
CREWS Report 99-15

Automatically Structuring Requirement Scenarios

Andreas Becks, Jörg Köller

Lehrstuhl für Informatik V, RWTH Aachen, Ahornstraße 55, 52056 Aachen, Germany
phone: +49 (0)241 21 516

{becks, koeller}@informatik.rwth-aachen.de

1

Automatically Structuring Textual Requirement Scenarios

Andreas Becks, Jörg Köller

Lehrstuhl für Informatik V, RWTH Aachen, Ahornstraße 55, 52056 Aachen, Germany
{becks, koeller}@informatik.rwth-aachen.de

Abstract. Scenarios are valuable for supporting communication among system developers in the
initial phases of requirements engineering. But the problem of how to fruitfully deal with large
informal or semi-formal scenario collections consisting of weakly structured texts is still a key
research issue. In this paper we report on the application of a novel approach for automatically
structuring textual document collections to scenario management. We discuss how structuring
scenarios can help to support the analysis and maintenance of scenario collections. To evaluate this
approach we present a case study within the CAPE-OPEN project which is concerned with a
collaborative effort of standardizing simulator software for chemical engineering.

1� Introduction

Scenarios, in software and systems engineering, describe processes and interactions related to a system
under examination. They contain situations which reasonably might occur. It is commonly accepted that
developing scenarios is a valuable approach for supporting communication in the initial phases of system
development and, furthermore, that scenarios are a key element of change management [20]. The Use
Case driven scenario method by Ivar Jacobson [9] has increased the interest in scenario management
especially in object-oriented software design. A Use Case is a semi-formal textual description of an
action that is performed by an external actor on a specific part of a system. The actor can be a user or
another module or object of the system. The interaction between system and actor and the subsequent
actions are described. This description may include, for example, messages passed to the system or in- or
output from or to the actor. Hence, the Use Case is attempting to capture the logical interactions rather
than the physical appearance of the system. A Use Case Model finally consists of a collection of
interrelated Use Cases. There is a UML standard notation for Use Cases [17].

There are still a lot of important research questions regarding the complex and interdisciplinary
scenario approach [11]. Among them, the question of how to deal with large collections of weakly
structured informal requirement scenarios – such as Use Cases – is crucial. Typically, scenarios evolve
over a long period of a system’s life cycle and, thus, the problem of maintaining them in a repository
arises. Problems coming along in this context originate from the following facets of scenario
management:

•� Collaborative aspect: In many projects the production of scenarios is a cooperative and distributed
venture. In particular in world-wide projects, such as standardization efforts, the cooperative
aspect has a very special weight (for a detailed experience report regarding simulator
standardization in the chemical industries cf. [10]). In addition, the growing importance of the
World Wide Web as a global market place accelerates the world-wide distributed production of
software. Teams of developers working in different places of the earth meet in virtual workrooms
and share their ideas and knowledge. There are several problems coming along with this
collaborative approach. Important in the Use Case context is that many of the usage situations
described by different authors are more or less similar and can be found in several and rather

2

different contexts. Sometimes these scenarios contain contradictory statements. Thus, it is very
import to synchronize the knowledge elicited by distributed groups and to detect those implicit and
hidden relationships in order to recognize (partial) redundancy and avoid inconsistency.

•� Analysis aspect: In practice the number of scenarios worked out often exceeds a manually
manageable size. Thus, it often turns out that it is very difficult to elicit semantic relationships
between single scenarios beyond an a priori defined structure. To better understand the interplay
among system components and to effectively discover the user needs implied in the stories the Use
Cases tell it is necessary to gain an intuitive overview about the inherent semantic structure of the
Use Case collection. Such a structure would offer much benefit for the interrelation and
condensing process of scenario management.

