
CREWS Report Series 98-15

From Early to Late Formal Requirements: a
Process-Control Case Study

Eric Dubois1, Eric Yu2 and Michaël Petit1

1 University of Namur, Belgium,fedu,mpeg@info.fundp.ac.be
2 University of Toronto, Ontario, Canada, eric@cs.toronto.edu

Published in the Proceedings of IWSSD98, April 1998 Isobe, Japan.

From Early to Late Formal Requirements:

a Process-Control Case Study�y

Eric Dubois1, Eric Yu2 and Michaël Petit1
1 University of Namur, Belgium,fedu,mpeg@info.fundp.ac.be
2 University of Toronto, Ontario, Canada, eric@cs.toronto.edu

Abstract
In this paper, we consider three distinct and connected

modelling activities at the Requirements Engineering (RE)
level. Within the context of reactive systems, we suggest
how these three activities can be supported by the use
of appropriate formal languages, namely Kaos,
and Timed Automata. The i* framework is used for link-
ing the various formal models and for providing a “high
level” model in terms of which organizational issues are
captured. A small process control example is used to illus-
trate the proposed approach.

1 Introduction
For a long time, requirements analysis has been consid-

ered a key activity in any Software Engineering (SE) pro-
cess. Recently, we have witnessed the emergence of Re-
quirements Engineering (RE) as a distinct process within
the SE process. This results from some distinguishing
features of RE, e.g., (i) the focus on real-world problems
rather than on the implementation of its software-based so-
lution and (ii) the variety of involved stakeholders ranging
from domain experts and end-users to software engineers.

Like the SE process, the RE process also needs to be
characterized in terms of its various activities and associ-
ated inputs and outputs. Tentative characterizations of the
RE process have been proposed either ‘in-the-large’ (see,
e.g., the ‘magic cube’ RE process proposed in [16]) or ‘in-
the-small’ (see, e.g., the basic elicitation, modelling, veri-
fication and validation activities described in [13]). In this
paper, we would like to focus on aspects related to the mod-
elling of the behaviour of the required software. Compa-

�Copyright 1998 IEEE. Published in the Proceedings of IWSSD98,
April 1998 Isobe, Japan. Personal use of this material is permitted. How-
ever, permission to reprint/republish this material for advertising or pro-
motional purposes or for creating new collective works for resale or re-
distribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE. Contact: Man-
ager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane
/ P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl.
908-562-3966.

yThis work is partially funded by the ESPRIT LTR project CREWS
Cooperative Requirements Engineering With Scenarios

rable to the so-called ‘transformational’ view proposed in
some SE process [2], we claim that it is possible to make a
distinction between different modelling activities with dif-
ferent kinds of inputs/outputs at the RE level. This fact
can be easily established if we consider the variety of no-
tations that have been proposed for RE. For example, there
are notations (such as ‘use-cases’ in UML [17]) which fo-
cus on the behaviour of the software seen from the point of
view of its environment, and other ones (such as SART [9])
which focus on the modelling of the software internals and
consider the environment as a black box capable of issuing
and receiving messages or dealing with events.

In this paper, we will consider three distinct and con-
nected modelling activities:

1. the modelling of thegoals (purposes or objectives)
associated with the introduction of some software
within an organization;

2. the modelling of thesoftware requirements, i.e. the
role played by the software in solving the goals pur-
sued within the organization;

3. the modelling of thesoftware internals, i.e. the func-
tional behaviour of the software and the protocols
used for exchanging input/output messages with its
environment.

To illustrate these three types of activities, we will use a
process-control case study featuring some real-time con-
straints. The choice of this specific application domain will
influence the process roughly sketched above:

� in most cases, problems arising in this application do-
main do not lead in the introduction of a single piece
of software but of a composite system [7] made up of
humans, devices, hardware and software components.
We therefore prefer to use the wordsysteminstead of
softwareand, thereby, make the distinction between
system goals, system requirementsandsystem inter-
nals.

� the development of such applications requires con-
sistentspecificationsthat have precise semantics and
which enable formal reasoning. That is why, in this
paper, we will use formal specification languages
rather than natural languages or semi-formal ‘box and
arrows’ notations.

