
Introduction 1

Requirements Engineering: An Overview*

Klaus Pohl

Informatik V, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Germany

pohl@informatik.rwth-aachen.de

1 Introduction
Traditionally, requirements engineering (RE) has been seen as the first phase of the software life

cycle in which a specification is produced from informal ideas. During RE, the functional and non-
functional requirements to be met by the system, as well as the criteria for measuring the degree of
their satisfaction, must be elicited and documented in arequirements specification. If the specification
describes both hardware and software, it is calledsystem requirements specification; if it describes
only software, it is calledsoftware requirements specification(cf. [IEEE-830, 1984]). The process
of developing a requirements specification has been calledrequirements engineering(RE). Since the
establishment of RE as a distinct field in the mid 1970s (see [TSE, 1977]) a great deal of progress
has been made.

Nowadays, RE is seen as a key issue for the development of software systems with the responsibility
for maintaining the requirements of a system over time and across traditional and organizational
boundaries (cf. [Jarke and Pohl, 1994; Loucopoulos and Karakostas, 1995]). Correct understanding
(elicitation), documentation (specification) and validation of user/customer needs are becoming more
and more crucial as the ultimative measurement for systems quality is the degree of user satisfaction,
i.e. the ability of the system to meet the user needs. Thus, RE is becoming the essential activity within

* A version of this paper appears in Encyclopedia of Computer Science and Technology, Volume 36, Marcel Dekker, Inc., New York

2 Chapter 1

the software life cycle in which a variety of stakeholders must be involved. The growing importance
of the field is also reflected in new international RE conferences and symposia started in the 1990s (see
[Fickas and Finkelstein, 1993; Davis and Siddiqi, 1994; Harrison and Zave, 1995]).

RE as a discipline is still immature. It is commonly accepted that onlywhat a system should do has
to be defined in a requirements specification andnot how it should do it. Whereas almost everybody
agrees that requirements must be elicited, specified, and validated/verified little uniformity is reached
in the terminology1 of the activities performed (cf. [Davis, 1988]). For example, the understanding of
what the problem being solved is without defininghow it will be solved is called requirements analysis
[Charette, 1986; Wassermanet al., 1986] but also problem analysis [Davis, 1990], problem definition
[Roman et al., 1984] and requirements definition [Berzins and Gray, 1985]. Another indication for
the immaturity is the existing vast amount of literature covering distinct facets and individual isolated
contributions to philosophical and technical problems of the area.

To provide an overview of the field, we first reflect on some definitions of RE (Section 2) and typical
products of the RE process (Section 3). Despite of the fact that the knowledge about the RE process
is poor, four tasks to be performed can be identified (Section 4).

Towards a common understanding we define RE as a process of“establishing vision in context”
(Section 5). For the case of information systems, which are increasingly becoming an integral part of
our everyday life, we use a framework for structuring the context, namely the four worlds of information
systems (development, usage, subject,and systemworld). The RE process itself can be characterized
by three orthogonal dimensions, namely theagreement, representation,and specificationdimension
(Section 6). These dimensions reflect that RE is faced with social, technical, and cognitive problems.
The consequences of these definitions on the RE process, its products, and requirements traceability
are outlined in Section 7. In Section 8 we briefly summarize the contributions made and sketch the
future perspective of RE.

2 Definitions of Requirements Engineering (RE)
Unfortunately there is no common definition of RE and existing definitions differ in their focus.

For example, some definitions concentrate on the elicitation of requirements and thereby focus on the
interaction with the user, whereas the focus of others is more on the documentation (specification) of
the requirements. In general, recent definitions tend to cover more aspects of RE than older ones.

In a recent book, RE is defined in accordance to [Pohl, 1994] as

“a systematic process of developing requirements through an iterative co-operative process of
analyzing the problem, documenting the resulting observations in a variety of representation
formats, and checking the accuracy of the understanding gained.” [Loucopoulos and Karakostas,
1995, p. 13]

This definition reflects the fact that RE has to deal with representational, social, and cognitive aspects
(see Section 6; cf. [Pohl, 1994]).

A status report characterizes RE as

“all activities which are related to

• identification and documentation of customer and user needs

1 An overview on different terminologies proposed can be found in [Davis, 1993, p. 22].

Requirements Engineering Products 3

• creation of a document that describes the external behavior and the associated con-
straints that will satisfy those needs

• analysis and validation of the requirements document to ensure consistency, complete-
ness and feasibility, and

• evolution of needs. “ [Hsiaet al., 1993, p. 75]

and thereby, also with a different stance, covers aspects of the elicitation, validation, and specification
of requirements.

The IEEE standard [IEEE-610.12, 1991] defines RE as requirements analysis:

“(1) The process of studying user needs to arrive at a definition of system, hardware, or
software requirements. (2) The process of studying and refining system, hardware or software
requirements.”

The term “requirement” is defined as

“(1) A condition or capability needed by a user to solve a problem or achieve an objective.
(2) A condition or capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification or other formally imposed document.
(3) A documented representation of a condition or capability as in (1) or (2).”

In contrast, Gause and Weinberg [Gause and Weinberg, 1989] see RE as

“... the part of development in which people attempt to discover what is desired”;

and the process of developing requirements as

“a process of developing a team of people who

(1) understand the requirements;
(2) (mostly) stay together to work on the project;
(3) know how to work effectively in a team.”

Obviously, the above definitions share some common aspects, e.g. gaining a definition of what a user
needs or desires. Nevertheless, they differ in focus. Therefore some aspects of RE are only covered by
a subset of the definitions, e.g. co-operation, change management, validation.

3 Requirements Engineering Products2

It is widely agreed that the primary product of the RE process is the requirements specification which
should statewhat a system should do and nothow it should do it. The fact that RE should focus on the
essence of the system in contrast to possible incarnations (implementations) of the system was made
popular by the book of McMenamin and Palmer (cf. [McMenamin and Palmer, 1984]).

A requirements specification should be complete, consistent, modifiable, traceable, unambiguous,
verifiable, and usable during development, operation, and maintenance of the system (cf. [IEEE-830,

2 In Section 7.2 a more comprehensive definition of the RE product is given.

4 Chapter 3

1984]). Moreover, a specification should state both thefunctional and non-functionalrequirements
of the system.3

However, existing requirements specifications vary in structure, content, and the representation
formats used. One reason for this is the coexistence of many standards and guidelines which define the
content and the structure for a “good” requirement specification document in different ways. Another
reason is the influence of the RE method (or methods) used during the process.

To provide an overview on common RE products we first sketch the various outlines of a “good”
requirements specification proposed by the standards and guidelines (Section 3.1) and characterize the
underlying modelling perspectives of common (quasi standard) RE methods (Section 3.2).

3.1 Standards and Guidelines for Requirements Documentation

An excellent overview of existing standards and guidelines for requirements specifications can be
found in [Dorfman and Thayer, 1990]. Since the different standards and guidelines vary a lot in scope
and content, a comprehensive requirements specification model, called RSM, for the specification of
information systems was proposed (cf. [Gibbels, 1994; Pohl, 1996b]). In the following we provide a
brief overview of RSM and characterize the coverage of the 21 requirements specification standards
and guidelines using RSM.

Abstract-Non-Functional-RQ

Flexibility

Portability

Maintainability Cost Constraints

Time Constraints

Backup/Recovery
Examples

User Supply
Test Cases

Documentation

Performance

static
numerical

dynamic
numerical

Availability

Error Situation Error
Description

Error Handling
Safety-Security

Safety Security

Design Constraints

Standards

Existing
Hardware

Existing
Software

Existing
Interfaces

Abstract-Non-Functional-RQ

Abstract-Functional-RQ Data-Description TBD’s

Functional-Requirements External Interface

User Hardware Software

Fig. 1 The specialization hierarchy of RSM

To avoid redundancy, RSM was defined using the well known abstraction mechanismsclassification,
aggregation, specialization (inheritance),and attribution. Consequently, for each type of requirement
a class definition was established (classification). The characteristics of each type are defined by
the attributes of the corresponding class (attribution). The classes themselves are organized in a
specialization hierarchy (specialization) shown in figure 1.Abstract requirements classeswere defined
which provide common attributes of the corresponding subclasses but cannot be directly instantiated
3 There have been several discussions whether there should be a differentiation between functional and non-functional requirements and if so what the

differences are. Whether a requirement is classified as functional or non-functional, depends on the viewpoint people have. What is functional for one
person, can be non-functional for another one. For example, the shape of a sky scraper is a non-functional requirement for the structural engineer,
whereas it could be a functional one for the town planning engineer, e.g. if the sky scraper should serve as a point of interest or even as the town
attraction (see [Pohlet al., 1994b] for details).

Requirements Engineering Products 5

Requirement

Standard

E
S

A
 P

S
S

-0
5-

0
Is

su
e

1

IE
E

E
-S

T
D

-8
30

-1
98

4

B
S

 6
71

9,
 1

98
6

C
S

A
 2

43
.1

5.
4-

19
79

F
IP

S
 P

U
B

 1
01

S
M

A
P

 D
ID

-P
10

0

S
M

A
P

 D
ID

-P
20

0S
Y

S
M

A
P

 D
ID

-P
20

0S
W

S
M

A
P

 D
ID

 P
21

0

JP
L

D
-4

00
3

JP
L

D
-4

00
5

F
IP

S
 P

U
B

 3
8

F
K

T

F
IP

S
 P

U
B

 3
8

S
Y

S

D
oD

 2
16

7A

D
I-

M
C

C
R

-8
00

23

D
I-

C
M

A
N

-8
00

08
A

D
I-

M
C

C
R

-8
00

25
A

D
I-

M
C

C
R

-8
00

26
A

D
oD

-7
93

5A
 F

K
T

D
oD

-7
93

5A
 S

Y
S

S
ta

rt
s

G
ui

de
 V

ol
.I

External Interface
Time Behaviour

Description of External System

User Interface
Type

Monitor Layout

Language

Hardware Interface
Software Interface
Functional Requirement

Processing

Validation of Inputs

Operations

Subordinate Functions

Validation of Outputs

Error Handling

Error Tolerance

Errors
Data Description
TBD

Abstract Requirement
ID

Name

Description

Creator

Date of Creation

Relation

Priority

Stability

Acceptance Criteria

Alternatives
Abstract-Function-RQ

Inputs

Source

Volume

Format

Range

Errors

Outputs

Target

Volume

Range

Accuracy

Errors

Format

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+++

++

+

+

o o

o o

oo

o

o

o

o
o

o
o

o

o

oo

o

o

o

o

o

o

o

o
o

o

o

o

o
o
o

+ + + + + + + + + + + + + + + + + + + +

+

+

+

+

+

+

+

+

+

+

+

+

- -

- -

- -

- -

--

-

--

-

-
-

-
--

o

o

o
o

o

o

o

o

oo
o

o

o

o

o

oo
o

o o

o

o

o

o

o
o o

o

o

o

o o

o
o

o

o

-

-
-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

-

-

- -

-
-

-

-

-

-

-
-

-
-

- -

--

-
-

-

o

o

o
o

o
o

o

o

o

o
o

o o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

RSM - FUNCTIONAL REQUIREMENTS

"+" detailed description; "o" described; "-" only mentioned; " " not mentioned

Table 1 Influences of the standards and guidelines on RSM: functional requirements.

(e.g., the classAbstract-Functional-RQfor functional and the classAbstract-Non-Functional-RQfor non-
functional requirements). As shown in figure 1 RSM distinguishes between functional requirements,

6 Chapter 3

Requirement

Standard

E
S

A
 P

S
S

-0
5-

0
Is

su
e

1

IE
E

E
-S

T
D

-8
30

-1
98

4

B
S

 6
71

9,
 1

98
6

C
S

A
 2

43
.1

5.
4-

19
79

F
IP

S
 P

U
B

 1
01

S
M

A
P

 D
ID

-P
10

0

S
M

A
P

 D
ID

-P
20

0S
Y

S
M

A
P

 D
ID

-P
20

0S
W

S
M

A
P

 D
ID

 P
21

0

JP
L

D
-4

00
3

JP
L

D
-4

00
5

F
IP

S
 P

U
B

 3
8

F
K

T

F
IP

S
 P

U
B

 3
8

S
Y

S

D
oD

 2
16

7A

D
I-

M
C

C
R

-8
00

23

D
I-

C
M

A
N

-8
00

08
A

D
I-

M
C

C
R

-8
00

25
A

D
I-

M
C

C
R

-8
00

26
A

D
oD

-7
93

5A
 F

K
T

D
oD

-7
93

5A
 S

Y
S

S
ta

rt
s

G
ui

de
 V

ol
.I

+ -
+

+ +

+

+

++

+

+

+

+

+

+

+

+

++

+

++

o

o

o

o

o

o

o

o

o

o

o

o

o

ooo

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
oo

o
o o

o
o

o o

-

-

-

-

-

-

-

-

--

-
-

-
-

-

-

--

-

-

-

-

--

-
-
-

-
-

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

++ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

o o o o o

o
o

o
o
o

o

o o

oo

o

o

o

o

o

o

o

o o

o

o

oo

o

oo o

o

o o

o

o
o
o

o
o
o

RSM - NON-FUNCTIONAL REQUIREMENTS

Performance
Static Numerical

Dynamic Numerical

Availability

Time Constraints
Cost Constraints
Test Cases
User Support
Documentation
Examples
Backup/Recovery

Standards

Maintainability
Standards

Variability

Flexibility
Planned

Impossible

Portability
Planned

Impossible

Security
Prohibit of Communication

Cryptograhical Techniques

Access Mechanism

Auditing

Standards

Safety
Checksum

History

Standards

Design Constraints
Standards

Hardware

Software

Existing Interfaces

Abstract-Non-Functional-RQ

"+" detailed description; "o" description; "-" only mentioned; " " not mentioned

Table 2 Influences of the standards and guidelines on RSM: non-functional requirements.

data descriptions, non-functional requirements and TBD’s (To Be Determined), i.e. known gaps in the
specification. The specialization hierarchy indicates that the standards and guidelines (on which RSM
is based) differentiate between various kinds of non-functional requirements whereas all functional
requirements are treated the same.

The RSM classes, their direct attributes, and the influence of the various standards and guidelines
on the RSM model are depicted in table 1 (functional requirements) and table 2 (non-functional

Requirements Engineering Products 7

requirements). The RSM classes and their direct attributes4 are shown at the left side of each row.
Whereas for the classFunctional-Requirementsover 30 attributes (including inherited ones) have been
defined, the classAbstract-Non-Functional-RQand its subclasses have only a few attributes. In other
words, according to the standards and guidelines functional requirements must be defined more precisely
than non-functional ones.