•� Maintenance aspect: During a system’s lifecycle the number of interesting scenarios typically
grows over a long period of time. Complex situation descriptions, possibly considered from
different viewpoints, are added to the initial collection of scenarios. To interrelate and integrate
these cases with the existing ones an intelligent repository would be of high value which
automatically correlates semantically similar scenarios.

In this work we face the problems sketched above. The goal is to provide a means for assisting the
analysis, correlation and maintenance of complex, collaboratively produced informal scenarios. The idea
is to produce a semantically structured overview about large scenario collections. More precisely, we
propose to automatically compute a semantic map of textual and informal requirement documents which
exposes the semantic structure of the collection and thus helps to understand relationships among single
texts. As documents are added to the repository, the map arranges them close to semantically relating
scenarios. We will apply this approach to Use Cases generated in the CAPE-OPEN project (cf. section 4).

The remainder of this paper is organized as follows: After discussing some related work the notion of
semantic structuring and document maps will be introduced, followed by a brief description of techniques
applied for generating document maps. Section 4 evaluates the application of document maps to software
engineering in the context of a real-world usage experience.

2� Related Work

Due to the fact that Use Cases are textual documents it seems likely that the application of techniques
from information retrieval can help to overcome the problems discussed in the last section. Clearly, query
based retrieval techniques [13] are only of limited use for the complex analysis of scenario collections
since key word searches only poorly support the process of understanding a collection’s structure. A more
promising approach is browsing through a collection of informal documents which requires some
elaborated preprocessing. In [2] a method for automatically constructing hypertexts has been introduced.
Its benefit for analyzing and maintaining scenario collections has to be doubted since the engineers can
easily get lost in the complex linking structure of hypertext. An intuitive overview about Use Case
correlation remains missing. Other approaches from information retrieval are concerned with visualizing
the similarity of documents within a collection [1, 6]. Though interesting in this context, the
expressiveness and adaptability of these approaches is too limited to offer a more intuitive insight in the
collection’s semantic structure.

Besides approaches from information retrieval some work concerning structuring and retrieving
scenarios and software components, respectively, was conducted in the fields of requirements and
software engineering. Regarding the search in repositories techniques for both specification-based and
text description-based retrieval and browsing in software libraries have been developed [7, 8, 15]. Due to
the highly specialized focus of these approaches they cannot be applied for searching in informal scenario

3

repositories. In [16] a hypertext model for structuring informal requirement representations (e.g.
multimedia documents) is proposed. This model aims at providing a tool for keeping the whole
requirements engineering process traceable during a long-termed process of decision and change
management. However, quite clearly, the initial phase of projects where informal requirement documents
are typically designed in a brainstorming fashion is not supported by a (manually) traceability structuring.

To conclude, the problem of automatically structuring large informal scenario collections to support
their analysis and maintenance has not yet been addressed. In [3] we have proposed a conceptual schema
which combines techniques from information retrieval with neural network learning and powerful
visualization techniques adopted from data mining. Furthermore, this framework allows the integration of
domain knowledge to improve the quality of the computed semantic structures. Originally developed for
knowledge management in a technical environment, in this paper we report on the application of our new
approach for intuitively visualizing the semantic structure of scenario collections.

3� Semantic Maps of Textual Requirement Scenarios

The Concept of Document Maps

In [4] we have proposed the concept of document maps as an interface for specialized branches of digital
libraries. This concept will be adopted for software engineering purposes. The main idea of a document
map of Use Cases is that it visualizes the semantic structure of the Use Case collection: During a process
of automatic semantic structuring a grouping of similar documents is worked out which points out
relationships of the collections’ documents. The map, then, serves as a basis for an interactive and
intuitive interface for exploring the Use Cases.

The Use Case map can be seen as a ‘landscape of documents’ which expressively presents the structure
of the document collection (Figure 1). The single Use Cases are represented as points in the map and
similar documents are grouped as neighbored points. Furthermore, the shading of the map implies
distance information: The degree of brightness corresponds to the degree of distance where dark areas
mean high distances between documents. To use an intuitive metaphor think of the map as a landscape of
‘mountains’ and ‘valleys’ where ‘valleys of similar Use Cases’ are separated by dark borders or
‘mountains’: the higher the mountain the darker the border and, thus, the greater the dissimilarity of
documents or groups of documents, respectively.