The case study that we will use is inspired by theCoalmine
example introduced in [18]. This case study is about the
following:

There are several dangerous factors in a coalmine, two
of them are the level of water percolating in the mine
and the presence of methane. In any case, workers can
only work safely in the mine if the levels of water and
of methane are below critical values.

Formal specification languages that we will use are:Kaos
[5] for reasoning about the system’s goals, [6]
for specifying the system’s requirements andTimed Au-
tomatafor modelling the system’s internals.

Following our proposed specification process results in
the production of three distinct products written in three
different specification languages, each of them having its
own merits for the supported activity. This means that it
is often not obvious how fragments of one product are re-
lated to fragments of another. We propose that such re-
lations should be established at another level: the ‘why’
level. Our three products describe the “what’s”, but as it
has been show at the SE level, it is equally important to
capture the “why’s” behind them, i.e., the rationales un-
derlying their elaboration. At the RE level, such rationales
should be characterised in terms of theorganizationalen-
vironment: the actors involved in the organization, their
responsibilities, the choices they make and the social de-
pendencies existing among them. To capture them, we will
use thei* framework [22]. All along the proposed RE pro-
cess, we will show how thei* model complements each
product specification and how the models evolve from one
product specification to the next one.

The rest of this paper will follow the structure of the
ideas presented above. In Section 2, we will describe the
system goalslevel usingKaosand introduce thei* frame-
work. In Section 3, emphasis will be put onsystem re-
quirementsand we will show that the language
is well suited for modelling them. Then, in section 4, we
will focus on the specification ofsystem internals. Finally,
the paper will conclude by outlining some ongoing efforts
relating to a possible infrastructure for linking the different
descriptions and for supporting change management.

2 System’s goals
We will first characterize this activity by the contents of

its “what’s” and “why’s” parts.

� the “what’s” : the output of this activity is a clear pic-
ture of thegoalsto be met by the system to be intro-
duced. Goals will be usually structured in terms of an
‘and/or’ hierarchy where higher goals are refined and
decomposed in terms of finer goals. These goals will
be characterized in terms of expected properties that
should hold in the environment (orproblem domain)
when the future system is introduced. This requires
the identification of the key components in the envi-
ronment.

� the “why’s” : the identification of pertinentgoalsre-
sults from an understanding of the actual organiza-
tion, i.e., the actors in place, their responsibilities and
their existing dependencies.

The “why’s” part is studied through the production of
a first i* model. Within the context of theCoalminecase
study, the resultingi* model is depicted in Fig. 1.

The environment consists of the mining company, min-
ers, and shareholders. (The coal mine itself is not rep-
resented explicitly in thei* model since it is not inten-
tional.) Thei* model represents intentional dependencies
among actors. By depending on each other, actors are able
to achieve goals that might not be achievable otherwise.
However, actors also become vulnerable because of their
dependencies on other actors [20].

The company depends on shareholders for capital to op-
erate the mine, while shareholders in turn depend on the
company to be profitable. Four types of dependencies – re-
source, task, goal, and softgoal – are used to differentiate
the kinds of autonomy that the actors have in their depen-
dency relationships. Intentional actors can be further dif-
ferentiated intoagents, roles, andpositions. Agents have
physical embodiment, while roles are abstract. An agent
usually occupies a position which is a bundling together of
several roles.

In our example, a mine worker (a person) occupies the
miner position, which has a role “Do Mining”. In an orga-
nization, roles need to be defined and packaged into posi-
tions. Agents with the right qualifications are sought to fill
the positions. There can be intentional relationships among
agents, roles, and positions. [22].

The miner position, potentially covering several
roles, depends on the company for wages (a resource-
dependency). The company depends on the “Do Mining”
role of the Miner to extract coal according to some pro-
cedures (a task-dependency). The mine worker (human
person) depends on the company to maintain safe working
conditions (a softgoal-dependency) in the coal mine.

