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Abstract: Traceability is a prerequisite for developing high quality (software) systems.
Recording and maintaining all available information is too labor intensive and thus by
far too expensive. A project-specific definition of the trace information to be recorded
and the method fragments (so calledtrace fragments) to be executed for recording the
information provides a solution for this problem. But the amount of traces to be recorded
does not only vary from project to project. It also varies between project phases and
even within a project phase. As a consequence project-specific trace fragments need to
be adapted according to the actual project phase.

In this paper we propose a model-based filter mechanism to significantly reduce
the required effort to adapt trace fragments. By defining appropriate filters the project
manager is able to (dynamically) adapt the project-specific trace fragments to the actual
needs. We present an example to highlight the benefits of the approach and discuss
possible extensions.

† CREWS Report Series 98–10. A version of this paper appears in theProceedings of the 10th International
Conference on Advanced Information System Engineering, Pisa, Italy, June 8–12, 1998.
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1 Introduction

1.1 Traceability: Definition and Motivation

Traceability, more precisely requirements pre– and post–traceability, is recognized by
many research contributions and experience reports as an important prerequisite for
developing high quality systems (e.g., [Collery, 1988;IEE, 1991;Rameshet al., 1996]).
Among others, traceability facilitates the development, validation and maintenance of a
system, provides invaluable support for the integration of changes, reduces the amount
of errors during system development, allows experience–based process improvement,
and is important to prove the fulfillment of contracts [Jarkeet al., 1994;Pohl, 1996b].
Traceability is thus required by various system development standards (e.g., V–Modell
[Bröhl and Dröschel, 1993], DoD–2167A [DoD-2167A, 1988]) as well as quality and
process improvement frameworks, like ISO 9000–3 [ISO, 1991] and CMM [Paulket
al., 1993].

Various contributions (e.g., [Kaindl, 1993;Gotel, 1996;Yu and Mylopoulos,
1994;Conklin and Begeman, 1988]) and traceability frameworks (e.g., [Pohl,
1996b;Rameshet al., 1996]) define a large set of information to be captured for
enabling traceable system development. Obviously, an approach recording all this
trace information in each project and for all system components is by far too time
consuming, thus too expensive, and therefore likely to fail [Tilbury, 1989].

1.2 Project–specific Trace Capture: Method–Driven Approach

To reduce the effort for capturing and maintaining traceability information thetraces,
i.e., the information which is actually being stored, has to be recorded according to
project–specific needs[Pohl and Dömges, 1997].

Existing prototypical trace environments (e.g., TOOR [Pinheiro and Goguen, 1996],
PRO–ART 1.0 [Pohl, 1996b]) as well as existing commercial requirements and system
engineering environments like DOORS [Quality Systems & Software, 1996], RDD–100
[Ascent Logic Corporation, 1994], RTM [Marconi Systems Technology, 1996], or
SLATE [TD Technologies, Inc., 1996] support the persistent recording and management
of trace information. They typically provide a set of generic information types and
operations which can be specialized according to project–specific needs. Thus, they
empower the project manager to define project–specific trace information, e.g., design
decisions and their relations. The environments provide comprehensive consistency
checking capabilities and support the retrieval and display of the recorded traces by
advanced ad–hoc and pre–defined querying, browsing, and reporting mechanisms. But
they do not provide systematic supportfor recording the defined trace information
during the system development process, e.g., the project manager cannot define when
(in which situation) a decision should be recorded.

Our method–driven approach to trace capture (see [Pohlet al., 1997] for details)
overcomes this shortcoming. It supports theexplicit definitionof project–specifictrace
information together with trace fragmentswhich define strategies for capturing the
information. Moreover the user isguidedin recording the information according to the
project–specific trace fragment definitions. This is technically achieved by interpreting
the defined trace capture strategies in a process–integrated environment. Based on
the interpretation the environment reminds the user about the traces to be captured,
enforces (e.g., in project critical procedures), and even automates (whenever possible)
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Tab. 1. Trace information and corresponding trace fragments

the recording of traces2.
We use the NATURE process meta model [Rolland and Grosz, 1994;Pohl, 1996b]

to define the project specific trace fragments. The model distinguishes between:

• Atomic fragmentsfor representing the part of a method definition which can
be automated. Atomic fragments have no (externally) visible structure and are
“hard–coded” in the tool or environment. By executing atomic fragments traces
are (automatically) created and recorded in thetrace–repository.