For interacting with the map the requirement engineer can mark an area and zoom into the specified
field. The documents within the fields are described by their titles. Clicking on a point in the map yields
the corresponding document. This allows the user to interactively explore the scenarios and to learn about
the inherent structure of the Use Case collection, i.e. to identify relationships between single Use Cases
and groups of scenarios. In particular, the following facets of scenario management are supported:

•� Collaborative aspect: The map helps to identify similarities among different scenarios. By
inspecting close relationships which are unexpected by the engineers (partial) redundancy and
inconsistency can be detected much easier than by a manual analysis of the Use Case collection.
For example, a specific situation may be described by more than one author by mistake. The
double description may contain contradictory statements. By relating the corresponding scenarios
the map aids the synchronization of knowledge elicited by collaborative working groups.

•� Analysis aspect: Similarly, the map supports the process of analysing the collection. If, for
example, different scenarios contain similar or identical sub-cases, the respective documents will

4

tend to be located near each other. Thus, the sub-case can be sourced out. Vice versa, highly
similar situations can be combined if desired.

•� Maintenance aspect: The ‘Use Case landscape’ can serve as an intuitive retrieval interface for a
repository of scenarios. Semantically similar cases can be found close together and, thus, the user
can browse across groups of related scenarios, exploring the collection and searching for
documents.

A more detailed report on the application of Use Case maps can be found in the section 4. Now, we
briefly present how Use Case landscapes are generated.

Figure 1: A map of Use Cases and possible interaction. The Use Cases are represented as points in the map, described
by their titles. By clicking on a dot the user receives the corresponding Use Case.

The Modular Scheme of Semantic Structuring

The approach of semantic structuring and document maps has been originally developed for knowledge
management and retrieval of technical and scientific documents [3, 4]. To reliably asses similarities
across documents it is crucial to look at the different document types: Use Cases present a process by
describing associated actions chronologically. Typically, actions and objects are clearly pointed out by
using unequivocal terms and key words. These characteristics allow the application of statistical
information retrieval models for assessing the similarity of the documents. In contrast, a comparison of
management documents or medical document abstracts is more sophisticated. In the latter case there are
fine granular differences in the meaning of key terms and deep relationships between concepts, so that a
high quality similarity assessment should be performed using knowledge based techniques. Due to this
varying ‘intensity of knowledge’ which is necessary to asses similarities across documents we have
proposed a framework which enables the integration of both symbolic knowledge representation
techniques and statistical document retrieval methods with powerful visualization approaches. In this
work we apply this framework to automatically compute the inherent structure of Use Case collections.
Due to the scope of this paper we restrict the technical consideration to a brief sketch. A detailed

5

description of the framework and the applied techniques can be found in [3]. Figure 2 depicts the process
of generating a Use Case map which consists of two major steps: analyzing the documents’ contents (step
1) and visualizing the collection’s structure (step 2). These two steps have to be connected by an
appropriate interface.

Figure 2: The process of calculating a Use Case map

Step 1: The input to the process pipeline is a collection of Use Cases. In the Use Case application the
first component is realized using the vector space model of information retrieval [18]: First, the texts are
preprocessed linguistically, i.e. so-called stop words (conjunctions, articles and fillers) are removed and
the remaining terms are reduced to their stem. Each Use Case can then be indexed by counting the
relative frequency (weight) of the resulting terms. Formally, the documents are described by (very high
dimensional) term vectors consisting of real-valued components which describe the weight of an indexing
term. Based on this vector representation a measure of (dis-) similarity can be applied, such as the well-
known cosine measure or the Euclidian distance.