The above features ofi* focus on the external relation-
ships between actors. To model and reason about how an
actor achieves its goals,i* provides a model for describing

Extract
Coal

Wages

Safety
[WorkCond]

Capital

Shareholders
Profitable

Mine
Worker

Do
Mining

Miner

Safety
[Mine]

Company

Operate
CoalMine

Efficient
[Extraction]

MethaneSafety
[Mine]

WaterSafety
[Mine]

Water Level
Kept Below
Limit

No Worker in
Unsafe Mine

Resource

Task

Goal

Softgoal

Agent

Position

Role

Intentional dependency

Task decomposition

Means-ends

Actor
Boundary

Softgoal contribution

Figure 1: the initiali* model.

an actor’s rationales. We briefly illustrate this in the exam-
ple. The main task of the mining company is to operate the
coal mine. This task can be decomposed in different ways
into subgoals and subtasks (not shown). The choice among
different ways of operating a coal mine is guided by soft-
goals – for example, that the extraction process be efficient,
in order to be profitable and to meet payroll; and that the
mine be safe, in order to provide safe working conditions
for the worker. Safety in the mine can be achieved in terms
of safety in the water level, and safety in the methane level.

These softgoals can in turn be more precisely character-
ized in terms of two goals (Water Level Kept Below Limit
andNo Worker in Unsafe Mine). Such goals should be de-
fined explicitly. This could be done with natural language
but, in this case, we prefer to use a more formal frame-
work, that is theKaos[5] language. At this stage of the RE
process, we do not need to use all the concepts proposed in
Kaosbut only a subset dealing with this central concept of
goal.

According toKaos, a goal is anon-operationalobjec-
tive that motivates the introduction of a new system. Com-
ing back to our case study, we can provide the formaliza-
tion for the two identified goals (see Fig. 2).

The description of goals is only possible through the
identification of theobjects(according to theKaostermi-
nology) belonging to the application domain (environment
of the system): for example, the level of water is a so-called

Goal 1
System GoalAvoid[WorkerinUnsafeMine]
Instance-ofSatisfactionGoal
FormalDef (forall m: MineWorker)

Inside(m)=)
((LevMet(Mine)� LevMaxMeth) and
(LevWat(Mine)� Lev1Wat))

InformalDef miners cannot be in the mine when the
level of methane or the level of water is
exceeding the limit.

Goal 2
System GoalMaintain [WaterLevelKeptBelowLimit]
Instance-ofSatisfactionGoal
FormalDef LevWat(Mine)< LevelMaxWat
InformalDef the level of water should not exceed

a certain level.

Figure 2:Kaosgoals expression.

Goal 1
System GoalAchieve[NoWorkerinUnsafeMine]
Instance-ofSatisfactionGoal
FormalDef (forall m: MineWorker) Inside(m) and

(((LevMet(Mine)> LevMaxMeth) or
(LevWat(Mine)> LevMaxWat)))
=) sometimes<5min not Inside(m)

InformalDef if the level of methane or (and) the level
of water is exceeding the limit, then the
workers are leaving the mine within the
next 5 minutes.

Goal 2
System GoalMaximize[WaterLevelKept-

BelowLimit]
Instance-ofSatisfactionGoal
FormalDef LevWat(Mine)< LevMaxWat
InformalDef in normal situations (no overfloading),

the level of water should not exceed a
certain level.

Figure 3:Kaosgoals expression (revisited version).

entity (passive object) while mine workers areagents(ac-
tive objects) as ini* .

Kaos is based on a formal temporal logic which sup-
ports reasoning on the specifications. For example, in our
case study, one may wonder about the respective values
of LevelMaxWatand Level1Wat. If Level1Watis greater
thanLevelMaxWat, then we have to revise the first goal in
order to simplify it (since the second guarantees that the
Level1Watwill never be achieved).

Formal reasoning inKaos is also at the basis of goal
(‘and/or’) reductions. This aspect is not illustrated here
(see [19] for more details). Revisions of goals can also
occur in somede-idealizationprocess. This is needed be-
cause initial goals may be over-optimistic. This is the case
in our example: on the one hand, it is difficult, due to sud-
den changes of the methane level, to guarantee that nobody
is in the mine when the level of methane is too high and,
on the other hand, there are some situations where the mine
can be over-flooded in a few seconds and thereby, the level
of water really gets beyond any control. The revised ver-
sion of our goals is the one shown on Fig.3.

Note that the last goal is aMaximizegoal denoting that
the goal has to be met in normal situations but that there
can be ‘abnormal’ situations where it cannot be reached1.

1giving a formal meaning to aMaximizegoal would require to use de-
ontic logic where it is possible to distinguish among normal and abnormal
situations

3 System’s requirements
The output of the previous activity is the set of goals

that should be met by the future system to be introduced.
The precise definition of the role of this system is the result
of thissystem’s requirementsdefinition activity.