Every column of the tables is associated with one standard. The influences of the standards on the
RSM classes and their attributes are characterized by four symbols. The symbol “+” indicates that the
standard describes the related attribute or class very clear and extensive, “o” indicates that the attribute
or class is briefly described by the standard, “–” indicates that the requirement is just mentioned but not
described by the standard, and “ ” indicates that the standard does not even mention the requirement.
For example, theIEEE-830standard provides a very comprehensive definition for specifying the inputs
of functions (indicated by the “+” symbol at the intersection ofInput-Descriptionand IEEE-830). In
contrast, the errors which may occur (Input-Errors) are not even mentioned by this standard.

It is interesting to observe that, e.g.,IEEE-830, BS-6719,andSTARTS-Guideprovide comprehensive
definitions for the functional part of a requirements specification, whereas the non-functional part is
almost neglected. Looking at table 1 and 2, rows can be detected which are not related to any standard,
e.g. the attributeCreator of the classAbstract-Requirement. These attributes and classes were added
during the definition of the model based on different RE literature, e.g. [Roman, 1985; Meyer, 1985]
(cf. [Gibbels, 1994] for details).

3.2 Common RE Methods/Products

In contrast to the standards and guidelines, RE methods (e.g. Entity Relationship approaches,
Structured Analysis approaches, object-oriented approaches) do not only define the type of knowledge
to be captured in the requirements specification. In addition, they provide a more or less detailed
description of a standard way of working for eliciting and documenting the requirements. Most existing
RE methods5 focus on a particular modelling perspective.6 In this section we sketch the three main
perspectives: data (Section 3.2.1), function (Section 3.2.2), and behavior (Section 3.2.3). Typical for the
seventies and early eighties was the dichotomy of data and functional modelling approaches resulting in
many discussions about the pros and cons of data versus functional modelling techniques. Nowadays,
both aspects are seen as equally important for modelling systems under different perspectives (cf. [Davis,
1993; Loucopoulos and Karakostas, 1995; Nuseibehet al., 1994; Pohl, 1996b]). In addition, the need
for modelling the behavior of the system is commonly accepted. Recently proposed object-oriented
methods offer some kind of (weak) integration of the three modelling perspectives (Section 3.2.4) and
provide additional abstraction mechanism.

3.2.1 Modelling the Data of the System

The main purpose of the majority of batch systems in the (early and mid) seventies was data
transformation. Thus, modelling the data of the system was seen as an essential activity. To abstract
from the data structure used by the system a large variety ofsemantic data models(and methods) were
proposed.7 These models can be traced back to entity-relationship-attribute notations (originated by
[Chen, 1976]) or object-role formalisms [Smith and Smith, 1977]. Briefly, the purpose of semantic data
models is to define the data of the system independent from the physical structure of the underlying
database (file) system at an abstract (intentional) level. Typical modelling concepts (cf. figure 2)
4 Each RSM class inherits the attributes of its superclass. The class hierarchy is depicted in figure 1.
5 A good overview of current methods can be found in [Davis, 1993]
6 Also called viewpoints, e.g. [Finkelsteinet al., 1992; Nuseibehet al., 1994; Maidenet al., 1995]
7 An excellent overview on semantic data modelling is given in [Hull and King, 1987].

8 Chapter 3

are therefore objects (often represented as named rectangles and called entities), relationships for
representing relations between objects (named rhombus), cardinality of the relations (min:max notation
between the rectangle and the rhombus), and attributes (named ovals) by which the objects and relations
can be specified in more detail. Recent models provide additional concepts for the well known abstraction
principles of generalization and aggregation. Besides the implementation independence the resulting data
models are closer to human perception than the data structures.

Obviously, this modelling perspective was (is) preferred by software engineers, programmers and
database managers/administrators.

Entity Relationship
Diagram

Data Flow
Diagram

State Transition
Diagram

colour

make

name
record

car
orders

car orders

check
orders

car

person

car order accepted
order

deliver
car

money | deliver
received instruction

D A T A F U N C T I O N B E H A V I O R

 car
order

owns

1:1

0:N

Fig. 2 Typical notations for modelling the data, function, and behavior of a system.

3.2.2 Modelling the Functions of the System

In contrast to the data modelling approaches functional modelling approaches focus on the integration
of the system in the organization, i.e. on the functions performed by the system and their contribution
to, e.g., business processes.

Function oriented approaches like Structured Analysis [Gane and Sarson, 1979; DeMarco, 1979;
Yourdon, 1989] or PSL/PSA [Teichroew and Hershey, 1977] describe the system in a hierarchy
of functions (so called processes, bubbles, activities, transformations) and thus focus mainly on the
functional decomposition of the system. The most general (abstract) function(s) of the system is defined
at the root of the hierarchy, whereas the leaf nodes of the hierarchy describe concrete (the least abstract)
functions. Most of the function oriented methods use a combination of data flow diagrams (DFDs)
and data dictionaries. DFDs have been used for specifying various systems prior to the advent of
computer systems. They can be used for specifying the functions of a company, an organization, a
computer system or any combination of them. DFDs (cf. figure 2) consist of data transformations,
called processes (named bubbles), data flows (named arrows), static data storage (two parallel lines,
named), and sources/destinations of the data, called terminators (named rectangles; not shown in figure
2). In addition, so called mini-specifications are defined in structured English for all processes which
are not refined, i.e. for functions which are defined at the lowest level of the hierarchy. Whereas the
hierarchy of functions is organized in different levels of DFDs, the content of the various data stores
and data flows is defined in the data dictionary.

Requirements Engineering Products 9

3.2.3 Modelling the Behavior of the System

The third perspective to be considered during RE is the behavior of the system. The purpose of
behavioral modelling techniques is to provide conceptual formalisms for specifying what inputs are
expected by the system, the outputs to be generated by the system dependent on the current state and
the inputs received, and the relationships that exist between those inputs and outputs.

A system is viewed as a artefact with a certain behavior and functionality. State oriented specification
techniques like finite state machines [Hopcroft and Ullman, 1979], statecharts (an extension of finite
state machines introduced by Harel [Harel, 1987]), or Petri-Nets (e.g., [Reisig, 1991]) are used for
specifying the behavior of the system. A state machine is a hypothetical machine which can be in
only one of a given set of states at any specific time. A machine in the state (S-old) generates (G) an
output (O) in response to an input (I) and changes (C) the state (S-new). The output produced and the
new state (S-new) depend only on the old/current state (S-old) and the input (I) received (i.e.S-new =
C(S-old, I)andO = G(S-old, I)). Common notations for defining the behavior of the system with finite
state machines are state transition diagrams (STD, cf. figure 2) and state transition matrices (Mealy
and Moore notations). In STDs a circle denotes a state, a directed arrow between two states denotes
a potential transition, and the label of the arrow denotes the input which triggers the transition and the
output produced by the transition (both separated by a slash).

Besides finite state machines, the behavior of the system is often described using decision trees
and decision tables. Moreover, various extensions for DFDs have been introduced which enable the
combination of functional and behavior modelling by opposing a control flow on DFDs (e.g. [Ward,
1986; Hatley and Pirbhai, 1987]). Overviews on techniques for modelling system behavior can be
found in [Davis, 1988; Davis, 1993].

In the past (till mid eighties) behavioral approaches were mainly used for specifying real time
application.

3.2.4 Object-Oriented Modelling Techniques

Nowadays, all three aspects explained above are seen as (more or less) equally important for
specifying a system. For example, a flight booking system has to handle a large amount of data
about various subjects like costumers, airplanes, or flights. This data must be consistent at each
time, persistently stored, and shared with other systems. In addition, the system has to react in real
time (to satisfy the customer) and support the business processes of the flight companies and the
travel agencies in an adequate manner. Since within the three modelling perspectives (data, function,
behavior) requirements about the system are stated which partially overlap, the perspective must be
somehow integrated (related). Recently proposed object-oriented approaches [Shlaer and Mellor, 1988;
Coad and Yourdon, 1990; Rumbaughet al., 1991; Booch, 1991; Jacobsonet al., 1992] offer some
kind of (weak) integration of the three aspects and provide abstraction mechanism like classification,
aggregation and specialization (inheritance).

Information local to an object is typically encapsulated by some kind of object description. Such
a description considers

the structural perspective: attributes (properties) of the object, methods provided by the object
and static relationships between the objects (aggregated in the object diagram);

the behavioral perspective: the object lifecycle and the events to occur in the lifecyle specified
for each object (aggregated in, e.g., a state transition diagram for each object);

10 Chapter 3

and the process perspective: dynamic and temporal relations between objects, triggering of
operations (methods) by some events, synchronization between events (aggregated by data
and control flow diagrams).

These aspects are treated in a variety of ways depending on the origins of a particular object-oriented
technique. According to Davis [Davis, 1993] object-oriented techniques originate from the following
four areas: object-oriented design (e.g. [Booch, 1991]), data base design (e.g. [Shlaer and Mellor,
1988]), requirements analysis (e.g. [Coad and Yourdon, 1990]), and structured analysis (e.g. [Yourdon,
1989]). Comparisons of object-oriented techniques can be found in [Fichman and Kemerer, 1992;
de Champeaux and Faure, 1992; Monarchi and Puhr, 1992; Stein, 1994; Lenzen, 1994].

4 Requirements Engineering Processes
Despite the fact that RE has happened many times in practice, little is known about the process itself.

Existing methods likemodern structured analysis[Svoboda, 1990; Yourdon, 1989],JSD [Camaron,
1986], SREM [Alford, 1980], entity-relationship modelling[Chen, 1976], information engineering
[Martin, 1990], and evenobject-orientedmethods [Shlaer and Mellor, 1988; Coad and Yourdon,
1990; Sutcliffe, 1991; Rumbaughet al., 1991; Booch, 1991; Jacobsonet al., 1992] only roughly
describe the way of producing a specification. Formal approaches8 for requirements specification
like ALBERT [Dubois et al., 1994], Larch [Wing, 1987], Telos [Mylopoulos et al., 1990; Jeusfeld,
1992], VDM [Bjoerner and Jones, 1988], orZ [Spivey, 1990] have a clear definition of syntax and
semantics for representing the requirements, but say nothing about the elicitation and documentation
of the requirements using the formal language. Thus, the (so called) formal methods focus mostly on
representational aspects and provide hardly any guidance for the development of a specification.

Current methods are either top-down oriented or bottom-up oriented. Methods of the first category
(e.g. structured analysis[DeMarco, 1979]) assume that the RE process starts with a very abstract
description of the current and/or future reality. The initial (abstract) model is then put in more
concrete forms during the process. In contrast, bottom up oriented approaches (e.g.ethnography
[Sommervilleet al., 1993]) start with observations about the real world (concentrate on the instance level)
and build abstract descriptions from the observations as the process proceeds. Although it is obvious
that both approaches bear unique advantages and are therefore essential for developing a specification,
methods offering an integration of both approaches are still missing. Moreover, existing methods ignore
the fact that RE is an iterative process in which the RE teamlearns about the current and/or future
reality, e.g. the customer gets an understanding of his/herreal needs (cf. [Gause and Weinberg, 1989;
Jarke and Pohl, 1994]). In other words, existing methods do not support the integration of changes
into an existing specification.

Despite the heterogeneous picture of RE processes given above four tasks to be performed can
be identified, namely theelicitation, the negotiation, the specification/documentation,and theverifica-
tion/validationof requirements. Figure 3 depicts the four tasks, their relations as well as some potential
players in the RE process.9 Typically, a requirement is firstelicited. In a second step the various
stakeholdersnegotiateabout the requirement, agree on it or change it accordingly. The requirement is
then in thespecification/documentationtask integrated with the existing documentations and finally in
the validation/verificationtask checked if it corresponds to the original user/customer needs (adapted to
the limitations opposed on the requirements process by constraints) or conflicts with other documented
requirements. In following we describe the main goals of the four tasks and their relations.
8 Comparisons and descriptions of formal methods can be found in [Olleet al., 1988; Zave, 1990; Wing, 1990; Davis, 1993].
9 In Section 5.2 we give some guidelines for drawing the right people in the RE team.

Requirements Engineering Processes 11

Elicitation

Negotiation Specification &
Documentation

Validation &
Verification

customer
requirementsengineer

sy
st

em

sp
ec

ia
lis

t

adminsitra
tive

offic
er

project
m

anager

system

user

so
ftw

ar
e

en
gi

ne
er

m
arketing

expert

programmer

Fig. 3 Four tasks of the RE process.

4.1 Elicitation of Requirements

The first thing you have to do if you have to solve somebody else’s problem is to find out more
about it [Gause and Weinberg, 1989; Loucopoulos and Karakostas, 1995]. Thus, every RE process
somehow starts with the elicitation of the requirements, the needs, and the constraints about the system
to be developed. As depicted in figure 3, the elicitation of requirements/needs is an ongoing activity.

Most often, the relevant knowledge about the problem (system) is distributed among many stakehold-
ers, laws, standards and even hidden in existing systems; i.e. the knowledge is not available from one
source, e.g. a particular user or customer. Therefore, the identification of the relevant sources and ap-
propriate consideration of them during the elicitation task is essential. Adding to complexity, quite often
the knowledge is available in a variety of representations (notations) which range from mental models
through pictures, sketches, and natural language descriptions to formal models of the problem domain.

Independent of the sources and representations the goal of the requirements elicitation task is to
make the hidden knowledge about the system (problem) explicit in a way that everybody involved in the
process is able to understand it. To achieve this goal a variety of techniques for requirements elicitation
exist10, e.g. interview techniques (e.g. [Gause and Weinberg, 1989]), scenario and goal based approaches
(e.g. [Benneret al., 1993; Pottset al., 1994], natural language acquisition (e.g. [Rolland and Proix, 1992;
Miriyala and Harandi, 1991]), form based acquisition (e.g. [Mannino and Tseng, 1989]), simulation and
prototyping (e.g. [Dhar and Jarke, 1985; Luqi, 1993]), ethnography (e.g. [Sommervilleet al., 1993;
Goguen and Linde, 1993]). In general, domain knowledge which defines the kinds of requirements to be
specified for a certain system or a particular functionality should be used to guide the elicitation process
(cf. [Adelson and Soloway, 1985; Loucopoulos and Champion, 1988; Johnson and Feather, 1990;
Reubenstein and Waters, 1991; Maiden, 1992]). Moreover, to reduce costs and to avoid specification
errors existing specifications (or parts) should be reused wherever possible (cf. [Sutcliffe and Maiden,
1990; Maiden, 1991; de Antonelliset al., 1991; Maiden and Sutcliffe, 1992; Constantopouloset al.,
1995]).
10 A description of the various elicitation techniques can be found in [Loucopoulos and Karakostas, 1995; Gause and Weinberg, 1989].