Interface: The next step includes the analysis and visualization of the document collection’s structure.
Unfortunately, most visualization techniques are not able to handle extremely high-dimensional input
spaces as delivered by term vector indexing. Furthermore, to allow the incorporation of symbolic
document indexing and comparison techniques a common interface to visualization methods was defined.
The desired interface is a multi-dimensional space with a moderate number of dimensions which reflects
the documents’ (dis-) similarity in its topology. Such a space can be generated using the technique of
Multi-Dimensional Scaling [14] where objects are mapped into m-space – where m is user-defined and of
moderate size – minimizing the relative error of the distances in m-space regarding the ‘true’ (given)
distances of the objects.

Step 2: The final step of the structuring process is performed by a self-organizing feature map [12]
which “learns” the structure of the Use Case collection. This single-layered neural network maps the
multi-dimensional document vectors, representing the Use Cases, to a 2-dimensional grid of units,
preserving most of the topological information. The mapping is realized by an unsupervised learning
algorithm which orders the network’s weight vectors according to the distance of the corresponding
document vectors. After the learning process the topological information encoded in the network has to
be extracted. This is realized by applying a visualization technique proposed in [19] which assigns dark
shades of grey to units of the grid representing large distances between documents and bright colors to
units representing high similarity, respectively. The result of this process is the desired map of Use Cases.

6

4� The Application of Document Maps in Software Engineering – A Case Study

Now the application of the document map concept for software engineering projects will be discussed.
We use the Use Cases generated during the CAPE-OPEN project as a real-world example to present the
benefits of this approach. CAPE-OPEN is an EU funded project with participants from the chemical
industry (BASF, Bayer, BP, DuPont, ELF, ICI), software vendors (AspenTech, HyproTech, QuantiSci)
and universities (Imperial College London, INPT Toulouse, RWTH Aachen) under co-ordination of the
French process licensing company IFP. It aims at defining a new standard for high-performance process
simulation software. Process simulators are highly sophisticated pieces of software designed for creating
mathematical models of manufacturing facilities for processing and/or transforming materials (chemical,
oil, food). These tools have become vitally important for chemical engineering companies for several
reasons: The market is rapidly growing while innovation cycles are shrinking. This pressure is
strengthened by a growing sensitivity for environmental issues.

The process simulators that are currently in use are closed monolithic applications. They are quite
inflexible when it comes to integrating new components. Another drawback of this situation is that it is
almost impossible to combine modules from different vendors into one single simulator. In practice, such
a combination is of high interest due to the limitations of individual products. Therefore, the CAPE-
OPEN standard aims at creating a framework for open component based simulation software. To identify
the components in such an open simulator the Use Case approach was applied.

Before going into detail, we will give a brief introduction to the subsystems of a process simulator.
This will render a basis for the discussion of the Use Case clustering. We will discuss the CAPE-OPEN
Use Case map on a general level before selecting a specific area and performing a more detailed analysis.

A Conceptual View on Process Simulators

Simulators differ widely in architecture and implementation but all have common functionality imposed
by the underlying modelling tasks which they address. This functionality can be summarised in terms of
four key ‘conceptual’ component types:

•� Simulator executive: This component is the simulator’s core as it controls the set-up and execution
of a simulation. It is responsible for installing other components, registering them in a repository,
managing interactions with users, accessing and storing data, and, finally, for reporting and
analyzing simulation calculations. Furthermore, it is responsible for a consistent flowsheet set-up,
error checking and preparatory work on solving it (graph analysis).

•� Unit Operation Modules: These components represent the behavior of physical process steps (e.g.
a mixer or a reactor). They are linked to the simulation flowsheet which represents an abstraction
of the plant structure. They compute the quality of a material stream of their outlet if the according
information is given at the inlet. The simulation models are assembled from predefined libraries of
unit operation modules into a flowsheet which represents the overall plant and is handled by the
simulator executive.