� the “what’s” : The role of the system from the envi-
ronment (external) point of view is defined by (i) char-
acterizing the properties of theobjects/agentswhich
should influence the system and (ii) specifying what
is the control brought by the system on the environ-
ment.

� the “why’s” : The requirements engineer should un-
derstand the rationale behind the introduction of a sys-
tem with a certain behaviour instead of another sys-
tem with some other behaviour. At the organizational
level, new dependencies are established which are in-
herent to the introduction of the new system.

At the system requirementslevel, we need toopera-
tionalizethe system’s goals defined earlier in terms of con-
straints related to the role of this system as well as the role
of the environment surrounding it. Obviously, several solu-
tions can be imagined for the system and, therefore, differ-
ent roles can be designed. At that level, the objective is to
model these different possibilities and their consequences
on the possible organizational dependencies.

Having identified and analyzed organizational goals us-
ing the complementary techniques ofi* andKaos, we now
proceed to introduce a system in such a way as to meet
those goals. It is realized that water safety can partly be
achieved by having a system that regulates pumps to keep
water level below a safety limit. However, methane level,
as well as water level (since pump systems are not perfect)
can still exceed safety limits. The system cannot by itself
bring about a safe condition. Instead, it can warn workers
of unsafe conditions so that workers can exit the mine in
time.

Figure 4 shows that the company depends on the system
to warn workers of danger, and on workers to exit the mine
when so warned. The workers, in their “Observe Safety”
role, depend on the system for the warning signals. This
is modeled as a resource dependency (“Danger Warning”)
which leaves open the way this information will be com-
municated. The system, being a “logical” entity at this
stage, is modeled as a position, consisting of the two roles
“Pumping” and “Warning”.

For brevity, we have focused on the safety aspect in this
example. In reality, one usually needs to make tradeoffs
among multiple competing goals such as safety and pro-
ductivity. Usingi* , one would explore the space of possi-
ble alternative solutions (e.g., more powerful pumps, more
accurate and reliable sensors, or better danger prediction

Extract
Coal

Wages

Safety
[WorkCond]

Warning

Mine
Worker

Do
Mining

Miner

Safety
[Mine]

Company

Operate
CoalMine

MethaneSafety
[Mine]

WaterSafety
[Mine]

Observe
Safety

Exit Mine
Within 5 Minutes
Of Warning

Water Level
Kept Below
Limit

Danger
Warning

Pumping
System

No Worker in
Unsafe Mine

Workers be
warned of
danger

Figure 4: thei* model (second version).

algorithms) guided by the safety and productivity softgoals
and their refinements [4].

At the “what’s” level, we need to give a precise speci-
fication of the system. At this stage, several authors have
argued for a characterization of the system in terms of its
environment without revealing the system internals. Jack-
son and Zave advocate making a clear distinction between
indicative requirementsrelated to the behaviour of the en-
vironment andoptative requirementsassociated with the
system [12]. The language will be used for ex-
pressing these requirements. Besides supporting the dis-
tinction made above, this language is also characterized by:

� its naturalness, i.e., the possibilities offered by the
language to map informal statements provided by cus-
tomers straightforwardly onto formal statements ex-
pressed in the language. The objective is to avoid the
introduction of extra elements (over-specifications) in
the formal specification which do not have a counter-
part in customers’ statements. This naturalness prop-
erty is guaranteed by the possibility to write require-
ments by adopting anoperationaland/or adeclarative
style of specification.

� the existence of differenttemplatesassociated with
specific categories of requirements and which provide
methodological guidelines to the analyst in the elici-
tation and the structuring of the requirements specifi-

cations.

The interested reader can find more information about this
real-time distributed RE language and its applications in
[6].

A specification in is made up of (i) a graphi-
cal part where the vocabulary isdeclaredand (ii) a textual
part where the logical formulaeconstrainingthe admissi-
ble behaviours are stated. Figures 5 and 6 illustrate the use
of within the context of our case study. For the
sake of brevity, only the requirements inherent to the man-
agement of the methane danger are provided. Moreover,
the textual specification is presented only for two of these
agents.