• Strategy selection fragmentsfor representing the part of the method definition
in which the user has to make a decision between at least twoalternatives, i.e.,
alternative trace capture strategies. A trace strategy defines the way how traces
are (interactively) created.

• Composed method fragments(resp., composed trace fragments) for defining
complex trace strategies, i.e., for defining a certain order on a set of trace
fragments.

The project manager uses the three types of fragments to define the project–specific
trace strategies. Thereby s/he (implicitly) defines the trace information to be recorded.
To support the definition of the trace strategies we distinguish between four information
types. Depending on the information type the recording is performed manually and/or
automatically. Table 1 depicts the information types and the way an information is
typically being recorded.

We have integrated the project–specific trace capture strategy into our TECHMOD
[Dömgeset al., 1996] and PRO–ART 2.0 [Pohl, 1996a] environments. We used both
environments in small case studies. The studies showed that reminding the stakeholders
about the recording of the project specific trace information resulted in traces of
higher quality compared to traces produced by following “paper–based” trace capture
guidelines. Moreover, recording of unnecessary trace information was avoided and the
work load of the users was (significantly) reduced.

1.3 Project–specific Adaptation of Trace Fragments

However, it turned out that the trace fragments had to be adapted due to two main
reasons:

1. Tracesvary between project phases. For example, while in the specification
phase recording of structured design decisions was demanded, the maintenance
phase focused on recording and interrelating change requests and change ap-
proval forms.

2 The detailed mechanism required to enable such a project–specific guidance of trace capture based on the
interpretation of method fragments is described in [Pohl and Weidenhaupt, 1997].
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2. Tracesdepend on the componentsdeveloped, e.g., when safety critical and/or
very complex components are developed design decisions, meeting notes, con-
ceptual drawings, as well as scenarios must be captured and interrelated.

An obvious solution for the adaptation of trace fragments to project–phase–specific
needs was tospecializethe (existing) trace fragments accordingly. This solution had
two significant shortcomings

1. modeling and/or re–modelingof the required trace fragments was a difficult and
time consuming task;

2. programming and/or re–programmingof atomic fragments was often required.

As a consequence the amount of trace fragments maintained in our method baserapidly
increased. The trace fragments werealmost identical; they differed only slightly in the
trace–capture dependent parts. Thusmanagingthe trace fragments got very complicated
and maintaining them consistently was almost impossible.

1.4 Approach and Structure of Paper

In this paper we propose afilter mechanismto overcome the above shortcomings. In
section 2 we elaborate the main requirements for a filter mechanism to significantly
reduce the required effort to adapt trace fragments. Providing a filter mechanism is
essential to empower an easy and flexible adaptation of fragments to continuously
evolving information needs. The filter mechanism described in sections 3 and 4 allows
a dynamical adaptationof trace fragments. Filters can be defined for a specific project
phase as well as for particular trace fragments. A prototypical implementation of the
filter mechanism was integrated into our process integrated environments and applied
to small examples (section 5). Finally, we provide a conclusion of the achieved results
and give an outlook on future work (section 6).

2 Requirements for a Model-based Filter Mechanism

2.1 Prevent Storage of Trace Information

The filter mechanism has to ensure that certain trace information is not recorded in
the trace repository. To avoid the re–programming of atomic fragments the filter
mechanism should be able to partially block the output of an atomic fragment from
being stored in the trace repository.

For example, take the automated recording of process observation information by an
atomic fragment. This fragment records all executed trace fragments together with the
agent who executed them. Assume that due to contractual or organizational regulations
the agents should not be recorded. A trace filter which could block the information
about the agent of being stored in the trace repository avoids the re–programming of
the atomic fragment.

2.2 Restrict Selection of Trace Strategies

The filter mechanism must provide means to restrict the alternatives provided by a
strategy selection fragment. Whenever an alternative of a strategy selection fragment
should not be used, it should not be offered to the user.

For example, a strategy selection fragment provides four alternatives to the user to
justify the creation of a new product version: (1) recording a structured design decision,
(2) stating the reasons for the change as informal text, (3) selecting an appropriate part
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of the project–contract, or (4) indicating the person creating the new version. If during
the early project–phases justifications should only be given by informal text or by
naming the responsible person the two other alternatives must be removed.

2.3 Prevent Execution of Trace Fragments

The filter mechanism must allow toprevent the executionof a trace fragment. Whenever
the entire output information of a trace fragment should not be recorded the execution
of the fragment has to be prevented; especially if a trace fragments requires user
interactions.