12 Chapter 4

4.2 Negotiation about Requirements

The goal of the negotiation task is to establish an agreement on the requirements of the system among
the various stakeholders involved in the process. Since the people involved have different backgrounds
and responsibilities they have conflicting goals and aims. Technically,view points[Finkelsteinet al.,
1992; Finkelsteinet al., 1993; Maidenet al., 1995] seem to provide appropriate concepts for representing
the different views on the system. Unfortunately, existing conflicts are most often not explicitly stated,
i.e. conflicts are often unknown. The goal of the negotiation task is therefore threefold.

First, conflicts must be made explicit and purely emotional conflicts should be avoided. A good
facilitator can help to prevent most of the inessential (emotional) conflicts which often arise in meetings
[Gause and Weinberg, 1989]. Technically, design collaboration support systems (e.g. [Klein, 1993])
provide a means for supporting the detection of possible conflicts. They are mostly based on black
board approaches and design tools by which the interrelation of different structures can be made more
visible and thus the user can detect conflicts easier. On the representational level, conflicts can be
automatically detected and semi-automatically resolved using view integration and viewpoint resolution
techniques (e.g. [Leite, 1989; Leite and Freeman, 1991]).

Second, the negotiation task must assure that for each known conflict the relevant alternatives, the
argumentations, and the underlying rationales are made explicit. Good cooperation and collaboration
between the people involved in the RE process is a prerequisite for being able to elicit all relevant
alternatives and argumentations. Technically, conflict management systems (cf. [CERA, 1994; AAA,
1994]), successfully applied in other areas, can be adapted to support conflict detection and conflict
resolution in RE.

Third, the negotiation task must assure that the “right” decisions are made, i.e. that, based on the
known argumentations always the best alternative is chosen. Technically, the decision process can be
supported by simple voting systems [Jarkeet al., 1992] or by multi criteria decision support systems
[Bui, 1987; Hwang and Lin, 1987]. Even quality assurance methods like quality function deployment
(QFD) [Hauser and Clausing, 1988] may be adopted to RE to facilitate good decision making. Coherent
support for all three goals mentioned above, as suggested by negotiation support systems (cf. [HIC,
1994; HIC, 1995]) which are based, e.g., on game theory or sociological approaches, is currently not
in sight.

More important than the technical support for the negotiation task is to involve the right people at
the right time. In other words, the questionswho (e.g., user or maintenance people) should be involved
in what (e.g., user interface definition, functional specification) andhow (e.g., meeting, interview, brain
storming) must be continuously answered. If an important stakeholder was not involved at the right
time it is quite likely that the resulting requirements are subject to revision, i.e. are unstable. But
even if always the right people have been drawn into the negotiation process the decisions made are
often revised; mostly due to a better understanding of the problem later on in the process. Thus, the
recording of the decisions and their rationales has proven quite useful (cf. [Conklin and Begeman,
1988; Potts and Bruns, 1988; Jarke and Pohl, 1992; Ramesh and Dhar, 1992; Greenspanet al., 1993;
Ramesh, 1993; Pohl, 1996b]).

The negotiation task is not a straightforward process but a cooperative process [Macaulay, 1993] in
which people must communicate, exchange their different opinions and arguments and, of course, at
some stage make decisions about the requirements to be met by the system.

4.3 Specification/Documentation of Requirements

Commonly, the derivation of a (as formal as possible) requirements specification to be used in

Requirements Engineering Processes 13

subsequent development stages or for procurement is seen as the main goal of the specification and
documentation task. Most of the RE approaches and the standards/guidelines for defining requirements
specifications (Section 3.1) assume that the output of the specification/documentation task is one
monolithic model (document) which covers all requirements to be met by the system.

From our point of view it is more appropriate to see the output of the specification task as a whole
bunch of models which

consider the viewpoints of the various stakeholders;
represent not only the final specification but also intermediate results;
are traceable and consistent.

Thus, the documentation task has to deal with a wide variety of models expressed in various repre-
sentation formats (notations) which must be kept consistent (cf. [Greenspan, 1984; Bigelow, 1988;
Garg and Scacchi, 1990; Fraseret al., 1991; Miriyala and Harandi, 1991; Johnsonet al., 1992; Haumer,
1994; Pohl and Haumer, 1995; Pohl, 1996b]), e.g. formal models for the software engineers, graphical
models for the manager, natural language description or templates (forms) for the users and customers.

The specification/documentation of the requirements can be supported by using formal specification
languages (e.g., PAISLey [Zave, 1991], VDM [Bjoerner and Jones, 1988; Hoare, 1990], Z [Spivey,
1990]) or knowledge representation languages (e.g., ERAE [Hagelstein, 1988], RML [Greenspan, 1984;
Greenspanet al., 1994], Telos [Mylopouloset al., 1990; Jeusfeld, 1992]). They offer the advantage of
automatic reasoning and therefore enable the requirements engineer to detect gaps and inconsistencies
in a specification (cf. [Borgidaet al., 1985; Meyer, 1985; Loucopoulos and Champion, 1988; Wing,
1990]). But applying them to RE is not straightforward since there are many situations in which
inconsistencies in the specification should be tolerated (cf. [Balzeret al., 1978; Hall, 1990; Balzer,
1991; Feather and Fickas, 1991; Nissenet al., 1996]).

In most cases, the input for the specification/documentation task comes from the elicitation task
(e.g., user statements or descriptions of the old system) and negotiation task (e.g., the solution of a
conflict or the revision of an earlier decision), typically in various formats which must be converted
into the format used for specifying the requirements. Correct transformations of the input received
into a specification requires feedback from various stakeholders, e.g. to resolve inconsistencies and
ambiguities. Another major goal of the specification/documentation task is the consistent integration of
changes, e.g. revision of a requirement or decision, in all existing specification/documentation models.
A prerequisite for the consistent change integration is the creation and maintenance of cross-references
within the specification produced as well as between the specification and the inputs received from
the other tasks; i.e. traceability between the various requirements models must be established (cf.
[Flynn and Dorfmann, 1990; Gotel and Finkelstein, 1993; Ramesh, 1993; Ramesh and Edwards, 1993;
Pohl, 1996b]).

As depicted in figure 3 the specification/documentation task can also receive information from the
validation/verification task, e.g. detected inconsistencies in the specification model or new requirements
detected during validation. Vice versa, the specification/documentation task can initiate the execution of
an elicitation task or a negotiation process. For example, the detection of conflicting requirements could
lead to a negotiation about the conflict whereas the need of additional information for the specification
of a particular requirement could initiate an elicitation process.

4.4 Validation/Verification of Requirements

The main goal of this task is to validate and verify the specified requirements. Boehm (cf. [Boehm,
1984]) has provided a succinct expression of the difference between validation and verification. He

14 Chapter 4

defines verification as“am I building the product right?” and validation as“am I building the right
product ?”. In other words, the purpose of the verification task is to check the specification according
to formally defined constraints, whereas the purpose of the validation task is to certify that the specified
requirement are consistent with the user/customer intentions. The need for validation/verification appears
whenever a (set of) requirement was specified. Thus, validation/verification is an ongoing activity
performed for the final specification as well as for intermediate results.

There are two kinds of validation/verification tasks. On the one hand, a specification can be checked
for internal consistency. Such activities are most often based on formal verifications [Alford, 1980;
Greenspan, 1984; Jarke, 1993; Flynn and Dorfmann, 1990; Greenspanet al., 1994] or on validations
using walkthrough or inspection techniques [Fagan, 1986; Yourdon, 1989; Freeman and Weinberg,
1990; Bush, 1990]. On the other hand, a specification can be (externally) validated with the user, the
customer or/and other stakeholders. Techniques used for external validation include (a) interactions with
users, customers, domain experts, etc. (e.g., [Gause and Weinberg, 1989; Leite and Freeman, 1991;
Benneret al., 1993], (b) prototyping (e.g., [Dhar and Jarke, 1985; Henderson, 1986; Hallmann, 1990;
Puncelloet al., 1988; Luqi, 1993]), (c) checking the specification models against domain knowledge
(e.g., [Fickas and Nagarajan, 1988; Puncelloet al., 1988; Maiden, 1992], (d) conducting experiments
and analyzing the results (e.g., [Gause and Weinberg, 1989]), (e) natural language paraphrasing (e.g.,
[Rolland and Proix, 1992]), and (f) animation or simulations (e.g., [Duboiset al., 1994]). Independent
of the verification/validation technique used the aim of the validation task is to ensure that the right
problem is being tackled at any time in the RE process.

The techniques and approaches mentioned in the last sections were assigned to the four tasks due to
their major impact. However, many of them support more than one task.

5 Requirements Engineering: Establishing Visions in Context
In the preceding sections we have reflected on the definitions of RE and have sketched typical

modelling perspectives and RE products (specifications). Finally, we have identified and character-
ized four main tasks of the process, namely elicitation, negotiation, specification/documentation, and
validation/verification. The description given so far indicates that the area of RE is far away from a
common understanding. For example, there exists no method which supports all four tasks described
in the last Chapter.

Towards a common understanding we define RE in this section as a process of“establishing vision
in context” and divide the context of information systems into four worlds (system, usage, subject,and
developmentworld). Using an example we explain the four worlds framework and sketch the expected
benefits. We then define a three dimensional framework for the RE process which takes place in the
development world (Section 6).

5.1 The System Vision

The tasks described in the last section consume of course resources and are not at all inexpensive.
Thus, like any expensive activity, RE is not conducted out of the blue. Instead, every RE process is
triggered by some need for changes induced by either perceived opportunities or threats, or by political
decision making. The need for change is typically stated in a simple manner which we call thesystem
vision. A good example is John F. Kennedy’s "send a man to the moon before the end of the decade
and bring him safely back again". Thus, RE is not an undirected analysis process, but a process of
transforming a vision into a requirements specification which can then, in the design and implementation
tasks, serve as a framework for making the necessary changes in the real world.

Requirements Engineering: Establishing Visions in Context 15

Many habits exist within the world in which the vision has to be realized. Some are based on formally
stated goals, policies, or competing visions11. Others are just regularly observable phenomena for which
no predefined structure or reasons are known a priori. Thus, on the one hand, relevant habits must be
analyzed and the goals, policies, and visions behind them must be made explicit. This is essentially a
goal-directed abstraction process of existing practice [Dardenneet al., 1992]. On the other hand, the
new vision must be established as a mission in the existing context. Propagation of their consequences
leads to the detection and resolution of conflicts among different viewpoints [Finkelsteinet al., 1993].
During this process, the vision is often shifting. Therefore, many projects appoint avision holderto
make sure that the vision does not get totally lost in the constraints of current practice.

Establishing a vision in an existing context remains an empty phrase if we do not understand what
parts of the real world are relevant and how these parts are related to the development process. Due to
the diversity of RE, we need some kind of domain ontology in order to provide a basic understanding
of what RE is concerned with. This ontology should have a very simple structure to be acceptable
to a broad spectrum of developers in that it is easily understood and does not overly constrain them
during the RE process.

5.2 Structuring the Context of Information Systems: Four Worlds

Each type of system has its own typical context. For example, in the case of information systems the
output is typically used by humans to fulfill a task better whereas in the case of embedded systems the
output of the software system is used by other systems, e.g. in an airplane the output of the navigation
system is used by the auto pilot system to adjust the course. Due to these differences the context of
RE depends on the type of system to be built. In the following we focus on information systems which
are increasingly becoming an integral part of our everyday lives.

An information system can be described in analogy to a sharable telescope through which a user
community observes a domain of interest more effectively than without it (cf. [Jarke, 1990]). The
domain of interest may or may not overlap with the user community itself and it may or may not be
changeable by the user community. But it makes sense to distinguish, from a cognitive as well as a
social viewpoint, between theusageworld, the subjectdomain world, and thesystemworld, and to
describe their relationships (cf. figure 4). A fourth world, thedevelopmentworld, has the basic task
of assisting the vision holder in realizing the vision in the context of the other worlds. In addition, the
development world must consider its internal development context of people, methods, experiences, and
tools. It is the world in which the RE process takes place.

Each world is associated with certain groups of stakeholders who should be included in requirements
decision making. The framework makes the social prediction that different areas of expertise, different
languages, and different interests exist and need to be integrated. Moreover, it predicts certain role-
bound non-functional goals which can be associated with the relationships between the worlds: dealing
with such standard viewpoints resolution and negotiation tasks become a natural target for RE methods
and tools.

Finally, we can expect that representatives from each world will have implicit or explicit models
about their own as well as the other worlds, which leads to further social, cognitive, and technical
problems. We have found that these models are (and should be) quite different for each of the four
worlds (cf. [Jarke and Pohl, 1993a]).12

Let us elaborate these general observations for each of the four worlds (cf. figure 4).

11 Where the various goals come from, their role, and how they are used within the RE process is discussed in [Jarke and Pohl, 1993b].
12 This observation is exploited in the design of the NATURE environment described in [Jarkeet al., 1993].

16 Chapter 5

Development
 world

Usage
world

impact privacy
ownerships

System
 world

interface
 efficiency
 friendliness
 presentation
functionality

representation
 accuracy,
 timeliness, ...

correct representation
domain knowledge, ...

participation
buisness processes,
needs, ...

legacy systems
maintainablity
reuse
configurations, ...

Subject
 world

Fig. 4 The four worlds of information systems modelling

The subject world is the domain the system is intended to maintain information about and is
traditionally studied in database design. Stakeholders are the subjects being represented (e.g. in a
criminal record or hospital system), or people who have stakes in these subjects but are not system users
(e.g. owners of real estate about which information is managed by a brokerage system). Relationships
to the usage world are often governed by legal concerns such as privacy and ownership. Relationships
to the development world are frequently difficult to establish, since subjects know nothing about the
degree to which they are administered by systems and often do not influence the system development
until it is too late. Therefore domain experts must participate in the RE process to ensure correct
considerations of the subjects. The separation between the subject world and the system world enables
to distinguish between the evolution of the real world (the subjects, often called universe of discourse)
and its description in the system. The relations between the subject world and the system world define
who and what is controlled by the system. They can be described by quality-of-information factors
such as accuracy or timeliness.

The usage worldcomprises stakeholders who are owners and direct and indirect users of the system.
The relationships between users and owners can vary widely, but might be defined in the organizational
structure. As mentioned before, it is important to draw the right people of the usage world into the RE
team to assure that all relevant business goals and needs can be elicited and are accordingly considered
during the specification of the system. With respect to the system world, quality-of-interaction factors
such as response time, user friendliness, and rich functionality are of interest. Such factors influence
the representation of the information within the system, e.g. to assure a certain response time, as well
as the presentation of the information (or aggregations of them) to the user, e.g. displaying condensed
information in a diagram to facilitate understanding.