In Fig. 5, we can see three basic agents, associated
with active components having a time-varying behaviour2

involved in the specification (note thatMine-Workeris a
class) as well as their associated states (depicted with rect-
angles) and events/actions (depicted with ovals).WatChge
and MethChgeare instantaneous events associated with
modifications of the level of water and of methane. There
are also export links among agents, those denote how an
agent can be potentially affected by the occurrence of an
action and/or the value of a state associated with another

2agents in correspond to roles ini* . However as it can be
seen in the graphical declaration, a “CoalMine” agent has been introduced
which has no counterpart in thei* model. This is because this is not an
intentional agent involved in social dependencies.

Figure 5: graphical declarations.

agent. In our example, we express thatSystemcontrols the
Alarmstate component while it is affected by the values of
water and methane levels.

We hope that from the informal comments given in
Fig. 6, the reader will be able to get a sense of the ex-
pressiveness of . The internal behaviour of
an agent is characterized in terms of ‘operational’ and
‘declarative’ constraints. The constraints associated with
theMine-Workerscorrespond to ‘indicative’ requirements
while those associated with theSystemare ‘optative’ re-
quirements. It is important to note that they are only ex-
pressed in terms of states and actions belonging to the en-
vironment. ‘Cooperation constraints’ are also essential in
order to express in what situation we expect an agent to
be sensitive to external happenings (states values and ac-
tions) as well as under what conditions an agent will have
some influence on its environment. For example, one of the
State Perceptionclauses associated with theSystemindi-
cates that the monitoring of the methane level is only guar-
anteed by theSystemif the mine is not over-flooded (Lev-
Water< LevelMaxWat). At the level of aMine-Worker, we
suppose that we have ‘reliable’ persons who always per-
ceive the status of theAlarm. If this could not be the case,
the global goals identified in the previous section could not
be guaranteed and would need to be revised.

Using the underlying formal framework based on a spe-
cific real-time temporal action based logic, it should be
possible to prove that the goals expressed inKaosare met
by the specification.

4 System’s internals
The definition of the system’s internals, which is the

last RE activity, is what is usually considered the main Re-
quirements Analysis activity in the traditional view of the

SE process. It aims at providing the functional specifica-
tion of the system (software).

� the “what’s” : The architecture of the system is de-
fined in terms of the devices, software, humans and
hardware components that interact to make up the sys-
tem. The functional specification of each of these
components as well as the protocols existing be-
tween the different agents for exchanging information
(within the system as well as with the environment)
are provided.

� the “why’s” : For the design of the architecture, there
are several possibilities which have to be evaluated ac-
cording to the constraints imposed by the customers.
For the solution considered, we have to identify new
physical agents that need to be introduced in the or-
ganization. Dependencies between these new agents
and the existing ones have to be carefully identified.

In this specification stage, we identify the components
of the system and their inter-relationships.i* modelling
is used to guide the mapping of logical roles to physical
component agents, and to relate their requirements back to
dependencies from external actors.

Figure 7 shows that the (physical) system consists of
sensors for water and methane levels, an alarm and a pump,
together with software controllers for the last two. By
analyzing the strategic dependencies that external actors
(miner, company) have on the components of the system,
one can arrive at the requirements on the components –
both functional (e.g., conditions under which the alarm
needs to be activated) and non-functional (e.g., the per-
formance and reliability of the warning subsystem hard-
ware and software). Some of these requirements relate to

the way environment agents interface with the new system.
For example, on Fig. 7, we can see that a miner has a new
task associated with his/her monitoring of the alarm status.

As we can see, the purpose of this activity is to trans-
form the system requirements into a system solution. There
is a strongmirroring relationship between the informa-
tion handled in the problem domain and symbols used
for describing the system internals. As it has been indi-
cated by Bubenko [3], information systems manage sym-
bols which are mirroring real information belonging to
the problem domain. For control intensive systems, Jack-
son [11] showed that sensors and actuators are used for
connecting system’s internal states to the behaviour of real-
world entities.

A number of specification languages have been pro-
posed for modelling the behaviour of software compo-
nents. Most of them are based on automata extended
with structuring mechanisms (e.g., Statecharts [8] and SCR
[10]) and/or equipped with facilities for dealing with real-
time properties [1] [14]. The style of specification used
at that level is usually a much moreconstructive(opera-
tional) style which reflects the work of the analyst who has
elaborated a solution for the problem.