For example, if design decisions should not be recorded during early project phases
the execution of the trace fragment for recording the decision has to be prevented.

2.4 Enable Filter Definitions for the Overall Projects and Project Phases

In addition to filter definitions for a single trace fragment the filter mechanism should
provide means to define filters which affect all trace fragments executed in a project
phase. For example, to capture no process observation information during the proposal
phase whereas their recording is mandatory during the requirements engineering and
design phases it should be possible to define a filter for an entire project phase.

2.5 Empower Nested Filter Definitions

Trace fragments can be nested forming composed trace or strategy selection fragments.
This requires propagation rules for filters defined for nested trace fragments. For
example, assume that capturing process observation information is explicitly prohibited
for a composed trace fragment. Consequently, none of the trace fragments used for
defining the composed trace fragment should record process observation information,
even if defined differently by filters of these trace fragments.

2.6 Enable Enforcement of Information Storage and Fragment Execution

Within a nested trace fragment various information types can be blocked, alternative
strategies can be restricted, and/or the execution of trace fragments can be prevented
by defining the appropriate filters. For a composed trace or strategy selection fragment
the filter mechanism must provide means to ensure the recording of a certain type of
information, the offering of particular alternative trace strategies, and/or the execution
of specific trace fragments regardless of the filters defined for the fragments which are
(constituent) parts of the composed fragments.

For example, assume that the recording of automated dependency information is
blocked by a filterF defined for a trace fragmenttf. To assure the recording of this
information in a composed trace fragment the project manager should be able to define
a filter F’ which “replaces”F; i.e., which assures the recording although the nested
filter F prohibits the recording.

3 Information, Strategy, and Method Filters

To fulfill the requirements defined above three filter types are required:information
filters which prevent already produced information from being stored in the repository
(section 3.1),strategy filterswhich restrict the available trace capture strategies defined
by a strategy selection fragment (section 3.2), andmethod filterswhich prevent trace
fragments from being executed (section 3.3).
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These three filter types are defined as specialization of the conceptfilter (see figure
1). Thescopedefines if a filter is valid within aproject phaseor a trace fragment(see
requirement 2.4). A filter can be related to more than one scope. If a filter should be
applied in particular project phase(s), the filter is associated to the phase(s) by using the
has scopeassociation. If a filter is associated to all project phases, the filter is applied
to the overall project. If a filter should only be valid for a particular trace fragment,
the filter is related to the fragment using thehas scopeassociation.

3.1 Information Filters

Information filtersprevent information types from being stored persistently although the
corresponding trace fragments are executed and their output information is produced
(figure 2; requirement 2.1). The type of information to be blocked by a given
information filter is defined using the associationblock information typedefined between
the classinformation typeand the classinformation filter. The project phases and trace
fragments to which an information filter should be applied are related to the information
filter using thehas scopeassociation. An information filter can be used to avoid the
recording of a particular information produced by an atomic fragment; but it can also
be used to avoid the recording of a particular information during a project phase. An
information filter can block more than one information type.

E1 E2R
1:n 1:n

Decision: CreateRelShip "R"

Repository 

NO process obser-
vation information

E1 E2R
1:n 1:n

Decision: CreateRelShip "R"

CreateCompleteRelShip27

CreateRelShip32 CreateConnect56

Information
Filter 

Fig. 2: Information filters

Information filters are essential for influencing the information capture of atomic
fragments. Information filters are very well suited for blocking process observation
information which is typically recorded automatically. They are generally applicable
for dependency information, especially if dependencies are created automatically.
Information filters should not be used to filter supplementary product information,
since these information types are usually created interactively.
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3.2 Strategy Filters

Strategy filters restrict the available alternatives of strategy selection fragments
(figure 3; see requirement 2.2). By applying strategy filters to a strategy selection
fragment only a subset of the defined alternatives is offered to the user. The alterna-
tive(s) which should not be offered are defined using the associationblock alternative
defined between the classstrategy filterand the association classalternative defined
between the classstrategy selection fragmentand the classtrace fragment(figure 1).
A strategy filter can be related to more than one alternative fragment.

Strategy
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2
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Fig. 3: Strategy filters

The scope of the filter is defined by associating the appropriate project phases and/or
trace fragments with the filter. If a strategy filter is associated to one or more project
phases, the blocked alternatives are not offered within the defined phases; but are offered
within other phases. If it is associated to a trace fragment, the blocked alternatives
are not offered whenever the strategy selection fragment is executed within the trace
fragment.