•� 3K\VLFDO�SURSHUWLHV�SDFNDJHV��$Q� LPSRUWDQW� IXQFWLRQDOLW\�RI� D�SURFHVV� VLPXODWRU� LV� LWV� DELOLW\� WR
FDOFXODWH� WKHUPRG\QDPLF� DQG� SK\VLFDO� SURSHUWLHV� �H�J�� GHQVLW\� RU� YLVFRVLW\�� RI� PDWHULDOV�
7KHUPRG\QDPLF� SDFNDJHV� DUH� FRPSOH[� DQG� KLJKO\� RSWLPL]HG� SLHFHV� RI� VRIWZDUH�� 6LQFH� WKH\
SURYLGH� WKH� EDVLF� FDOFXODWLRQV� IRU� DOO� XQLW� RSHUDWLRQV�� WKH� RYHUDOO� SHUIRUPDQFH� DQG� TXDOLW\� RI� D
VLPXODWRU�VWURQJO\�GHSHQGV�RQ�LWV�WKHUPRG\QDPLF�SDFNDJH��,W�LV�HVWLPDWHG�WKDW�XS�WR�����RI� WKH
VLPXODWLRQ�WLPH�LV�VSHQW�IRU�WKHVH�FDOFXODWLRQV�>�@�

7

•� 1XPHULFDO�VROYHUV��7KLV�LQFOXGHV�ERWK�WKH�VSHFLDOLVHG�PDWKHPDWLFDO�PHWKRGV�XVHG�WR�HYDOXDWH�WKH
HTXDWLRQV�WKDW�GHVFULEH�D�XQLW�RSHUDWLRQ��XQLW�VROYLQJ��DQG�WKH�PHWKRGV�XVHG�WR�HYDOXDWH�WKH�RYHUDOO
IORZVKHHW��IORZVKHHW�VROYLQJ��

7KLV�FRDUVH�VWUXFWXUH�RI�D�SURFHVV�VLPXODWRU�ZDV�WKH�VWDUWLQJ�SRLQW�IRU�WKH�JHQHUDWLRQ�RI�WKH�8VH�&DVHV
ZKLFK��RI�FRXUVH��VKRXOG�\LHOG�D�ILQHU�VXEGLYLVLRQ�RI�D�VLPXODWRUV�IXQFWLRQDOLW\�

6LPXODWRU�3DFNDJH

5XQWLPH�3DFNDJH

)ORZVKHHW�6HWXS�3DFNDJH

3K\VLFDO�3URSHUWLHV�6\VWHP

&RPSRQHQW�,QVWDOODWLRQ�3DFNDJH

3HWUROHXP�3VHXGR�&RPSRQHQWV

1HXWUDO�)LOH�,QWHUIDFH

3K\VLFDO�3URSHUWLHV

&UHDWLQJ�D�)ORZVKHHW

5XQQLQJ�D�)ORZVKHHW

/RRNLQJ�DW�5HVXOWV

8QLW�8VH�&DVHV

1XPHULF�&RQILJXUDWLRQ

6ROYHU�,QLWLDOLVDWLRQ

6ROYHU�&RPSXWLQJ

0RUH�&RPSOH[�8VH�&DVHV

6ROYHU�8VH�&DVHV

*$7�&RQILJXUDWLRQ

*$7�,QLWLDOLVDWLRQ

*$7�8VH�&DVHV

&$3(�23(1�8VH�&DVHV

Figure 3: Hand-crafted Use Case Hierarchy for CAPE-OPEN

Use Cases in CAPE OPEN

Use Cases are used in CAPE-OPEN to represent the requirements for the three most important
subsystems of a process simulator namely Unit Operations, Physical Properties and Numerical solvers.
Because it is one goal of the new standard to reduce the size of the executive no Use Cases were created
for it. Nevertheless, an important feature of a simulator executive had to be taken care of: graph analysis.
A graph analysis tool (GAT) checks how a flowsheet can be solved by determining how to break up
cycles in it.