In the case study, rather than to introduce yet another
formal specification language, we just provide a (semi-
formal) graphical representation associated with a Timed
Automaton and we will assume that the reader is familiar
with such graphical notations. Fig. 8 shows a fragment of
the automaton associated with the behaviour of theAlarm
Controller in the presence of Methane.

It is possible to check formally that the behaviour of
an automaton meets a more global (declarative) property.
These techniques could be used for verifying the system’s
requirements expressed in .

5 Conclusion
In this paper, we have suggested that the modelling of

requirements has to be done at different levels of abstrac-
tion (ranging from the early phase to the late phase of RE)
and with different formal requirements languages (Kaos,

, timed automata). We have also shown how the
i* model is considered as providing a “high-level” model
that is used from the early phase through the late phase,
and for linking the various formal models. In this view, the
formal models need to be narrow-spectrum, whereas the
strategic modelling ofi* is relatively broad-spectrum.

As it is now recognized at the SE level, it is difficult
to develop a ‘wide spectrum’ language which can support
the different SE activities (specification, design and cod-
ing). We think that the same reasons can be advocated
at the RE level and we have tried to illustrate howKaos,

andTimed Automatalanguages have their own
merits for supporting each of the activities. However, in

Agent:System

DECLARATIVE CONSTRAINTS
STATE BEHAVIOUR

(LevMeth> MaxLevMeth)=) WithinF5min Alarm=TRUE
When the level of methane is exceeding the
limit the alarm has to be set within the
next 5 minutes.

OPERATIONAL CONSTRAINTS
EFFECTS OFACTIONS

Set: []
Alarm:=TRUE

Reset: []
Alarm:=FALSE

COOPERATION CONSTRAINTS
STATE INFORMATION

K (Alarm.MineWorker/ TRUE)
The MineWorker is informed of the status of
the alarm at any moment.

STATE PERCEPTION

K (Mine.LevMeth/ LevWater< LevelMaxWat)
The system is sensible to the mine’s level
of methane only when the water does not
exceed the limit.

K (Mine.LevWater/ TRUE)

Agent:MineWorker

OPERATIONAL CONSTRAINTS
EFFECTS OFACTIONS

Enter: []
Inside:=TRUE

Leave: []
Inside:=FALSE

TRIGGERINGS

Alarm=true^ Inside/ 0 Leave
The MineWorker should leave when he is in
the mine and the alarm is set.

COOPERATION CONSTRAINTS
STATE PERCEPTION

K (System.Alarm/ TRUE)
The mineWorker is always aware of the status
of the alarm.

Figure 6: constraints on theMineWorkerand
Systemagents.

Extract
Coal

Wages

Safety
[WorkCond]

Warning

Mine
Worker

Do
Mining

Miner

Safety
[Mine]

Company

Operate
CoalMine

MethaneSafety
[Mine]

WaterSafety
[Mine]

Observe
Safety

Exit Mine
Within 5 Minutes
Of Warning

Water Level
Kept Below
Limit

Danger
Warning

Pumping
System

Water
Sensor AlarmPump

Methane
Sensor

Pump
Controller

Alarm
Controller

Water
Level

Pump
Signal

Methane
Level

Alarm
Signal

No Worker in
Unsafe Mine

Monitor
the Alarm
Status

Workers be
warned of
danger

Alarm
Status

Figure 7: thei* model (final version).

Normal

Critical

Alarm

SensMethLev
< LevMaxMeth

SensMethLev>LevMaxMeth/SetCritical

SensMethLev
< LevMaxMeth

 SensMethLev>LevMaxMeth
and Critical since 5’/SetAlarm

Reset
Alarm

SensMethLev
< LevMaxMeth

SensMethLev>LevMaxMeth

SetAlarm

Figure 8: The automaton associated with the alarm con-
troller (partial).

practice, it may happen that some languages originally de-
signed for supporting one activity can also be used for sup-
porting another activity. For example, at the system’s re-
quirements stage, it may happen that customers express
their requirements only in a state/transition constructive
style. In such a case, an automaton-based formalism will
be preferred to since its declarativeness property
is not used.