The system worldis represented either by people involved in the operation and/or maintenance of
the system, or simply by the observed fact that it is very hard to change, either due to its internal
complexity or to its established relations to user and developer communities. Existing systems provide
an excellent source for requirements for the new system. In addition, expensive rework can be avoided
by analyzing existing defects of the system as well as by learning from error corrections made during
the life-time of the system. Due to diversity and evolution in the other subworlds, a system often exists

Requirements Engineering: Establishing Visions in Context 17

in different versions. It may be part of different usage environments, and may have lost much of its
initial structure by changes before the present "vision" came up.

All of this must be considered in the fourth world, thedevelopment worldin which the RE process
takes place. Based on the context partitioning expressed by the other three worlds, the people to be
involved in the RE process can be identified. The process starts with a vision holder who establishes
the vision in the social context through communication with other people, typically by drawing them
into a project team for a certain period of time. This team becomes a social reality of its own and is
responsible for the integration of the vision in the existing context. It must ensure adequate observation
(cognitive aspect) and representation (technical aspect) of the other three worlds and adequately consider
resource constraints as well as competing role-bound and individual goals. The RE process itself is
characterized and explained in detail by a three dimensional framework introduced in section 6.

The vision for changecan come from any of the worlds. It can be driven by a technology push in
the system world (e.g. moving from files to databases), changes in the subject domain (e.g. protests by
privacy pressure groups or new theories about the subject domain suggesting knowledge reorganization),
or long-term development concerns (improved maintainability, change of development responsibility
from computer professionals to end users). Most frequently, of course, visions arise in the usage world
(application pull). The four worlds framework is important to position the vision within the context, and
to predict where the main obstacles in the RE process may come from and how they can be overcome.

5.3 Establishing Visons in Context: An Example

In this section we provide an example to clarify the ideas of the four worlds framework as well
as the view of RE as a process of establishing a system vision in an existing context. Suppose the
overall system vision was“to develop an information system for supporting customers in their selection
of a suitable car”.

Whether or not an object must be considered during system development depends on the system
vision. For example, given the above vision objects of the real world (the context) like turtles or clocks
are not considered during system development (cf. figure 5).

Vision defines
focus

develop an information system
for supporting the customers in
their selection of a suitable car

system
world

subject
world

usage
world

Fig. 5 The overall system vision distinguishes subject, system, and usage world.

18 Chapter 5

Moreover, the system vision defines the boundaries of each world. In our example, thesystem world
consists of the cars, whereas the customer of the car dealer (the user of the system) obviously belongs
to the usage world.

Note that the four worlds are not necessarily disjoin. Depending on the system vision, an object can
belong to more than one world. For example, if for selecting a particular car type information about
the customer is used by the system (e.g. preferred make like Volkswagen) the customer belongs to the
subject world (since information about him is stored by the system) and the usage world.

To identify the other objects belonging to the usage world and to define the system world, the system
vision has to be put in a more concrete form, e.g.“the system has to be developed for the car dealer.”If
the system is to run at the car dealer’s, the car dealer’s existing systems, certain policies for developing
information systems, the people of the computer department, etc. form thesystem world. If it is going
to run at home by the customer, the TV-set of the customer could belong to the system world.

In our example, the RE team of the development world (cf. figure 6) might consist of the car dealer’s
system manager (system world), the car dealer’s manager, a representative of the sales department
(subject world), a customer representative (usage world), and a specialist for human computer interfaces
(development world).

subject
usage

developmentsystem

Fig. 6 Four possible worlds of a car information system

The relations between the subject, usage, and system world can be characterized as follows: first,
information about cars is conceptualized and represented in the system using some kind of notation
(depicted by the black arrow between the subject and system world; cf. figure 6). Second, the system
presents information to the user based on the representation (conceptualization) as well as certain user
inputs (double black arrow between system and usage world). Third, the presentation is interpreted and
associated with the real world by the user. Hence, the presentation must ensure that the user is able
to identify the “right” parts (objects) of the real world (black arrow between usage and subject world).
For example, a set of pictures of the car or even a video can be used as presentations to ensure that
the customer can identify the corresponding real world object. It is important that the object which was
conceptualized (the particular car shown in the subject world of figure 6) and the object identified by

Requirements Engineering: Establishing Visions in Context 19

the user based on the displayed information of the system are identical, i.e. the presentation should
assure that the family in figure 6 associates the information shown on the screen with the right car type.

Within the development world, information about the other three worlds is captured and maintained
(as depicted by the three light gray double arrows). Such information may include:

the maximum speed of the car, its weight, the horse power, the available colors, ability to
transport dogs (subject world)
available hardware, design methods, existing systems (system world)
sales strategies, suitable presentations, embedding of the system in the organization (usage
world)

Obviously, this information is never stable. For example, a new sales strategy may be introduced,
certain car properties may change, or even a new car model may be produced. Moreover, the role of
the system within the organization may change over time. Since the requirements depend on the facts
of the usage, subject, and system world, it is important that within the development world the relations
between this information is recorded: either by recording the information in suitable models (for the
usage, system, subject world) in the development world itself, or by interrelating the specification
with models which already exist in the other worlds, e.g. a business model existing in the usage
world. In the latter case, the models are reusable, i.e. the same model can be used for more than one
system development process, and thus relationships between different system types can be expressed,
e.g. relations about possible sales systems and the book keeping systems. Ideally, such models should
describe a world independent of a particular system.

Changes within the subject, system, or usage world lead to modifications of the corresponding model.
For example, introducing a new sales strategy causes changes to the business model. If the relations
between the business model and the requirements specification are captured the consistent integration of
changes can be supported, i.e. the corresponding parts of the system specification affected by the change
can be identified. Without a suitable interrelation, the propagation of changes is almost impossible; at
least changes are harder to integrate and more expensive.

Summarizing, the identification of the context is driven by the system vision and can be divided into
three worlds (usage, system, subject). By establishing a RE team a new distinguishable social reality
is created: thedevelopmentworld.

5.4 The Requirements Process within the Development World

Based on the four worlds framework and the example sketched above some conclusions about the
RE process can be drawn.

First, the RE process takes place in the development world. The process is initiated anddriven by
the overall system vision.

Second, the REteamis established according to the system vision. It is important to consider aspects
of each of the four worlds during RE. To ensure this, at least one representative of each world should
participate in the RE team.

Third, each stakeholder involved has his/her ownpersonal viewson the system which of course
heavily depend on the background of the stakeholder, the world he/she comes from. For example, a
user representative cares more about the user interface of the system whereas a person of the system
world focuses more on internal interfaces or technical integration aspects. The different views, aims,
and goals are discussed during the RE process with the aim to reach an sufficient agreement on a final
specification of the system.

20 Chapter 5

Fourth, decisions are made during the RE process. Thus, the process isunpredictable. The different
views and aims lead to discussions in which the team members exchange arguments. Based on these
argumentations, e.g. pros and cons about the suitable presentation of the selected car model to the
customer, decisions are made about certain system properties, e.g. to use pictures to present the selected
car. These conversations and cooperations as well as the resulting decisions are not predictable.

Fifth, the specificationof a system dependson the contextof the system. Knowledge about the
subject, system, and usage worlds may already be expressed in models within each world, e.g. business
models provide a source for information about an enterprise and (depending on the vision) may be part of
the usage world. Such models provide sources for the reuse. If abstract (conceptual) models are needed,
but are not available from the three worlds, they have to be defined in the development world itself.

Sixth, the requirements specification must be related with the context information, i.e. must be
traceable. Since the context (or even the vision) changes continuously the specification is never stable.
To support the integration of changes into the requirements specification, relations between the context
and the requirements are needed, i.e. each requirement must be traceable back to its origin, the part of
the context it was influenced by, and vice versa.

6 Requirements Engineering: A Three Dimensional Framework
For defining a framework for the RE process, we follow an approach proposed by McMenamin and

Palmer [McMenamin and Palmer, 1984] and distinguish between the essence of a process (system) and
its incarnation. On an abstract level, the essence of a system can be seen as transforming the inputs
received into the desired set of outputs. How this transformation is achieved is unimportant since we
focus on the essence of the process, i.e. assume perfect technology.

6.1 The Initial Input of the Requirements Engineering Process

In Section 5 RE was defined as a process of establishing the overall system vision into existing
context. Consequently, the system vision is the initial input for the RE process. When the vision is
established some features of the system are obvious and well known whereas others are vague. Typical
for many RE processes is theopaqueunderstanding of the problem (system) at the beginning.

The stakeholders involved in the RE process come from different worlds (subject, system, usage)
and therefore have different backgrounds, skills, and knowledge. The individual goals and aims of the
stakeholder cause heterogeneous and conflictingpersonal viewson the system which are typical for
the beginning of the RE process. For representing this views each stakeholder uses his/her preferred
representation format. Some of them may not use explicit representations, i.e. may just think about
the system, others may make notes using natural language, or draw pictures or graphics. As indicated
by surveys, e.g. [Lubarset al., 1993], mainlyinformal representationsare used at the beginning of
the RE process.

Besides the clearly defined system vision, the initial input of the RE process can be characterized
as anopaqueunderstanding of the problem and a set of heterogeneous and conflictingpersonal views
which are mostly represented usinginformal languages.

6.2 The Desired Output of the Requirements Engineering Process

At the end of a RE process there should be a as complete as possible requirements specification
which serves as a basis for the next software development phase (at least for the current version of the
system). There are two kinds of completeness. The first one deals with the coverage of the problem
in the specification, i.e. it states if all relevant requirements are captured by the final specification.

Requirements Engineering: A Three Dimensional Framework 21

The second one defines if each known requirement is well defined, i.e. if all requirements are defined
according to the standard chosen for specifying the system. As mentioned in Section 3.1 there are many
standards and guidelines which define how a particular type of requirement should be specified. Of
course, it is almost impossible to define a specification which is complete in both senses. Nevertheless,
the RE team should strive for acomplete specification; obviously the first characteristic of the output
of the RE process.

If the system specification is expressed using (for example) natural language, different people may
understand the same specification in different ways. This may lead to an unexpected design and
implementation. To avoid different interpretation of a specification more and more people suggest the use
of formal languages. As indicated by many researchers (e.g. [Pohlet al., 1994a]), it is not appropriated
to specify the requirements using a single representation language. Therefore, depending on the kind
of requirements and the intended usage of the representation, e.g. to prove a particular property of the
specification or to explain the specification to the manager, a set of suitable representation formalism
should be selected for representing the requirements in an adequate manner. However, it is commonly
that at least parts of the specification should be formalized to enable the proof of certain features of the
specification and to enable computer support during later development stages. Thus, at the end of the
RE process (at least) parts of the specification should be expressed using aformal language.

But, even a complete formal requirements specification is an insufficient output of the RE process. In
addition, acommon agreementmust be reached on the specification.13 Assume that a functionality called
work control is well defined and that there is no problem in mapping this part of the specification
into a design and an implementation later on. But within the RE team only a few people agree on this
functionality promoted by the people who are responsible for cost control. The representatives of the
users do not like this functionality at all. If no common agreement is reached during the RE process the
problems caused by this disagreement must be solved later on. As experience has shown, more effort is
needed to correct errors in the following development phases [Boehm, 1984]. Thus, to avoid expensive
error corrections a sufficient agreement on the final specification must be reached.

Summarizing, thedesired outputof the RE process can be described as a as complete as possible
system specification on which all people involved agree. Furthermore, (part of) the specification should
be expressed in a formal language.

6.3 The Three Dimensions of Requirements Engineering

From theinitial inputs and thedesired outputsof the RE process sketched above, three main goals
of the process can be identified:

developing a as complete as possible system specification out of an opaque system under-
standing;
providing integrated representation formalisms and supporting the transformations between
them;
accomplishing a sufficient common agreement on the final specification allowing personal
views.

Out of these goals the three dimensions of RE have been developed, namely thespecification,
representation andagreementdimension [Pohl, 1994].14 Along the three dimensions, the initial input,
as well as the desired output can be characterized. This is shown in figure 7, where the typicalinitial

13 Not all people must agree on all facets of the specification. It is sufficient if they agree on the parts of the specification by which they are affected,
interested in, or/and for which they are responsible. The agreement reached must be at least sufficient for starting building the system.

14 The three dimensions were originally derived as a result of a comprehensive literature survey (cf. [Pohl, 1993]).

22 Chapter 6

Specification

Representation
informal

opaque

formalsemi-formal

initial
input

desired
output

complete

fair

common view

Agreement

personal view

Fig. 7 The three dimensions of RE.

input (usually located somewhere in the lower left corner of the cube) is characterized by personal views,
opaque system specification and informal representation, and thedesired output(which should be located
near the upper right corner of the cube) is sketched as common agreement, complete system specification
and formal representation. In the following we briefly characterize each of the three dimensions.

6.3.1 The Specification Dimension

The specificationdimension deals with the degree of completeness of the requirements specification
typically measured against some standard, guideline, or domain model. At the beginning of the RE
process the specification of the system and its environment is more or less opaque. This goes along with
a vague understanding of the system at the early stage of the RE process. The aim of RE is to transform
the operational need into a complete system specification through an iterative process of definition and
validation (e.g. analysis, trade-off-studies, prototyping). Moves along this axis mostly face cognitive
and psychological problems of requirement engineering.

As outlined in Section 3.1 several standards and guidelines describe how a “good” requirements
specification should look like. What the system should do is stated by the functional requirements,
whereas the non-functional requirements oppose constraints on the system. For example, IEEE–830
distinguishes betweenfunctional requirements, performance requirements, design constraints, external
interface requirements, and qualityattributes. Performance requirements deal with the system’s ex-
ecution time and computational accuracy. Design constraints are predefined designs imposed on the
software development by the customer, e.g., standard compliance. External interface requirements de-
fine aspects of the environment the system (the software) must deal with, e.g., constraints from other
standards, hardware, or people. Quality attributes restrict design and implementation decisions, e.g.,
maintainability or availability (see [Kelleret al., 1990; Pohlet al., 1994a; Pohl and Peters, 1995;
Krogstieet al., 1995] for examples of quality attributes and their definitions). In addition, a distinction
betweenvital requirements anddesirablerequirements should be made (cf. British Standard 6719 [BS-
6719, 1986], IEEE-830 [IEEE-830, 1984]).Vital requirements must be completely accomplished by the
system, whereasdesirablerequirements may be relaxed and need not be met within the stated limits.
Some standards propose to includecostsandscheduleinformation in the requirements specification (e.g.
British Standard 6719) whereas others separate them from RE (e.g. IEEE Statement of Work).

