose
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the problem exceptions to include the exceptions to a scenario chain or combination
of scenario chains, or to enter the parameters for scenario generation, or to map the
agent interaction patterns.

If the requirements engineer chooses the option to map the agent interaction patterns.
Lender, Borrower and Other Agents are the agents in the initial scenario chain. They
would be mapped to human and machine agents as follows (Figure 5):

Borrower: Human agent ( in real-world, a student or staff member in a university
library);

Lender: Human agent (librarian);

Other Agent: Machine agent (Computer system).

Figure 5 Choosing Agent Interaction Patterns

Next, say, the requirements engineer chooses to add generic exceptions by selecting
the from the list of what-if  questions in the toolkit (Figure 6).
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Figure 6 Choosing Generic Exceptions

The requirements engineer can select two or more chains to add permutation
exceptions to a combination of scenario chains, that is, permutations of scenario
chains (Figure 7). There is a flexibility of adding the permutation exceptions to
permutations of same scenario chains or permutations of different scenario chains
which have a related and dependent event-action sequence.

Figure 7 Choosing Permutation Exceptions
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Figure 8 shows the sample of taxonomies of problem exceptions that the
requirements engineer can choose from to include them in the scenarios.

Figure 8 Choosing Problem Exceptions

The number and content of the generated scenarios would be constrained by the
parameters entered by the requirements engineer (Figure 9). The content would also
depend upon the requirements engineer’s choice of what-if questions for the
exceptions. The scenarios are generated from the toolkit after the requirements
engineer’s initiates the generation process and are presented in the form of a list
(Figure 10). The toolkit will provide an option to the user to view any individual
scenario as a sequence diagram or as a structured description in terms of its
constituents: basic semantics and exceptions appended to it.
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Figure 9 Choosing Permutation Options for the Scenario Generation Mechanism

Figure 10 Generated Scenarios
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5.  Future Research Work

One of our immediate research goals is to identify taxonomies of problem exceptions
for application domains which are instances of the 13 top-level OSMs from the
general classification framework. We intend performing empirical studies and using
knowledge elicitation techniques (Maiden and Rugg 1996) to assemble and validate
the taxonomies in such application domains. We also propose to suggest
corresponding generic requirements or guidelines to the requirements engineer for
these derived taxonomies. The toolkit would then be populated with these application-
domain-specific problem exceptions and their generic requirements. For example, a
generic requirement to cater for an exception due to human machine interaction could
be ‘Design for error tolerance’. This means: (a) make errors observable, (b) provide
error-recovery mechanisms. A requirements engineer would map these generic
requirements into actual requirements in a scenario for an effective human machine
interaction: (a) provide feedback by alarms and give warning displays, (b) provide
reverse (compensating) actions. The generic requirements corresponding to
application-domain problem exceptions can, thus, aid the requirements engineer to
identify new and complete requirements.

We also plan to propose some taxonomies by populating the classification framework
across several other dimensions such as cause - effect (consequence), or severity-
likelihood, or failure-mode - effect analyses of problem exceptions. This may involve
including some of the taxonomies existing in the literature: requirements engineering
(Fields et al. 1995): logic errors in the software due to incorrect requirements; safety
engineering (Hollnagel 1993), (Leveson 1995): studies in safety-critical systems;
hazard analysis; accident analysis, task and human error analysis, etc.; usability and
human factors engineering (Nielsen 1993) and cognitive engineering (Norman 1988),
(Rasmussen and Vicente 1989), (Reason 1990), (Rasmussen et al. 1994): ecological
interface design, models of human error, task models, human-task mismatches,
diagnostic support, decision-support and identification of decision requirements, etc.

In addition, we are currently developing a method for scenario analysis which would
complement the traditional task analysis techniques. This method would involve
causal analysis (Rasmussen 1991), (Rasmussen et al. 1994), as a part of scenario
analysis, to explore the occurrence of problem exceptions. It would involve forward
and/or backward search methods of causal analysis. The forward search approach
would involve identifying or predicting the problem exceptions following a causal
path upstream along the flow of events in a task, that is, given the causes, determine
the consequences. The backward search approach would involve investigating any
previous histories of undesirable performances or failures and identifying the causal
factors or problem exceptions, that is, determine the causes from the effects. To
further systematise and elaborate the method, we are also looking into other accident
or hazard analysis techniques: Fault Tree Analysis used in aerospace, electronics and
nuclear industries (Leveson 1995), HAZOP analysis (Leveson 1995) which is a hazard
analysis technique used in the chemical process industry, and the automation of
HAZOP and its application to software requirements specification through Deviation
Analysis (Reese 1995). A comprehensive approach to scenario analysis guided by our
proposed method will help in determining any missing requirements or possible flaws
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in design due to incomplete requirements which can contribute to the likelihood of an
inappropriate system performance.
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