But as long as different languages are used, then a key
issue is the development of an integrated framework to sup-
port and guide the interplay of the RE activities at the vari-
ous levels, and to support traceability and change manage-
ment. As a first step in this direction, we can report on the
on-going work performed by the authors around the cou-
pling of thei* and languages [21]. Separate tools
exist for the two languages but both rely on the use of a Te-
los based repository [15] in which descriptions are stored
and organized according to the meta-model associated with
each language. Traceability links can be established at the
level of these meta-models and impact analysis can be per-
formed on the basis of these links.

Acknowledgments
This work was partially supported by the Esprit projects

CREWS (21.903) and CoopIS (ISC-CAN-080 CIS) and by
the Information Technology Research Centre of Ontario

and the Natural Sciences and Engineering Research Coun-
cil of Canada. The authors wish to thank Mike Bissener
for his contribution to this reported work.

References
[1] M. Archer and C. Heitmeyer. Mechanical verification of

timed automata: A case study. InReal-Time Applications
Symposium, 1996.

[2] R. Balzer. Tranformational implementation: An example.
In IEEE Trans. on Software Engineering, January 1981.

[3] Janis A. Bubenko. On concepts and strategies for require-
ments and information analysis. InInformation modeling,
pages 125–169. Chartwell-Bratt, 1983.

[4] K. L. Chung, B. Nixon, J. Mylopoulos, and E. Yu.Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishers, to appear.

[5] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition.Science of Computer
Programming, 20:3–50, 1993.

[6] P. du Bois, E. Dubois, and J-M. Zeippen. On the use of
a formal requirements engineering language: The general-
ized railroad crossing problem. InThird IEEE International
Symposium on Requirements Engineering. IEEE CS Press,
January 1997.

[7] Martin S. Feather. Language support for the specification
and development of composite systems.ACM Transactions
on Programming Languages and Systems, 9(2):198–234,
April 1987.

[8] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot.
STATEMATE: a working environment for the development
of complex reactive systems.IEEE Trans. on Software En-
gineering, 16:403–414, April 1990.

[9] D. Hatley and I. Pirbhai.Strategies for Real-Time Specifi-
cation. Dorset House, 1987.

[10] C. Heitmeyer, B. Labaw, and D. Kiskis. Consistency check-
ing of scr-style requirements specifications. InSecond
IEEE International Symposium on Requirements Engineer-
ing. IEEE CS Press, March 1995.

[11] M. Jackson.System Development. Prentice-Hall, 1983.

[12] M. Jackson.Software Requirements and Specifications: A
lexicon of practice, principles and prejudices. Addison-
Wesley, 1995.

[13] P. Loucopoulos and V. Karakostas.System Requirements
Engineering. McGraw-Hill Intl Series in Software Engi-
neering, 1995.

[14] M. Merritt, F. Modugno, and M. Tuttle. Time constrained
automata. InConcur’91: 2nd Intl Conf on Concurrency
Theory. LNCS 527, Springer Verlag, 1991.

[15] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis.
Telos: Representing knowledge about information systems.
In ACM Trans. on Information Systems. vol. 8(4), 1990.

[16] K. Pohl.Process Centered Requirements Engineering. John
Wiley, 1996.

[17] Rational. Unified Modeling Language: Notation Guide,
Version 1.1. Rational Software Corporation, 2800 San
Tomas Expressway, Santa Clara, CA 95051-0951, 1
September 1997. URL http://www.rational.com/uml/1.1/.

[18] B. Selic, G. Gullekson, and P.T. Ward.Real-Time Object-
Oriented Modelling. John Wiley, 1994.

[19] A. van Lamsweerde, R. Darimont, and P. Massonet. Goal-
directed elaboration of requirements for a meeting sched-
uler: Problems and lessons learnt. InSecond IEEE Interna-
tional Symposium on Requirements Engineering. IEEE CS
Press, March 1995.

[20] E. Yu. Modelling Strategic Relationships for Process
Reengineering. Ph.D. Thesis, Univ. of Toronto, 1994.

[21] E. Yu, P. Du Bois, E. Dubois, and J. Mylopoulos. From
organization models to system requirements: a ’cooperat-
ing agents’ approach. In M. Papazoglou and G. Schlageter,
editors,Cooperative Information Systems, pages 293–312.
Academic Press, 1998.

[22] E. Yu and J. Mylopoulos. Understanding ’why’ in software
process modelling, analysis, and design. InIEEE Interna-
tional Conference on Software Engineering, ICSE’94, 1994.