Up to now more than 160 Use Cases have been developed in CAPE-OPEN. The process of developing
these Use Cases was distributed and carried out by people coming from different organizations. Hence,
there was the permanent danger of producing redundancies and inconsistencies. To overcome this
problem, all Use Cases were agreed upon by the consortium and finally put into the hierarchy. In the next
section we will compare this hand crafted structure with the contents of the automatically generated
semantic maps.

A Semantic Map of Use Cases

Looking at the ‘Use Case landscape’ (figure 4) the user can identify four major areas, each of which is
subdivided into smaller areas containing sub-groups of documents. Figure 5 presents the map of Use
Cases where the document representatives are marked by an icon. Each icon type identifies one of the
sub-groups in the Use Case hierarchy and every icon represents one Use Case belonging to the
corresponding sub-group. The four areas are separated by ‘deep’ dark ditches reflecting the a priori
subdivision.

Taking a closer look we can identify the physical properties Use Cases in the north-western area of the
map. The numerical solver Use Cases are located in the center and the GAT Use Cases can be found in

8

the south-western sector. Finally, the unit operation Use Cases are on the eastern edge of the map. Apart
from this general view there are some areas, where Use Cases of different type are mixed. This expresses
an interrelation between the sub-groups of the manually generated hierarchy thereby yielding additional
information. We can derive from this that the four main groups are not standalone but are somehow
connected. This is an advantage of the semantic map over the pure hierarchy and we will now explain
where these connections originate from.

First, we look at the middle of the northern edge of the map. There we have a mixture of properties
package and unit operation Use Cases. As mentioned above, the routines offered by a physical properties
package form the basis of the calculations performed in a unit. The mixture of both Use Case types
reflects this fact. In particular, these Use Cases describe on the one hand that a unit calls a calculation
routine (e.g. calculate pressure, temperature,…) within a properties package. The according properties
package’s Use Cases describe a function call from a unit.

Now we consider the north-eastern corner of the map. Here, unit Use Cases and numerical solver Use
Cases are mixed up. Unit operations do not only perform pure thermodynamical calculations carried out
by a properties package but sometimes have solve difficult equation systems. This is the connection
between both Use Case types. The unit calls the numerical solver to create an equation system, chooses
some initial values and starts the solving process. On the other side the solver accepts these calls and
returns the values of it’s calculations. This is all reflected by the conglomerate of different Use Cases in
the north-eastern corner.

Having explained what additional information about the interrelation of different Use Case types can
be found in the semantic map we will now investigate how the sub-groups in the hand crafted Use Case
hierarchy are reflected in the semantic map. Therefore, we will take a closer look at unit Use Cases in the
eastern area. Recall that we have three sub-groups of unit Use Cases: The Creating a Flowsheet group
tackles how a unit is created, deleted and initialized and how it is combined with other units to model a
process. We can see the creation / deletion Use Cases in Figure 4 (Save, Restore, Create, Delete Unit).
The initialization is handled in Set Unit Specific Data. The combination with other units is done via so
called ports and via the flowsheet. The corresponding Use Cases are Delete Unit From Flowsheet, Delete
Existing Port and other Use Cases dealing with ports and flowsheets which are not marked in Figure 4.
The Looking at Results sub-group can be found in the Creating a Flowsheet group. Because we have only
one Use Case in this sub-group we cannot derive any relevant semantic information from its position.

Looking at the Running a Flowsheet sub-group we can make an interesting observation: There are two
strictly separated clusters of Use Cases in the north-eastern and the south-eastern corner of the map. The
northern Use Cases are mixed with the solver Use Cases for reasons we have explained above. These unit
Use Cases are mainly concerned with creating and initializing equation systems that are needed internally
in the unit. The southern unit Use Cases tackle how data from the results of these internal calculations is
communicated to other units. This information is needed to solve the overall flowsheet, i.e. running the
simulation on flowsheet level. This also explains that these unit Use Cases are located nearby the GAT
Use Cases which form the basis of the overall flowsheet solving. Hence, we have found an additional
subdivision of a manually generated sub-group which we could call Internal Unit Solving and Flowsheet
Solving.