3.3 Method Filters

Method filtersprevent the execution of one (or more) atomic fragment, strategy selection
fragment, or composed trace fragment (figure 4; see requirement 2.3). The trace
fragments to be blocked are defined using the associationblock fragmentdefined
between the classmethod filterand the classtrace fragment(figure 1). A method
filter can block more than one method fragment.

The scope of the filter is defined by using thehas scopeassociation to relate project
phases and/or trace fragments with the filter. If a method filter is associated to one or
more project phases, the blocked fragment is never executed within the defined phases;
but it will be executed in other phases. If it is associated to a trace fragment, the
blocked fragment is not executed within the associated fragment.
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Fig. 4: Method filters
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Method filters should be used to adapt the interactive capture of traces, i.e., the
recording of supplementary products andinteractively createddependency information.
They provide no means to change the internal control-flow of composed trace fragments.
This can (only) be achieved by a manual adaptation of the fragment definition.

4 Nesting Information, Strategy, and Method Filters

The trace fragments which define project-specific trace capture can be nested by defining
composed trace or strategy selection fragments. Each of these nested trace fragmentstf
can be defined as the scope for a set of filters (denoted asfilterset(tf)). As a consequence,
the filters defined for the trace fragments are also nested. Consequently, we need to
define propagation rules to determine the filters which have to be applied if a particular
trace fragment is executed (section 4.1).
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Fig. 5: Filter modes

The (propagated) filter can not be used to enforce the recording of information types,
that alternatives of a strategy selection fragment are offered, or the execution of
particular trace fragments. For example, assume a filter associated to a trace fragment
which is contained within a composed trace fragment. The filter defines to block
the recording of a particular information type. If we want to ensure that the trace
information will be recorded whenever the nested fragment is executed, we must
provide means to define which information should be recorded during the execution of
a composed trace fragment regardless of the filter definitions associated to its contained
fragments. We therefore introduce afilter modeattribute (figure 5). Using this attribute
the project manager is able to define explicitly that a filterprevents or permits (a) the
defined information type to be recorded (information filter); (b) a certain alternative to
be offered (strategy filter); (c) a trace fragment to be executed (method filter).

Due to the filter mode the filters which have to be applied to a trace fragment may
contradict each other. In section 4.2 we define these contradictions and describe how
they can be resolved. Finally, we provide some rules towards a systematic application
of trace filters (section 4.3).

4.1 Fragment Scopes and Valid Filter Sets

For nested filters we determine thevalid filter setof a trace fragment. The valid filter
set consists of the filters to be applied to a fragment whenever the fragment is executed.
We first define acontainment–relationshipbetween trace fragments:
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• A trace fragmenttf directly containsanother trace fragmenttf’ (denoted astf’ 2 tf)
iff

a.) tf is a composed method fragment and there exists acomposed oflink
betweentf and tf’ .

b.) tf is a strategy selection fragment and there exists analternative link
betweentf and tf’ .

In other words,tf’ is used to definetf.
• A trace fragmenttf indirectly containsanother trace fragmenttf’ (denoted as

tf’
�

2 tf) iff tf’ 2 tf or 9tf” with tf”
�

2 tf ^ tf’ 2 tf”

Figure 6 depicts examples of this containment relationship for some trace fragments,

e.g., tf2 2 tf8, tf12 tf2, and tf1
�

2 tf8.

tf
tf tf
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tf
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tf tf

tf

tf
tf ...

8
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3

4

2

3

4

tf10

...

1
1

1
...

Fig. 6: Containment and scopes of trace fragments

To determine a valid filter set we need to define thescopeof a nested trace fragment
tf. The scope oftf is a set of trace fragments which directly or indirectly contain each
other. The scope oftf is definedrelative to a particular trace fragmenttf’ because
tf may be (directly or indirectly) contained in more than one trace fragment. For
example, a trace fragment to record design decisions can be used within a composed
trace fragment which defines how to integrate changes into an existing specification
as well as within a trace fragment which describes the creation of a new version of
a specification. In figure 6 aretf1 2 tf2 and tf12 tf5. Consequently, a trace fragment
tf usually has more than one scope.