The progress along the specification dimension goes along with a better problem understanding and
reflects the learning of the people about the system (problem). As the process proceeds, on the one

Requirements Engineering: A Three Dimensional Framework 23

hand, more and more requirements are specified, i.e. the number of hidden requirements is reduced and
thereby the specification gets more and more complete. On the other hand, each individual requirement
is specified in more detail, i.e. each requirement is defined according to the requirements opposed on the
specification by a particular standard. Both improvements lead to a more and more complete specification
of the system. As stated, e.g. in [Nakajima and Davis, 1994], it is not provable if a specification is
really complete, i.e. it can not be proven that a requirement has been forgotten. Nevertheless, the use
of domain models (cf. [Maiden, 1992]), problem frames ([Jackson, 1995]), or/and a particular standard
or guideline helps to produce complete requirements specifications.

Summarizing, thespecificationdimension captures the degree of completeness of the requirements
specification and thereby indicates the understanding of the system (problem) reached. Moves along
this dimension mostly face the cognitive problems of RE.

6.3.2 The Representation Dimension

The representationdimension recognizes the use of different languages (informal and formal lan-
guages, graphics, sounds etc.) used to represent the requirements of the system. Modelling and relating
these representations is mostly a technical problem albeit one whose solution needs good knowledge
about human-computer interactions. Within RE there are three categories of languages. The first
includes all informal representations, such as arbitrary graphics, natural language, descriptions by ex-
amples, sounds and animations. The second category subsumes semi-formal languages such as data flow
diagrams (DFDs) or ER-diagrams (cf. figure 2 for example notations). The third category covers formal
languages such as specification languages (e.g. VDM [Bjoerner and Jones, 1988], Z [Spivey, 1990]) or
knowledge representation languages (e.g. ERAE [Hagelstein, 1988], Telos [Mylopouloset al., 1990]).

Each of these categories offers unique advantages.Informal representationslike natural language are
user-oriented and used in everyday life. The expressive power offered by informal representation is very
high and all kinds of requirements freedom are available (e.g. ambiguity, inconsistency, contradictions;
see [Balzeret al., 1978; Feather and Fickas, 1991] for more details).Semi-formal representations
like DFDs or ER diagrams provide a graphical visualization of certain features of the system. These
representations are widely used within industry and are easy to understand and provide a good overview
of the system (“one picture says more than a thousand words”). The formal semantics offered by
semi-formal languages is very poor so that most of the represented knowledge has no formal meaning.
In contrast, formal representationlanguages have richer, well defined formal semantics. Therefore
automated reasoning about most of the represented knowledge is possible. Even executable code can
be (partially) generated out of them. Thus, formal representation languages are more system oriented.

The use of a particular representation language has two main reasons. On the one hand, the choice of a
particular language depends simply on personal preference. Due to the advantages of each representation
format, different people prefer different representations. For example, the system user may like natural
language, whereas the system specialist may prefer a formal language. On the other hand, the choice of a
language depends on the state of the specification. At the beginning of the RE process informal languages
are used more often, whereas towards the end formal languages are used to define unambiguous and
consistent specifications. However, it is commonly that different representation languages have to be
used in parallel to represent different views on the system and thus enable the stakeholders to understand
the specification from their perspective.

As a consequence, the various representation formats must be integrated and must be kept consistent.
Assume that a requirement was expressed by the customer using natural language. The system specialist

24 Chapter 6

has derived a formal specification out of this requirement. If, e.g. the informal requirement is revised,
it must be ensured that the formal specification is changed accordingly.

The use of a particular representation language does not imply if the developed specification is vague
or precise, i.e. therepresentationdimension is orthogonal to thespecificationdimension. A vague
imagination of the system can be expressed using natural language, but it is also possible to hide poor
understanding of the system using a complex formalism. Concrete (formally defined) ideas can obviously
be represented using a formal representation language, but can also be exactly stated using natural
language (e.g. lawyers try to do so). Looking at the specification’the age of Carl is 10 years’

and on a formal specification, e.g. using first order logic,’age (Carl, 10, years)’ no difference
can be recognized, whereas the vague specification’Carl is young’ is also vague if it is represented in
first order logic’young (Carl)’ . Hence the difference between the two specifications, vague versus
precise, remains the same independent of the representation language used.

Summarizing, during the RE process different representation languages are used. At the beginning
of the process the knowledge about the system is preferably expressed using informal representations,
whereas at the end of RE parts of the specification should be formalized.15 Thus, the goal of the RE
process along the representation dimension is threefold. First, different representations must be offered
and interrelated. Second, the transformation between the representations (e.g. informal to semi-formal,
informal to formal) must be supported. Third, the different representations must be kept consistent.
Thus, moves along this dimension are mostly faced with the technical problems of RE.

6.3.3 The Agreement Dimension

The third dimension deals with the degree of agreement reached on a specification. In the following,
the expressioncommon system specificationis used for the part of the specification on which the RE
team has agreed. Obviously this axis deals mainly with the social aspects of RE.

At any time in the RE process there are requirements which are shared among the team (common
system specification), whereas others exist only within the personal views of the various stakeholders.
Let us focus on a simple example. Assume that a library system is currently being specified and the RE
team has agreed that data about the real world object’book’ must be recorded by the system. Thus
’book’ belongs to the common system specification. At the same time each stakeholder may define
(from his/her point of view) the properties of the object’book’ . For example, the user defines the
properties’book-title, author-name, year’ using natural language, the system analyst the prop-
erties ’book-id, status-of-book (loaned | available | defect | stolen | ordered)’ using
a formal representation language and the librarian defines the properties’names of authors, key-

words, classification-no., location,...’ . Whereas the object book belongs to the common
system specification, the various properties of book are pertained by the personal views, i.e. are not
shared between the requirements engineering team. Adding to complexity, the coexistent specifications
(common and personal views) are expressed using different representation languages.16

15 Which parts of the specification should be formalized and which language should be used for which kind of formalization are still open research topics
(as identified, e.g. at the First International Workshop on Requirements Engineering REFSQ’94, and the workshop on Formal Models for Information
System Dynamics, both held in conjunction with CAiSE ’94).

16 The observation that each person has his/her own views has led to the introduction of the notion of viewpoints [Finkelsteinet al., 1992]. A viewpoint is
a complex structure and has its own process definition, special representation, process trace, etc. (see [Finkelsteinet al., 1992] for details). In general
we agree with the definition made by Finkelstein et al. [Finkelsteinet al., 1992], but in contrast, we assume that there exists also one “common”
viewpoint, the specification. The specification is constructed during the RE process through communication and negotiation. The specification couldbe
understood as a consistent configuration over parts of the individual viewpoints which were made public by communication. Consequently, not every
person must understand the whole specification (since not all of the information may be in the personal viewpoint(s) of the person). Even if a final
specification exists, there may be parts of personal viewpoints (not covered in the specification) which are inconsistent. However, both the evolution of
each personal viewpoint and the construction of the final specification can be characterized by the three dimensions of RE [Maidenet al., 1994].

Consequences of the Three Dimensions 25

Different views of the same system have positive effects on the RE process. First of all, they provide
a good basis for requirements elicitation (cf. [Leite and Freeman, 1991]). Second, the examination of
the differences can be used as a way of assisting in the early validation of requirements. Hence, different
views enable the team to detect additional requirements. Third, different views enable the specification
of incompatible requirements and thus existing conflicts can be detected during the integration of the
views which would otherwise have remained hidden [Nissenet al., 1996]. It is important to distinguish
between the integration of different views (or parts of them) at the representation level (e.g. transforming
formally represented views into a comprehensive view) and the agreement on the integrated view among
the people involved in the process. The fact that a (part of the) view was formally integrated has nothing
to do with the agreement on this view. A detected conflict must be solved through communication among
people. Of course this communication has the aim of attaining an agreement (solving the conflict), but
as a side effect additional unknown arguments (requirements) could be detected (cf. Section 4.2).

To summarize, theagreementdimension is orthogonal to and as important as therepresentation
andspecificationdimensions and mainly deals with the social aspects of RE. We have pointed out that
several specifications expressed in different representation formats may exist at the same time. Allowing
different views and supporting the evolution from these personal views to a common agreement on the
final specification (common view) is the third main goal of the RE process.

7 Consequences of the Three Dimensions
In the following we briefly describe the consequences of the three dimensional framework for the

RE process (Section 7.1) and the RE product (Section 7.2). In Section 7.3 we outline the need for
requirements traceability and define the kind of knowledge to be captured for establishing traceable
requirements specifications.

7.1 The Requirements Engineering Process within the Three Dimensions

Based on the three dimensional framework introduced in section 6 the overall aim of the RE process
can be stated as getting from theinitial input to thedesired output. The trace of the RE process is an
arbitrary curve within the cube spanned by the three dimensions (cf. figure 8).

Specification

Representation
informal

opaque

formalsemi-formal

complete

fair

common view

Agreement

trace of the

RE-process

personal views

Fig. 8 The RE process within the three dimensions.

26 Chapter 7

Task Characterization of the Task Main Influence

elicitation

makes knowledge (requirements) about the system explicit

and thus leads to a better understanding of the problem

(system)

specification

dimension

negotiation

makes existing conflicts, argumentations and rationales ex-

plicit and assures that the "rigth" decisions are made; es-

tablishes an agreement between the various stakeholder

agreement

dimension

specification/

documentation

deals with the representation of the existing viewpoints in

different representation formats; assures consistency and

cross-references between the various representation; estab-

lishes a (partially) formal requirements specification

representation

dimension

validation/

verification

assures that the right problem is being tackled at any time

in the process; checks the internal consistency of the speci-

fication; controls if the specified requirement are consistent

with the user/customer intentions

all three

dimensions;

Table 3 The four tasks of RE and their main influence on the three dimensions.

The transformation of theinitial input into the desired outputis an interactive process in which
four types of interrelated tasks (elicitation, negotiation, specification/documentation, and valida-
tion/verification) are performed (cf. Section 4). In table 3 the main relations between the four tasks
and the three dimensions are characterized.

The execution of a single task can of course affect more than one dimension; improving one dimension
often leads to a setback in another dimension. For example, the transformation of an informally
represented requirement into a formal requirements specification could affect all three dimensions.
Obviously, this transformation causes an improvement within therepresentationdimension, since an
informally stated requirement is transformed into a formal specification. In addition, the formalization
of the requirement may lead to the detection of existing contradictions, e.g. recognized by automated
reasoning. This contradictions can either be solved by negotiations among the stakeholders involved
in the conflict (improvement in the agreement dimension), or/and lead to an elicitation task by which
additional knowledge about the conflict is made explicit (improvement in the specification dimension).

Based on the three dimensions a prediction on how the specification will change after a certain action
type has been executed can be made. This prediction can be used to establish a process models for
guiding the RE process within the three dimensions. Due to the immature knowledge about RE processes
only few action types can be precisely predefined (cf. [Rolland and Prakash, 1993; Jarkeet al., 1994;
Pohl, 1996b]).

Adding to complexity, the RE process is not only influenced by the three dimensions (i.e., has to deal
with the cognitive, social and technical barriers) but is in addition affected by three other factors, namely:

methods:the process is driven by the method chosen for developing the specification. Obvi-
ously, the resulting requirements specification is strongly influenced by the method applied. For
example, using Structured Analysis will result in a specification which is significantly different
from the one gained by applying an object-oriented technique;
tools: the quality of the final specification depends on the tools used during the process. For
example, if the development of a formal specification is supported by a reasoning tool, incon-
sistencies could be detected which otherwise would have remained in the final specification;

Consequences of the Three Dimensions 27

economical constraints:economical constraints limit the resources (people, money, tools, etc.)
of the RE process. It is not always true that with more resources better results are obtained,
but if the available resources are below a certain limit the output of the process will be of
inferior quality. Economical constraints especially effect the degree of completeness reached
in the final specification.

Discussing these influences in detail is beyond the scope of this contribution. But it should be clear
that they are not unique to the RE process. Most of the existing processes, e.g. production processes,
are influenced by these factors.

For these reasons it is necessary to distinguish between problems which areoriginal RE problems and
those problems which are caused by one of the three main influences mentioned above. The problem
of keeping data flow diagrams and ER-diagrams as well as the data-dictionary consistent is an example
for a problem caused by one of the three influences mentioned above (methods).Original RE problems
are all the problems caused by the three dimensions and the four tasks identified in section 4.

7.2 The Product Viewed From the Three Dimension

In contrast to the existing standard and guidelines which define the software requirements specification
as the main product of the RE process (cf. Section 3), the three orthogonal dimensions of RE imply
a richer definition of the RE product. According to the three dimensional framework and the process
description given above the product of the RE process should:

document the problem understanding reached:the understanding of the problem reached
should be documented independent of the representation formats used for specifying the
requirements. Therefore a generic specification model is needed in which the content of
the specification is defined independent of the actual representations of the requirements. For
example, a functionality of the system could be graphically defined in a DFD. At the same time
the input of the function could be defined in an ER-diagram and the behavior could be stated
in natural language and, in addition, in a state transition diagrams. The specification model
should express that the function, the input of the function, and the behavior of the function
are known and specified and thus provide an overview on the content of the specification;
offer different views on the specification:the RE process should not only produce a as formal
as possible requirements specification. Instead, the output along the representation dimension
should be a set of requirements models (textual, graphical, formal, ...) which reflect the various
views on the system as well as the different modelling perspectives (data, function, behavior,
organization, user, etc.). The different views on the specification should be used to master
the obstacles caused by the different recognition of the stakeholders involved in the process.
For example, for explaining the functionality of the future system to the manager DFDs may
be an appropriate representation format whereas the functionality may be better illustrated to
the user by prototypical window layouts. Of course, these views must be consistent and must
conform with the specification at any time. In addition, cross-references should be provided
between the views to enable easier change integration and view comparison;
document the agreement reached:the progress made along the agreement dimension is an
important part of the RE product. Although neglected by almost all existing specification
standards and guidelines the results of the negotiation tasks must be documented, e.g., the
decisions made during the RE process together with their rationales. For recording the decision
and their underlying rationale, e.g. an IBIS based model could be used (cf. [Pohl, 1996b]).
Recording the decisions and their rationale enables future adaptation of the specification

28 Chapter 7

according to new needs, increases the acceptance of the system, and enables people not
involved in the RE process to understand the decisions made. Thus, the documentation of
the agreement reached is a substantial part of the RE product;
state the relations to the other three worlds:in addition to the above, the relations of the
specification to the subject, system, usage world should be explicitly stated within the RE
product, i.e. the context in which the system is going to operate and its influence on the
specification should be clearly defined. For example, the contribution structure should be part
of the product [Gotel and Finkelstein, 1994];
be traceable:for various reasons (cf. Section 7.3) the RE product must be traceable. Briefly,
it must be assured that the life of every single requirement can be reconstructed and that
people not involved in the process can understand why the requirements specification was
produced in this particular way.