 To sum up, it turns out that the automatically derived Use Case landscape reflects the expert structure
– a good validation of the approach. Furthermore, it provides additional information about the sub-groups
themselves and their interrelations. One the one hand there are areas where different Use Case types are
mixed which we can interpret as Use Case interrelations. We have verified these connections and
explained them. On the other hand we have discovered that a sub-group could have been split up into two
new groups because the corresponding Use Cases were located in two separated clusters. The semantic
justification for this has been shown.

The calculation of the map required 14 seconds for preprocessing the documents and creating the
semantic documents space and 1 minute 25 seconds for training and visualizing the neural network on a

9

Pentium II 450 MHz computer with 128 MB RAM. Hence, it would have been possible to use this
clustering algorithm in the process of setting up a hierarchy. It could have formed a basis and an aid for
the people who have created the structure shown in figure 3.

Figure 4: Use Case landscape. The detail shows a part of the ‘Unit’ Use Case group, describing physical processing
unit operations. Whereas the inscribed documents at the top are concerned with calculation matters the sub-group
below deals with handling ‘unit’ software objects.

Figure 5: Landscape of Use Cases (left), marked by their membership in a manually created expert structure (right).

10

5� Conclusion and Outlook

Scenarios are of high value for supporting communication among system developers in the initial phases
of requirements engineering. Furthermore, they are seen as key element for change management. A
crucial point in this context is handling large collections of weakly structured textual scenarios such as
Use Cases. In this paper we have addressed some problems coming along with the scenario approach,
namely synchronizing knowledge elicited by collaborative working groups, analyzing and condensing
informal scenarios, and maintaining them in a growing repository.

We applied our method of automatically structuring text documents to informal scenario collections
and evaluated the approach using Use Cases from the CAPE-OPEN project. It turned out that the
automatically derived structure reflects the main groups of the manually generated hierarchy.
Furthermore, the system engineers gain additional insight in the scenario interrelations. The plausibility of
the computed structure was verified by comparing the semantics of the textual scenarios with the
information extractable from the document map. Thus, our approach has proven to be a valuable support
for analyzing and condensing scenario collections in real-world problems.

Reconsidering the problems of distributed scenario generation and maintenance the Use Case map can
be used as a tool integrated in a centralized repository. There, the map gives scenario developers hints
regarding the correlation of newly generated scenarios within the general context. Additionally, it aids the
author in avoiding inconsistency and redundancy of his descriptions.

Of course, the map alone offers important but limited functionality. The process of detecting
inconsistencies and redundancies is aided by the map but the finer work of figuring out why unexpected
similarities have occurred has still to be done manually. Therefore, suitable inference techniques have to
be developed which require a translation of natural language Use Cases into a more formal representation
and need to be supported by domain semantics.

Our future work includes the provision and integration of explicit defined domain semantics. This
allows, for example, to define semantic relationships between simulator components which are then
considered by the automatic structuring process for further enhancement of the derived structures.
Furthermore, we intend to incorporate “views” on document collections so that the structuring can be
adjusted respecting a focus of interest.

Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in its
focused doctoral programme on Informatics and Engineering at RWTH Aachen. Furthermore, parts of
this work were supported by the Commission of the European Union under BRITE-EURAM project
CAPE-OPEN. The authors wish to thank J. Rack for extensive and fruitful discussions on the subject.