We define
scope(tf; tf 0) = (tfk0 ; . . . ; tfkn)

with tf = tfk0 , tfki�1 2 tfki ;8i 2 f1; . . . ; ng, and tfkn = tf 0. If
tf = tfk0 = tfkn = tf 0 thenscope(tf; tf 0) = (tf ) = (tfk0) = (tfkn) = (tf 0). Figure
6 depicts some examples:scope(tf1,tf8) = (tf1,tf2,tf8) and scope(tf1,tf5) = (tf1,tf5)

Based onfilterset(tf) we define thevalid filter set of a nested trace fragmenttf
(denoted asVFS(tf,tf’)) as the union of the filtersets of its corresponding scope:

VFS(tf,tf’) = filterset(scope(tf,tf’))
and filterset((tfk0 ; . . . ; tfkn)) =

S

i=0;...;n

filterset(tfki ).

VFS(tf,tf’) contains also the filters which are associated with the project phase in
which tf (and the fragments ofscope(tf,tf’)) is actually executed.

By defining and using the scope of a trace fragment to define its valid filter set we
have established the propagation rules to determine the filters which have to be applied
when a particular trace fragment is executed.

4.2 Contradicting Information, Strategy, and Method Filter Definitions

A valid filter set may contain filters having contradicting filter modes. For example,
if the recording of design decisions is enforced on the level of a composed trace
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fragment (i.e., the filter mode is set topermit) but prohibited on the level of trace
fragments which are contained in the composed trace fragment it is not clear which
filter should be applied.

We thus need to define those contradictions and how to resolve them. In the
following we denotefilterobjects(F) of an information, strategy, or method filterF
as the set of all information types, alternatives, or trace fragments to be permitted or
prevented byF.

Contradictions between two filters of the same type are defined and resolved as
follows:

• Let IF and IF’ be two information filters,filterobjects(IF) = { it1,...,itn} , n ≥ 1,
and filterobjects(IF’ ) = { it’ 1,...,it’m} , m ≥ 1. The filter definitions ofIF and IF’
are contradictory iff the filter mode ofIF is permit, the filter mode ofIF’ is
prevent(or vice versa), and {it1,...,itn} \ { it’ 1,...,it’m} = fitk1 ; . . . ; itklg, l ≥ 1.
If IF, IF’ 2 VFS(tf,tf’) are two contradictory information filters,
scope(tf, tf’) = { tf1,...,tfm}, IF’ 2 filterset(tfi), IF 2 filterset(tfj) and i > j ,
the filter definitions ofIF’ for fitk1 ; . . . ; itklg replace the filter definitions ofIF
for fitk1 ; . . . ; itklg by removing them fromVFS(tf,tf’) (figure 7 a.)).
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Fig. 7 Contradictory filter definitions

• Let F and F’ be two strategy filters (or two method filters),
filterobjects(F) = { tfF1,...,tfFn}, n ≥ 1, and filterobjects(F’ ) = { tfF’

1,...,tfF’
m} ,

m ≥ 1. The filter definitions of F and F’ are contradictory iff the filter
mode of F is permit, the filter mode ofF’ is prevent (or vice versa), and
{ tfF1,...,tfFn} \ { tfF’

1,...,tfF’
m} =

�
tfF

k1
; . . . ; tfF

kl

	
, l ≥ 1.

If F, F’ 2 VFS(tf,tf’) are two contradictory strategy filters (or method filters),
scope(tf,tf’) = { tf1,...,tfp}, F’ 2 filterset(tfi), F 2 filterset(tfj) and i > j , the
filter definitions ofF’ for

�
tfF

k1
; . . . ; tfF

kl

	
replace the filter definitions ofF for�

tfF
k1
; . . . ; tfF

kl

	
by removing them fromVFS(tf,tf’) (figure 7 b.)).

If tfi = tf j (i.e., i = j ) the same fragment is associated with contradicting filter definitions.
In this case the project manager has to decide which of the filter definitions should be
replaced.

Two filters of different types are contradictory iffIF is an information fil-
ter, F is a strategy filter (or method filter),filterobjects(IF) = { it1,...,itn},
filterobjects(F) = { tf’ 1,...,tf’m’}, the filter mode of IF is permit, the filter mode

of F is prevent, and there exists an atomic fragmentaf
�

2 tf’ l , l 2 { 1,...,m’} which
producesfitj1 ; . . . ; itjkg � fit1; . . . ; itng.

If IF, F 2 VFS(tf,tf’) are two contradicting filters, whereIF is an information filter
andF is a strategy filter (or method filter),scope(tf,tf’) = { tf1,...,tfm}, IF 2 filterset(tfi),
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F 2 filterset(tfj) and i ≥ j the contradiction can not be resolved automatically but the
project manager has to decide how to resolve the contradiction. Thereto s/he needs to

determine the trace fragmenttf’ l which contains the affected atomic fragmentaf
�

2 tf’ l
and has to figure out how to adapt the filter definitions ofIF andF, e.g., by preventing
the execution of all trace fragments which are contained withintf’ l exceptaf.