The comprehensive RE product proposed above (in the following called requirements specification)
provides the basis for high quality design and implementation, for easy adaptation of the system to
future needs, and for improving the RE process based on experience [Pohl, 1996b].

7.3 Requirements Traceability

Requirement traceability is a prerequisite for building high quality software systems and thus
capturing and maintaining traces is an essential activity to be performed during RE (e.g. [IEEE-830,
1984; DoD-2167A, 1988; Wright, 1991; Ramesh, 1993; Gotel and Finkelstein, 1993; Pohl, 1994; Pohl,
1996a]). A comprehensive overview of possible usage of trace information and the expected benefits
can be found in, e.g., [Gotel and Finkelstein, 1993; Ramesh, 1993; Pohl, 1996b]. Among others, these
reports indicate that traceable specifications are essential for change integration, lead to less errors during
system development, play an important role in contract situations, and improve the acceptance of the
(software) system. Of course, traceability adds to what has to be done across the entire life cycle, but
it will reduce the non-productive work by much more [Ramesh, 1993, p.18]

On the one hand, traceability from the requirements specification down to design and implementation
and vice versa is needed to understand and therefore accept the current system better. On the other
hand, the development process leading to the requirements specification must be traceable to enable the
understanding of the requirements themselves, i.e. to trace a requirement back to its origin.

Thus, commonly a differentiation between the two kinds of traceability is made. Whereas the
traceability of the refinement, deployment, and use of a requirement is calledpost-traceability (or
forward traceability), the traceability of a requirement back to its origin is namedpre-traceability
(or backward traceability) (cf. [IEEE-830, 1984; Davis, 1990; Gotel and Finkelstein, 1994; Pohl,
1996b])17. Requirements post-traceability mainly supports the requirements engineer and the software
engineer in keeping track of the requirements and ensuring that all requirements are properly flowed
down to all specification levels and to the design of the system with no requirement lost and none added
in (cf. [Alford, 1980; Flynn and Dorfmann, 1990; Alford, 1990]). Requirements pre-traceability
is a prerequisite for managing the evolution of the system on the specification level. It assures
that the rationale and goals behind each requirement and all existing dependencies, e.g., between
organizational goals and the requirements, are recorded. Thereby, it empowers the identification of
the requirements effected by a change request, e.g. a change of an organizational policy or an extended
usage of the system. Consequently, requirements pre-traceability is as important as requirements post-

17 An excellent survey on existing approaches can be found in (cf. [Gotel and Finkelstein, 1993])

Conclusion and Future Perspectives 29

traceability – especially for systems which are embedded in a continuously changing environment (cf.
[Gotel and Finkelstein, 1993; Ramesh and Edwards, 1993; Pohl, 1996a]).

For establishing requirements pre-traceability the information about the execution of the RE process
must be recorded, i.e. in addition to the comprehensive product defined in section 7.2 the process
steps and the agents performing these steps must be captured and related to the product produced. A
process and repository centered approach which enables the recording and selective retrieval of all this
information, called PRO-ART, is described in [Pohl, 1996b; Pohl, 1996a].

8 Conclusion and Future Perspectives
Like software engineering, many other engineering and business disciplines are experiencing the

need to understand better the early phases of their processes, and to maintain this information over time
and across traditional technical and organizational boundaries. Within software engineering, RE has
traditionally been responsible for this kind of task in which a fuzzy initial idea is transformed into a
precise specification. The good news is that none of the other disciplines seem to be better than RE
in terms of understanding the actual experience, and offering adequate methods and tools for the early
phases of product development.

In this contribution we have sketched the state of the art and practice of RE by reflecting on different
definitions and characterizing the product, the requirements specification, as well as the RE process.
Besides the common modelling perspectives (data, function, behavior, object-oriented), we have de-
scribed four main tasks (elicitation, negotiation, specification/documentation, validation/verification) to
be performed during the RE process. To give a more comprehensive picture of RE we have than
proposed a comprehensive framework for RE: thefour worlds (development, subject, system, usage)
for structuring the context on information systems and thethree dimensions(agreement, representation,
specification) by which the RE process was characterized.

The influences of this broader definition on the RE process and its product were sketched in the last
section. Although we have focused on the specification of information systems, which are increasingly
becoming an integral part of our everyday live, most of the results presented, especially the three
dimensional framework, are applicable to the specification of any kind of system.

In the future, RE will move from a one shot activity in the development process towards a virtual
image that accompanies the changing reality of a system [Jarke and Pohl, 1994]. In other words, RE will
become the most important activity in the software development life-cycle with the main responsibility
for producing high quality (software) systems and managing their evolution. In the following we sketch
the areas of RE where improvements are needed to come up to these expectations:18

better understanding of the RE process:a comprehensive understanding of the RE process
is critical to rise to the new application challenges. We do have some knowledge about
methods at the very fine-grained level, e.g. at the notational level, and at the very coarse-
grained level of, e.g. five step procedures. But there is a big gap between the two kinds
of knowledge which can only be filled by careful analysis of existing and evolving practice.
Methods and tools for requirements traceability and experience based process improvement
are therefore central to our understanding of what RE actually involves [Jarkeet al., 1994;
Pohl, 1996b].
evolution of systems (change management):the challenge of RE is to take a much more
important role in many domains, as its products (the conceptual specifications, the interrelated

18 The changing role of RE is elaborated in more detail in [Jarke and Pohl, 1994].

30 Chapter 8

viewpoints and their instantiations in prototypical scenarios of virtual reality) are becoming
instruments through which interdisciplinary teams can understand and communicate about the
change reality.
use of scenarios:animations of requirements specification and prototyping of design solutions
have been among the successful techniques to support requirements validation and elicitation.
Typically, specific examples (test cases, scenarios) are used by which the specification is
instantiated in order to provoke critique. In the future, animations and prototypes are needed
which go beyond this scope by including the context the system is going to operate. High-
performance computing could enable animations in a rich interactive multimedia style of
virtual reality and thereby various stakeholders could be enabled to understand, criticize, and
to improve the specification.
broader user participation: the four worlds model indicates that we should broaden the
participation in RE teams. Of course, user participation has been a long-standing concern of
RE, but remains a difficult issue even just from the viewpoint of the question of who are the
’users’ to be involved. More important, many systems nowadays have impact beyond their
usage and development environment. Thus, drawing the right people in the RE team and
offering support for reaching an agreement is an important task which will (and has to) be
supported much better in future. In the representation dimension ways must be found to help
these stakeholders (which are neither domain experts nor technical specialists) with analyzing
the system impact from their own perspective.
additional modelling perspectives: the broader role of RE within an organization requires
richer specification models. Among others, this is indicated by the increasing efforts spend in
goal modelling, workflow modelling, and business process modelling. Thus, there is at least
a need for better consideration of the organizational perspective. In addition, the increasing
role of the system users must be supported by providing methodical advise and concepts
for specifying human computer interactions like interactive user guidance, help facilities,
explanation components, user based adaptability or ergonomic user interfaces. More general,
the different relations between the usage, subject, system, and development world must be
adequately specified if the requirements specification should fulfill the role of a virtual image
by which the system evolution is managed.
construction of software: last but not least, the reuse of existing components at the
specification level (not on the implementation level) will be fundamental for the success
of future system development. As the software market matures low-cost standard packages
will be available which have to be adequately considered during the specification of a system.
Consequently, RE has to move towards an engineering discipline in which a software system
is constructed rather than created from scratch.

Acknowledgments.This work was supported in part by the European Community under ESPRIT Basic Research Project
6353 (NATURE), the European-Australian Cooperation Project ISI (ECAUS003) and the Ministry of Science and Research
of Nordrhein-Westfalen.
Thanks are due to the NATURE team for many stimulating discussions, especially to Matthias Jarke for encouragement and
freedom which have made this contribution possible. For helpful comments on earlier drafts of this paper I am grateful to
Ralf Dömges, Matthias Jarke and Klaus Weidenhaupt.

References 31

9 References

[AAA, 1994]
AAAI Workshop on Models on Conflict Management in Cooperative Problem Solving, 1994.

[Adelson and Soloway, 1985]
B. Adelson and E. Soloway. The Role of Domain Experience in Software Design.IEEE Transactions on Software
Engineering 11, 11 (1985).

[Alford, 1980]
M. W. Alford. Software Requirements Engineering Methodology (SREM) at the Age of Two. InProc. of the Fourth
Intl. Computer Software and Applications Conf., pp. 866–874, New York, NY, 1980. IEEE Computer Society Press.

[Alford, 1990]
M. W. Alford. Software Requirements Engineering Methodology (SREM) at the Age of Eleven – Requirements Driven
Design. In P. A. Ng and R. T. Yeh (Eds.),Modern Software Engineering. Van Nostrand Reinhold, 1990.

[Balzer et al., 1978]
R. Balzer, N. Goldman and D. Wile. Informality in Program Specifications.IEEE Transactions on Software Engineering
4, 2 (1978), pp. 94–103.

[Balzer, 1991]
R. Balzer. Tolerating Inconsistency. InProc of the Thirteenth Intl. Conf. on Software Engineering, pp. 158–165, Austin,
TX, May 1991.

[Benneret al., 1993]
K. M. Benner, M. S. Feather, W. L. Johnson and L. A. Zorman. Utilizing Scenarios in the Software Development
Process. In N. Prakash, C. Rolland and B. Pernici (Eds.),Proc. of the IFIP WG 8.1 Conf. on Information System
Development Process, pp. 117–134, Como, Italy, September 1993. Elsevier B. V. (North Holland).

[Berzins and Gray, 1985]
V. Berzins and M. Gray. Analysis and Design in MSG 84: Formalizing Functional Specifications.IEEE Transactions
on Software Engineering 11, 8 (August 1985), pp. 865–885.

[Bigelow, 1988]
J. Bigelow. Hypertext and CASE.IEEE Software(March 1988), pp. 23–27.

[Bjoerner and Jones, 1988]
D. Bjoerner and C. B. Jones.VDM’87 VDM-A Formal Method at Work. No. 252, LNCS. Springer-Verlag, 1988.

[Boehm, 1984]
B. W. Boehm. Verifying and Validating Software Requirements and Design Specifications.IEEE Software 1, 1 (January
1984), pp. 75–88.

[Booch, 1991]
G. Booch.Object Oriented Design with Applications. Benjamin/Cummings Publishing Company Inc., Redwood City,
CA, 1991.

[Borgida et al., 1985]
A. Borgida, S. Greenspan and J. Mylopoulos. Knowledge Representation as the Basis for Requirements Specifications.
IEEE Computer 18, 4 (April 1985), pp. 82–91.

[BS-6719, 1986]
BS-6719. British Standard Guide to Specifying User Requirements for Computer-Based Systems. 1986. British Standard
Institute.

[Bui, 1987]
T. X. Bui. Co-oP: A Group Decision Support System for Cooperative Multiple Criteria Group Decision Making. LNCS
290. Springer Verlag, Berlin, 1987.

[Bush, 1990]
M. Bush. Improving Software Quality: The Use of Formal Inspections at the Jet Propulsion Laboratory. InProc. of the
Twelfth Intl. Conf. on Software Engineering, pp. 196–199, Nice, France, March 1990.

[Camaron, 1986]
J. R. Camaron. An Overview of JSD.IEEE Transactions on Software Engineering 12, 2 (February 1986), pp. 222–240.

[CERA, 1994]
CERA. Special Issue on Conflict Management in Concurrent Engineering.Journal on Concurrent Engineering Research
and Application, CERA 2, 3 (1994).

32 Chapter 9

[Charette, 1986]
R. Charette.Software Engineering Environments. McGraw Hill, New York, 1986.

[Chen, 1976]
P. P. S. Chen. The Entity-Relationship Approach: Towards a Unified View of Data.ACM Transactions on Database
Systems 1, 1 (1976).

[Coad and Yourdon, 1990]
P. Coad and E. Yourdon.Object Oriented Analysis. Prentice Hall, Englewood Cliffs, NJ, 1990.

[Conklin and Begeman, 1988]
J. Conklin and M. J. Begeman. gIBIS: A Hypertext Tool for Exploratory Policy Discussion.ACM Transactions on
Office Information Systems 6, 4 (1988), pp. 303–331.

[Constantopouloset al., 1995]
P. Constantopoulos, M. Jarke, J. Mylopoulos and Y. Vassiliou. The Software Information Base: A Server for Reuse.
VLDB Journal 4, 1 (1995), pp. 1–43.

[Dardenneet al., 1992]
A. Dardenne, S. Fickas and A. van Lamsweerde. Goal-Directed Concept Acquisition in Requirements Elicitation. In
Proc. of the Sixth Workshop on System Specification and Design, pp. 14–21, Como, Italy, 1992.

[Davis and Siddiqi, 1994]
A. Davis and J. Siddiqi (Eds.).Proc. of the First Intl. Conf. on Requirements Engineering. IEEE Computer Society
Press, April 1994.

[Davis, 1988]
A. M. Davis. A Comparison of Techniques for the Specification of External System Behavior.Communications of the
ACM 31, 9 (1988), pp. 1098–1115.

[Davis, 1990]
A. M. Davis. The Analysis and Specification of Systems and Software Requirements. In R. H. Thayer and M. Dorfman
(Eds.),Systems and Software Requirements Engineering, pp. 119–134. IEEE Computer Society Press — Tutorial, 1990.

[Davis, 1993]
A. M. Davis. Software Requirements. Prentice Hall, Upper Saddle River, NJ, 1993.

[de Antonelliset al., 1991]
V. de Antonellis, B. Pernici and P. Samarati. F-ORM Method: Methodology for reusing Specifications.ITHACA
Journal, 14 (1991), pp. 1–24.

[de Champeaux and Faure, 1992]
D. de Champeaux and P. Faure. A Comparative Study of Object-Oriented Analysis Methods.Journal of Object-
Oriented Programming(1992), pp. 21–33.

[DeMarco, 1979]
T. DeMarco.Structured Analysis and System Specification. Prentice Hall, Englewood Cliffs, NJ, 1979.

[Dhar and Jarke, 1985]
V. Dhar and M. Jarke. Learning from Prototypes. InProc. of the sixth Intl. Conf. on Information Systems, pp. 114–133,
Indianapolis, IN, 1985.

[DoD-2167A, 1988]
DoD-2167A. Military Standard: Defense System Software Development. 1988. U.S. Department of Defense.

[Dorfman and Thayer, 1990]
M. Dorfman and R. H. Thayer.Standards, Guidelines and Examples on System and Software Requirements Engineering.
IEEE Computer Society Press – Tutorial, 1990.