6� References

1.� Allan, James, Leouski, Anton V., Swan, Russell C. Interactive Cluster Visualization for Information Retrieval.
Tech. Rep. IR-116, Center for Intelligent Information Retrieval, University of Massachusetts, 1997

2.� Allan, James. Automatic Hypertext Construction, PhD Thesis, Cornell University, 1995
3.� Becks, A.; Sklorz, S., Jarke, M.: Document Maps: Semantic Structuring of Technical Document Collections.

Crews Report 99-05, RWTH Aachen, 1999. Available at http://SunSITE.Informatik.RWTH-
Aachen.DE/CREWS/reports.htm

4.� Becks, A.; Sklorz, S.; Tresp, C.: Semantic Structuring and Visual Querying of Document Abstracts in Digital
Libraries. In: Lecture Notes in Computer Science 1513: Proceedings of the Second European Conference on
Research and Advanced Technology for Digital Libraries, Crete, Greece, 1998, pp. 443-458

5.� Brice A, Johns W R. Open Process Simulation. OO-CAPE report. QuantiSci report IC4381-2, 1995

11

6.� Chalmers, Matthew, Chitson, Paul. Bead: Explorations in Information Visualization. In: Proceedings of the 15th

Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
Copenhagen, 1992, pp. 330-337

7.� Fischer, Bernd. Specification-Based Browsing of Software Component Libraries. Proc. of ASE-98: The 13th

IEEE Conf. on Automated Software Engineering, Honolulu, Hawaii, 1998
8.� Girardi, M.R., Ibrahim, B. An approach to improve the effectiveness of software retrieval. Proceedings of the

3rd Irvine Software Symposium, Irvine, CA, 1993
9.� Jacobson, Ivar; Christerson, Magnus; Jonsson, Patrik; Övergaard, G.: Object-Oriented Software Engineering: A

Use Case Driven Approach, Addison-Wesley, Reading, 1992
10.� Jarke, M.; Becks, A.; Köller, J.; Tresp, C; Braunschweig, B.: Designing Standards for Open Simulation

Environments in the Chemical Industries: A Computer-Supported Use-Case Approach. To appear in: Systems
Engineering - Sharing the Future: Proceedings of the Ninth Annual International Symposium of the International
Council on Systems Engineering, Brighton, England, June ,1999

11.� Jarke, M.; Tung Bui, X.; Carroll, J. M. Scenario Management: An Interdisciplinary Approach. Requirements
Engineering 3:155–173, 1998

12.� Kohonen, T.: Self-Organizing Maps. Springer, Berlin, 2nd Edition (1995)
13.� Korfhage, Robert. Information Storage and Retrieval. Wiley & Sons, New York, 1997
14.� Kruskal, J.B.,Wish, M.: Multidimensional scaling. SAGE publications, Beverly Hills, 1978
15.� Maarek, Y.; Berry, D., Kaiser, G. An Information Retrieval Approach for Automatically Constructing Software

Libraries. IEEE Transactions on Software Engineering, 17(8), pp. 800–813, 1991
16.� Pohl, K.; Haumer, P. HYDRA: A Hypertext Model for Structuring Informal Requirements Representations.

Proc. of the 2nd Int. Workshop on Requirements Engineering: Foundations of Software Quality (REFSQ 95),
Jyvskyl, Finnland, 1995

17.� Rumbaugh, J.;Jacobsen, I. and Booch,G., Unified Modeling Language Reference Manual, Addison Wesley,
1997.

18.� Salton, G. (Ed.): The SMART Retrieval System – Experiments in Automatic Document Processing. Prentice
Hall, New Jersey, 1971

19.� Sklorz, S.: A Method for Data Analysis based on Self Organizing Feature Maps., Proc. of the World Automation
Congress (WAC ‘96), Vol.5 TSI Press Series, 611-616, ISBN 1-889335-02-9, Albuquerque, USA (1996)

20.� Weidenhaupt, Klaus; Pohl, Klaus; Jarke, Matthias; Haumer, Peter: Scenarios in System Development: Current
Practice. IEEE Software, March/April 1998