[Dubois et al., 1994]
E. Dubois, P. DuBois, F. Dubru and M. Petit. Agent-Oriented Requirements Engineering: A Case Study using the
ALBERT Language. InProc. of the Fourth Intl. Working Conf. on Dynamic Modeling and Information Systems,
Noordwijkerhoud, The Netherlands, September 1994.

[Fagan, 1986]
M. E. Fagan. Advances in Software Inspections.IEEE Transactions on Software Engineering 12, 7 (1986), pp. 744–751.

[Feather and Fickas, 1991]
M. S. Feather and S. Fickas. Coping with Requirements Freedom. InProc. of the Intl. Workshop on the Development
of Intelligent Information Systems, pp. 42–46, Niagara-on-the-Lake, Ontario, Canada, April 1991.

[Fichman and Kemerer, 1992]
R. G. Fichman and C. F. Kemerer. Object-Oriented and Conventional Analysis and Design Methodologies (Comparison
and Critique).IEEE Computer(October 1992), pp. 22–39.

[Fickas and Finkelstein, 1993]
S. Fickas and A. Finkelstein (Eds.).Proc. of the First Intl. Symp. on Requirements Engineering. IEEE Computer Society
Press, January 1993.

References 33

[Fickas and Nagarajan, 1988]
S. Fickas and P. Nagarajan. Critiquing Software Specifications.IEEE Software(November 1988), pp. 37–47.

[Finkelsteinet al., 1992]
A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein and M. Goedicke. Viewpoints: A Framework for Integrating
Multiple Perspectives in System Development.Intl. Journal of Software Engineering and Knowledge Engineering 1,
2 (May 1992).

[Finkelsteinet al., 1993]
A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer and B. Nuseibeh. Inconsistency Handling in Multi-Perspective
Specifications. InProc. of the Fourth Europ. Software Engineering Conf., pp. 84–99, Garmisch-Partenkirchen, Germany,
September 1993. Springer-Verlag.

[Flynn and Dorfmann, 1990]
R. F. Flynn and D. Dorfmann. The Automated Requirements Traceability System (ARTS): An Experience of Eight
Years. In R. H. Thayer and M. Dorfman (Eds.),Systems and Software Requirements Engineering, pp. 423–438. IEEE
Computer Society Press — Tutorial, 1990.

[Fraseret al., 1991]
M. D. Fraser, K. Kumar and V. K. Vaishnavi. Informal and Formal Requirements Specification Languages: Bridging
the Gap.IEEE Transactions on Software Engineering 17, 5 (May 1991), pp. 454–466.

[Freeman and Weinberg, 1990]
D. P. Freeman and G. M. Weinberg.Handbook of Walkthroughs, Inspections and Technical Reviews. Dorset House
Publishing, New York, 1990.

[Gane and Sarson, 1979]
C. Gane and T. Sarson.Structured Systems Analysis: Tools and Techniques. Prentice Hall, Englewood Cliffs, NJ, 1979.

[Garg and Scacchi, 1990]
P. K. Garg and W. Scacchi. A Hypertext System to Manage Software Life-Cycle Documents.IEEE Software(May
1990), pp. 90–98.

[Gause and Weinberg, 1989]
D. C. Gause and G. M. Weinberg.Exploring Requirements: Quality Before Design. Dorset House Publishing, New
York, 1989.

[Gibbels, 1994]
F. Gibbels. A Comprehensive Specification Model for Information Systems. Master’s thesis, RWTH-Aachen, Germany,
1994. (in German).

[Goguen and Linde, 1993]
J. A. Goguen and C. Linde. Techniques for Requirements Elicitation. InProc. of the First Intl. Symp. of Requirements
Engineering, pp. 152–164, San Diego, CA, January 1993. IEEE Computer Society Press.

[Gotel and Finkelstein, 1993]
O. Gotel and A. Finkelstein. An Analysis of the Requirements Traceability Problem. Technical Report TR-93–41,
Imperial College, Department of Computing, 1993.

[Gotel and Finkelstein, 1994]
O. Gotel and A. Finkelstein. An Analysis of the Requirements Traceability Problem. InProc. of the First Intl. Conf. on
Requirements Engineering, pp. 94–102, Colorado Springs, CO, April 1994. IEEE Computer Society Press.

[Greenspanet al., 1993]
S. J. Greenspan, M. Alford, G. Fischer, J. Lee, C. Potts and D. Weiss. Panel: Recording Requirements Assumptions
and Rationale. InProc. of the First Intl. Symp. of Requirements Engineering, pp. 282–285, San Diego, CA, January
1993. IEEE Computer Society Press.

[Greenspanet al., 1994]
S. Greenspan, J. Mylopoulos and A. Borgida. On Formal Requirements Modelling Languages: RML Revisited. In
Proc. of the Sixteenth Intl. Conf. on Software Engineering, pp. 135–148, Sorrento, Italy, May 1994. IEEE Computer
Society Press.

[Greenspan, 1984]
S. J. Greenspan.Requirements Modeling: A Knowledge Representation Approach to Software Requirements Definition.
PhD thesis, Dept. of Computer Science, University of Toronto, 1984.

[Hagelstein, 1988]
J. Hagelstein. Declarative Approach to Information Systems Requirements.Knowledge Based Systems 1, 4 (1988),
pp. 211–220.

[Hall, 1990]
A. Hall. Seven Myths of Formal Methods.IEEE Software 7, 9 (September 1990), pp. 11–19.

[Hallmann, 1990]
M. Hallmann.Prototyping of Complex Software Systems. Teubner Verlag, 1990. in German.

34 Chapter 9

[Harel, 1987]
D. Harel. STATECHARTS: A visual Formalism for Complex Systems.Science of Computer Programming 8(1987),
pp. 231–274.

[Harrison and Zave, 1995]
M. Harrison and P. Zave (Eds.).Proc. of the Second Intl. Symp. on Requirements Engineering. IEEE Computer Society
Press, April 1995.

[Hatley and Pirbhai, 1987]
D. J. Hatley and I. A. Pirbhai.Strategies for Real-Time System Specification. Dorset House, New York, 1987.

[Haumer, 1994]
P. Haumer. A Hypertext System for Structuring and Integrating Informal Requirements. Master’s thesis, RWTH-
Aachen, Germany, 1994. (in German).

[Hauser and Clausing, 1988]
J. R. Hauser and D. Clausing. The House of Quality.Harvard Business Review(May 1988), pp. 63–73.

[Henderson, 1986]
P. Henderson. Functional Programming, Formal Specification, and Rapid Prototyping.IEEE Transaction on Software
Engineering 12, 2 (February 1986), pp. 241–249.

[HIC, 1994]
Proc. of the Twentyseventh Hawaii Intl. Conf. on System Science, HICSS’94, Hawaii, 1994.

[HIC, 1995]
Proc. of the Twentyeighth Hawaii Intl. Conf. on System Science, HICSS’95, Hawaii, 1995.

[Hoare, 1990]
C. A. R. Hoare (Ed.).Intl. Conf. on VDM and Z, No. 428, LNCS. Springer-Verlag, 1990.

[Hopcroft and Ullman, 1979]
J. E. Hopcroft and J. D. Ullman.Introduction into Automata Theory: Language and Computation. Addison-Wesley,
Massachusetts, 1979.

[Hsia et al., 1993]
P. Hsia, A. M. Davis and D. C. Kung. Status Report: Requirements Engineering.IEEE Software 10, 6 (November
1993), pp. 75–79.

[Hull and King, 1987]
R. Hull and R. King. Semantic Database Modeling: Survey, Applications and Research Issues.ACM Computing
Surveys 19, 3 (1987), pp. 201–260.

[Hwang and Lin, 1987]
C. L. Hwang and M. J. Lin.Group Decision Making under Multiple Criteria. Lecture Notes in Economics and
Mathematical Systems Volume 281. Springer Verlag, 1987.

[IEEE-610.12, 1991]
IEEE-610.12. IEEE Standard Glossary of Software Engineering Terminology. 1991.

[IEEE-830, 1984]
IEEE-830. Guide to Software Requirements Specification. 1984. ANSI/IEEE Std. 830.

[Jackson, 1995]
M. Jackson.Software Requirements & Specifications. Addison Wesley, 1995.

[Jacobsonet al., 1992]
I. Jacobson, M. Christerson, P. Jonsson and G.Övergaard.Object Oriented Software Engineering. Addison Wesley, 1992.

[Jarke and Pohl, 1992]
M. Jarke and K. Pohl. Information System Quality and Quality Information Systems. InProc. of the IFIP 8.2 Working
Conf. on the Impact of Computer-Supported Techniques on Information Systems Development, Minneapolis, MN, June
1992.

[Jarke and Pohl, 1993a]
M. Jarke and K. Pohl. Establishing Visions in Context: Towards a Model of Requirements Processes. InProc. of the
Intl. Conf. on Information Systems, Orlando, FL, December 1993.

[Jarke and Pohl, 1993b]
M. Jarke and K. Pohl. Vision Driven System Engineering. In N. Prakash, C. Rolland and B. Pernici (Eds.),Proc. of
the IFIP WG 8.1 Conf. on Information System Development Process, pp. 3–23, Como, Italy, September 1993. Elsevier
B. V. (North Holland).

[Jarke and Pohl, 1994]
M. Jarke and K. Pohl. Requirements Engineering in 2001: (virtually) managing a changing reality.Software Engineering
Journal (November 1994).

[Jarkeet al., 1992]
M. Jarke, S. Jacobs and K. Pohl.Group-Decision Support und Qualit¨atsmanagement, pp. 143–166. Erich Schmidt
Verlag, 1992.

References 35

[Jarkeet al., 1993]
M. Jarke, K. Pohl, S. Jacobs, J. Bubenko, P. Assenova, P. Holm, B. Wangler, C. Rolland, V. Plihon, J. R. Schmitt,
A. Sutcliffe, S. Jones, N. Maiden, D. Till, Y. Vassiliou, P. Constantopoulos and G. Spanoudakis. Requirements
Engineering: An Integrated View of Representation, Process and Domain. InProc. of the Fourth European Software
Engineering Conf., pp. 100–114, Garmisch-Partenkirchen, Germany, 1993. Springer-Verlag.

[Jarkeet al., 1994]
M. Jarke, K. Pohl, C. Rolland and J. R. Schmitt. Experience-Based Method Evaluation and Improvement: A Process
Modeling Approach. InIFIP WG 8.1 Conf. CRIS ’94, Maastricht, Netherlands, 1994.

[Jarke, 1990]
M. Jarke. DAIDA: Conceptual Modeling and Knowledge Based Support of Information Systems Development Processes.
Technique et Science Informatiques 9, 2 (1990), pp. 122–133.

[Jarke, 1993]
M. Jarke (Ed.).Database Application Development with DAIDA. Springer-Verlag, 1993.

[Jeusfeld, 1992]
M. Jeusfeld.Change Control in Deductive Object Bases. INFIX Pub, Bad Honnef, Germany, 1992. (in German).

[Johnson and Feather, 1990]
W. L. Johnson and M. Feather. Building An Evolution Transformation Library. InProc. of the Twelfth Intl. Conf. on
Software Engineering, pp. 428–438, Nice, France, March 1990.

[Johnsonet al., 1992]
W. L. Johnson, M. S. Feather and D. R. Harris. Representation and Presentation of Requirements Knowledge.IEEE
Transactions on Software Engineering 18, 10 (October 1992).

[Keller et al., 1990]
S. E. Keller, L. G. Kahn and R. B. Panara. Specifying Software Quality Requirements with Metric. In R. H. Thayer
and M. Dorfman (Eds.),Systems and Software Requirements Engineering, pp. 145–163. IEEE Computer Society Press
— Tutorial, 1990.

[Klein, 1993]
M. Klein. Supporting Conflict Management in Cooperative Design Teams.Group Decision and Negotiation 2, 9 (1993),
pp. 259–278.

[Krogstie et al., 1995]
J. Krogstie, O. I. Lindland and G. Sindre. Towards a Deeper Understanding of Quality in Requirements Engineering.
In Proc. of the CAiSE ’95. Springer Verlag, LNCS 932, June 1995.

[Leite and Freeman, 1991]
J. C. S. P. Leite and P. A. Freeman. Requirements Validation Through Viewpoint Resolution.IEEE Transactions on
Software Engineering 17, 12 (December 1991), pp. 1253–1269.

[Leite, 1989]
J. C. S. P. Leite. Viewpoint Analysis: A Case Study. InProc. of the Fifth Intl. Workshop on Software Specification
and Design, pp. 111–119, Pittsburgh, PA, 1989.

[Lenzen, 1994]
C. Lenzen. Object Oriented Design: Evaluation, Selection, and Implementation. Master’s thesis, RWTH-Aachen,
Germany, 1994. (in German).

[Loucopoulos and Champion, 1988]
P. Loucopoulos and R. Champion. Knowledge-Based Approach to Requirements Engineering Using Method and
Domain Knowledge.Knowledge-Based Systems 1, 3 (1988).

[Loucopoulos and Karakostas, 1995]
P. Loucopoulos and V. Karakostas.System Requirements Engineering. McGraw-Hill, 1995.

[Lubarset al., 1993]
M. Lubars, C. Potts and C. Richter. A Review of the State of the Practice in Requirements Modeling. InProc. of the
First Intl. Symp. on Requirements Engineering, San Diego, CA, January 1993. IEEE Computer Society Press.

[Luqi, 1993]
Luqi. How to Use Prototyping for Requirements Engineering. InProc. of the First Intl. Symp. on Requirements
Engineering, San Diego, CA, January 1993. IEEE Computer Society Press.

[Macaulay, 1993]
L. Macaulay. Requirements Capture as a Cooperative Activity. InProc. of the First Intl. Symp. on Requirements
Engineering, pp. 174–181, San Diego, CA, January 1993. IEEE Press.

[Maiden and Sutcliffe, 1992]
N. Maiden and A. Sutcliffe. Exploiting Reusable Specifications Through Analogy.Communications of the ACM 35,
4 (1992), pp. 55–64.

36 Chapter 9

[Maiden et al., 1994]
N. Maiden, A. Sutcliffe, D. Till, C. Taylor, H. Nissen, M. Jarke, K. Pohl, R. D¨omges, P. Assenova, J. Bubenko,
B. Wangler, P. Johannesson, G. Spanoudakis, K. Halkia, V. Plihon, C. Rolland, S. Si-Said and G. Grosz. Distributed
Requirements Engineering within NATURE. NATURE-Report, 1994. submitted for publication.

[Maiden et al., 1995]
N. Maiden, P. Assenova, P. Constantopoulos, M. Jarke, P. Johanneson, H. W. Nissen, G. Spanoudakis and A. Sutcliffe.
Computational Mechanisms for Distributed Requirements Engineering. InProc. Seventh Intl. Conf. on Software
Engineering and Knowledge Engineering,, Knowledge Sciences Institute, June, 1995.

[Maiden, 1991]
N. Maiden. Analogy as a Paradigm for Specification Reuse.Software Engineering Journal(1991).

[Maiden, 1992]
N. Maiden.Analogical specification Reuse during Requirements Analysis. PhD thesis, City University London, 1992.

[Mannino and Tseng, 1989]
M. Mannino and V. Tseng. Inferring Database Requirements from Examples in Forms. InProc. of the Seventh Intl.
Conf. on Entity-Relationship Approach, pp. 391–405. Elsevier Publishers B. V. (North-Holland), 1989.

[Martin, 1990]
J. Martin. Information Engineering Books, Volume I-III. Prentice Hall, Englewood Cliffs, NJ, 1990.

[McMenamin and Palmer, 1984]
S. M. McMenamin and J. F. Palmer.Essential System Analysis. Yourdon Press, Prentice Hall, Englewood Cliffs,
NJ, 1984.

[Meyer, 1985]
B. Meyer. On Formalism in Specifications.IEEE Software(January 1985), pp. 6–26.

[Miriyala and Harandi, 1991]
K. Miriyala and M. T. Harandi. Automatic Derivation of Formal Software Specifications From Informal Descriptions.
IEEE Transactions on Software Engineering 17, 10 (October 1991), pp. 1126–1142.

[Monarchi and Puhr, 1992]
D. E. Monarchi and G. I. Puhr. A Research Typology for Object-Oriented Analysis and Design.Communications of
the ACM 35, 9 (September 1992), pp. 35–47.

[Mylopoulos et al., 1990]
J. Mylopoulos, A. Borgida, M. Jarke and M. Koubarakis. Telos: Representing Knowledge about Information Systems.
Transactions on Information Systems 8, 4 (1990), pp. 325–362.

[Nakajima and Davis, 1994]
T. Nakajima and A. M. Davis. Classifying Requirements Errors for Improved SRS Reviews. InProc. of the First
Intl. Workshop on Requirements Engineering: Foundation of Software Quality, pp. 88–100, Utrecht, The Netherlands,
1994. Augustinus-Verlag.

[Nissenet al., 1996]
H. Nissen, M. Jeusfeld, M. Jarke, G. V. Zemanek and H. Huber. Requirements Analysis from Multiple Perspectives:
Experience with Conceptual Modeling Technology.IEEE Software, March(1996).

[Nuseibehet al., 1994]
B. Nuseibeh, J. Kramer and A. Finkelstein. A Framework for Expressing the Relationship Between Mulitple Views in
Requirements Specification.IEEE Transaction of Software Engineering 20, 10 (1994), pp. 760–773.

[Olle et al., 1988]
T. W. Olle, J. Hagelstein, I. G. MacDonald, C. Rolland, H. S. Sol, F. J. V. Assche and A. A. Verrijn-Stuart.Information
Systems Design Methodologies. Addison Wesley, Wokingham, England, 1988.

[Pohl and Haumer, 1995]
K. Pohl and P. Haumer. HYDRA: A Hypertext Model for Structuring Informal Requirements Representations. InProc.
of the Second Intl. Workshop on Requirements Engineering: Foundation of Software Quality (REFSQ’95), June, 12–13,
Jyväskylä, Finland, 1995. Augustinus, Aachen, Germany.

[Pohl and Peters, 1995]
K. Pohl and P. Peters (Eds.).Proc. of the Second Intl. Workshop on Requirements Engineering: Foundation of Software
Quality, Jyväskylä, Finland, 1995. Augustinus-Verlag.

[Pohl et al., 1994a]
K. Pohl, G. Starke and P. Peters (Eds.).Proc. of the First Intl. Workshop on Requirements Engineering: Foundation of
Software Quality, Utrecht, The Netherlands, 1994. Augustinus-Verlag.

[Pohl et al., 1994b]
K. Pohl, G. Starke and P. Peters. REFSQ’94: Workshop Summaries.EMISA Forum, 2 (August 1994), pp. 87–95. also
appeared in ACM-Sigsoft Notes, Jan. 1995.

[Pohl, 1993]
K. Pohl. The Three Dimension of Requirements Engineering. InProc. of the Fifth Intl. Conf. on Advanced Information
Systems Engineering, pp. 275–292, Paris, France, June 1993. Springer-Verlag.

References 37

[Pohl, 1994]
K. Pohl. The Three Dimension of Requirements Engineering: A Framework and its Application.Information Systems
3, 19 (June 1994), pp. 243–258.

[Pohl, 1996a]
K. Pohl. PRO-ART: Enabling Requirements Pre-Traceability. InProc. of the Second Intl. Conf. on Requirements
Engineering (ICRE’96), Colorado Springs, CO, 1996. IEEE Computer Society Press.

[Pohl, 1996b]
K. Pohl. Process Centered Requirements Engineering. RSP marketed by J. Wiley & Sons Ltd., UK, 1996.

[Potts and Bruns, 1988]
C. Potts and G. Bruns. Recording the Reasons for Design Decisions. InProc. of the Tenth Intl. Conf. on Software
Engineering, Singapore, April 1988.

[Pottset al., 1994]
C. Potts, K. Takahashi and A. I. Anton. Inquiry-Based Requirements Analysis.IEEE Software 12, 2 (1994).

[Puncelloet al., 1988]
P. P. Puncello, P. Torrigiani, F. Pietri, R. Burlon, B. Cardile and M. Conti. ASPIS: A Knowledge-Based CASE
Environment.IEEE Software(March 1988), pp. 58–65.

[Ramesh and Dhar, 1992]
B. Ramesh and V. Dhar. Supporting Systems Development by Capturing Deliberations During Requirements
Engineering.IEEE Transactions on Software Engineering 18, 6 (1992), pp. 498–510.

[Ramesh and Edwards, 1993]
B. Ramesh and M. Edwards. Issues in the Development of a Requirements Traceability Model. InProc. of the First
Intl. Symp. on Requirements Engineering, San Diego, CA, January 1993. IEEE Computer Society Press.

[Ramesh, 1993]
B. Ramesh. A Model of Requirements Traceability for Systems Development. Technical report, Naval Postgraduate
School, Monterey, CA, September 1993.

[Reisig, 1991]
W. Reisig.Petrinetze: Eine Einf¨uhrung. Springer Verlag, Studienreihe Informatik, 1991. in German.

[Reubenstein and Waters, 1991]
H. B. Reubenstein and R. C. Waters. The Requirements Apprentice: Automated Assistance for Requirements Acquisition.
IEEE Transactions on Software Engineering 17, 3 (March 1991), pp. 226–240.

[Rolland and Prakash, 1993]
C. Rolland and N. Prakash. Reusable Process Chunks. InProc. of the Intl. Conf. Database and Expert Systems
Applications, Prague, Slovakia, September 1993.

[Rolland and Proix, 1992]
C. Rolland and C. Proix. A Natural Language Approach for Requirements Engineering. InProc. of the Fourth Intl.
Conf. on Advanced Information Systems Engineering, LNCS 593, 1992.

[Romanet al., 1984]
G. C. Roman, M. J. Stucki, W. E. Ball and W. D. Gillett. A Total System Design Framework.IEEE Computer 17,
5 (May 1984), pp. 14–26.

[Roman, 1985]
G. C. Roman. A Taxonomy of Current Issues in Requirements Engineering.IEEE Computer 18, 4 (1985), pp. 14–22.

[Rumbaughet al., 1991]
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen.Object Oriented Modeling and Design. Prentice
Hall, Englewood Cliffs, NJ, 1991.

[Shlaer and Mellor, 1988]
S. Shlaer and M. Mellor.Object Oriented System Analysis. Prentice Hall, Englewood Cliffs, NJ, 1988.

[Smith and Smith, 1977]
J. M. Smith and D. C. P. Smith. Database Abstractions: Aggregation and Generalization.ACM Trans. on Database
Systems 2, 2 (1977), pp. 105–133.

[Sommervilleet al., 1993]
I. Sommerville, T. Rodden, P. Sawyer, R. Bentley and M. Twidale. Integrating Ethnography into the Requirements
Engineering Process. InProc. of the First Intl. Symp. of Requirements Engineering, pp. 165–173, San Diego, CA, 1993.
IEEE Computer Society Press.

[Spivey, 1990]
J. M. Spivey. An introduction to Z and Formal Specifications.Software Engineering Journal 4, 1 (1990), pp. 40–50.

[Stein, 1994]
W. Stein. Objektorientierte Analysemethoden: Vergleich, Bewertung, Auswahl. BI Wissenschaftsverlag, 1994. (in
German).

38 Chapter 9

[Sutcliffe and Maiden, 1990]
A. Sutcliffe and N. Maiden. Software Reusability: Delivering Productivity Gains or Short Cuts. InProc. of the
INTERACT, pp. 948–956. Elsevier B. V. (North Holland), 1990.

[Sutcliffe, 1991]
A. Sutcliffe. Object Oriented Systems Analysis: The Abstract Question. InProc. of the IFIP WG 8.1 Conf. on the Object
Oriented Approach in Information Systems, Quebec City, Canada, 1991.

[Svoboda, 1990]
C. P. Svoboda. Structured Analysis. In R. H. Thayer and M. Dorfman (Eds.),Systems and Software Requirements
Engineering, pp. 218–227. IEEE Computer Society Press — Tutorial, 1990.

[Teichroew and Hershey, 1977]
D. Teichroew and E. A. Hershey. PSL/PSA: A Computer-Aided Technique for Structured Documentation and Analysis
of Information Processing Systems.IEEE Transaction of Software Engineering 1, 3 (1977), pp. 41–48.

[TSE, 1977]
Special Issue on Requirements Engineering.IEEE Transaction on Software Engineering 1, 3 (1977).

[Ward, 1986]
P. T. Ward. The Transformation Schema: An Extension of Data Flow Diagram to Represent Control and Timing.IEEE
Transaction on Software Engineering 12, 2 (1986), pp. 198–210.

[Wassermanet al., 1986]
A. I. Wasserman, P. A. Pircher, D. T. Shewmake and M. L. Kersten. Developing Interactive Information Systems with
the User Software Engineering Methodology.IEEE Transactions of Software Engineering 12, 2 (1986), pp. 326–345.

[Wing, 1987]
J. M. Wing. Writing Larch Interface Language Specification.IEEE Transactions on Programming Languages and
Systems(January 1987), pp. 1–24.

[Wing, 1990]
J. M. Wing. A Specifier’s Introduction to Formal Methods.IEEE Computer 23, 9 (September 1990), pp. 8–24.

[Wright, 1991]
S. Wright. Requirements Traceability – What? Why? and How? InProc. of the Colloquium on Tools and Techniques for
Maintaining Traceability during Design, pp. 1–2, London, UK, December 1991. IEE Professional Group C1 (Software
Engineering), IEE, London, UK.

[Yourdon, 1989]
E. Yourdon.Modern Structured Analysis. Prentice Hall, Englewood Cliffs, NJ, 1989.

[Zave, 1990]
P. Zave. A Comparison of the Major Approaches to Software Specification and Design. In R. H. Thayer and M. Dorfman
(Eds.),Systems and Software Requirements Engineering, pp. 197–199. IEEE Computer Society Press — Tutorial, 1990.

[Zave, 1991]
P. Zave. An Insider’s Evaluation of PAISLey.IEEE Transactions on Software Engineering 17, 3 (March 1991),
pp. 212–225.

Basic Readings for Further Studies 39

10 Basic Readings for Further Studies

Alan M. Davis: “Software Requirements: Objects, Functions, & States”, Prentice Hall, New Jersey,
1993, (2nd Edition).

This book covers an excellent introduction to the thoughts of requirements engineering and discusses
most of the major methods and approaches. It also contains on of the largest annotated bibliography
on requirements engineering (over 700 entries). Good for novice and as basis for teaching material.

Merlin Dorfman and Richard H. Thayer:“Standards, Guidelines and Examples on System and Software
Requirements Engineering”, IEEE Computer Society Press – Tutorial, 1990.

This tutorial provides a comprehensive selection of the existing standards and guidelines for require-
ments specifications. Besides defining the structure and the content of a “good” specification it gives
valuable hints in developing and maintaining the requirements documents.

Donald C. Gause and Gerald M. Weinberg:“Exploring Requirements: Quality Before Design”, Dorset
House Publishing, New York, 1989

In contrast to most other contributions, this book deals mainly with the social and cognitive aspects of
requirements engineering. Many useful hints and advises are given on how to successfully perform
requirements engineering in practice.

Pericles Loucopoulos and Vassilios Karakostas:“System Requirements Engineering”, McGraw-Hill,
1995.

The book is organized along three concurrent tasks of requirements engineering: elicitation, doc-
umentation, and validation/verification. These task are not described from a methodical viewpoint
and therefore “cookbook” solutions are avoided. Instead the important issues, models, and tools
applicable for each task are discussed.

Klaus Pohl: “Process Centered Requirements Engineering”, RSP distributed by John Wiley & Sons,
UK, 1996.

In this book a comprehensive framework for requirements pre-traceability and experience based
process (method) improvement is proposed. The applicability of the framework is demonstrated
by a process centered requirements engineering environment, called PRO-ART. PRO-ART records
the traces in a central process repository, offers interactive and situated methodical advise to the
requirements engineer, and supports consistent change integration.

Richard H. Thayer and M. Dorfman:“Systems and Software Requirements Engineering”, IEEE Com-
puter Society Press – Tutorial, 1990.

This tutorial covers a cohesive collection of papers which touch on almost all important aspects of
requirements engineering. Enriched by the case studies on real world experiences in requirements
engineering this tutorial offers a good overview on the field.

40 Chapter 10

Recent research contributions to the field of requirements engineering can be found in:

• IEEE Software, March, 1996
• Proceedings of the Second Intl. Conf. on Requirements Engineering (ICRE’96), IEEE Computer

Society Press, 1996
• Proceedings of the Second IEEE Intl. Symposium on Requirements Engineering (RE’95),

IEEE Computer Society Press; 1995
• Proceedings of the Second Intl. Workshop on Requirements Engineering: Foundation for

Software Quality (REFSQ’95), Augustinus Verlag, Aachen, Germany, 1995
• IEEE Software, March, 1994
• Proceedings of the First Intl. Conf. on Requirements Engineering (ICRE’94), IEEE Computer

Society Press, 1994
• Proceedings of the First Intl. Workshop on Requirements Engineering: Foundation for Software

Quality (REFSQ’94), Augustinus Verlag, Aachen, Germany, 1994
• Proceedings of the First IEEE Intl. Symposium on Requirements Engineering (RE’93), IEEE

Computer Society Press, 1993
• IEEE Transaction on Software Engineering, No. 3, Vol. 17, 1991