There will be no contradictions between the filter definitions of a method filterMF
and a strategy filterSF. We demand that alternatives of strategy selection fragments
can only be prevented by strategy filters (see section 4.3) and strategy filters are only
able to restrict the alternatives of a strategy selection fragment. Even if a method filter
defines to prevent the execution of an alternative it is still offered to the user.

If the filter definitions associated with the project phase in which a trace fragment
tf (and the fragments ofscope(tf,tf’)) is actually executed contradict withVFS(tf,tf’)
the filter modes of the project phase generally replace the filter modes of the trace
fragments.

The above definitions can be used to analyze the filters defined for the trace
fragments. Contradicting filters can thus be detected before the trace fragments
are actually applied. The project manager can resolve the contradictions before the
fragments are executed during a project.

4.3 Rules for applying Filters

Based on our experience we provide some rules for applying information, strategy,
and method filters:

Apply filters not to product information:Product information should never be affected
by filters. Product information is the main output of the development process. Hence,
it makes no sense to block their recording. For example blocking product information
during the development of a Entity–Relationship model would lead to an incomplete and
inconsistent model. Filters should only affect the recording of supplementary product,
process observation, and dependency information. If a change in product informa-
tion is required (e.g., define inheritance (links) in Entity–Relationship–diagrams) new
fragments have to be introduced and/or existing fragments have to be adapted. This
definition and/or re–definition of a method is not within the scope of a filter mechanism.

Apply information filters only to automated trace fragments:If the information of in-
teractive trace fragments is blocked by information filters it is very likely that users
reject to enter the information next time. This might lead to the rejection of the entire
filter–based approach for capturing traces. Information filters should thus never be used
to block interactively entered information.

Apply method or strategy filters when complete output information is blocked:A
fragment whose complete output is blocked by (nested) information filters should not
be executed. Instead, a method filter should be defined to prevent the execution, or if
the fragment is an alternative of a strategy selection fragment, an appropriate strategy
filter should be defined.

Apply method filters when all alternatives of a strategy selection fragment are prevented:
If the entire set of alternatives of a strategy selection fragment is prevented by (nested)
strategy filters, the fragment should not be executed. Instead of defining strategy filters
which block all alternatives, a method filter should be defined to prevent the execution
of the strategy selection fragment.

Check effects on composed trace fragments:If any kind of filters prevent the storage
of information or the execution of a trace fragment within a composed trace fragment,
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the project manager must check if the blocking of the information (or the fragment)
does not lead to a “deadlock”. In other words, s/he must assure that a composed trace
fragment could be executed although a trace fragment is blocked and/or information
is not recorded. In the case of a detected deadlock s/he must change the control flow
of the composed trace fragment.

Do not apply method filters to block alternatives of strategy selection fragments:
Method filters should not be misused as strategy filters, i.e., they should not be used
to block an alternative of a strategy selection fragment. By defining a strategy filter,
the alternative is not offered to the user, whereas in the case of a method filter, the
alternative is offered to the user. The user can choose the alternative, but the chosen
alternative will not be executed.

Together with the scope and contradictions defined in sections 4.1 and 4.2 the rules
provide the basis for developing an environment which supports the project manager
in defining consistent trace filters of any type.

5 Model–based Filtering: An Example

We illustrate our model-based filter mechanism using a small example.
The composed trace fragmentintegrate change requestguides the application en-

gineer during the integration of changes (figure 8). The application engineer is first
reminded to justify the changes. The strategy selection fragmentselect justification
objectdefines three alternative strategies for the justification: (1) to select appropriate
parts of a contract; (2) select the stakeholder who initiated the change; or (3) to select
a specific design decision. A process observation fragment automatically records the
execution of the strategy selection fragment and the chosen alternative. During the
integration of changes an automated dependency step relates the object representing
the justification with the modified and/or created specification parts.

design
decision
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statements

stakeholder

change
specification

specification
objects

composed trace
fragment

based_on dependency link

recordsselect contract parts

composed trace fragment

justification
object

strategy selection fragment: select justification object

composed trace fragment: integrate change request

create dependency

atomic fragment

select responsible stakeholder
atomic fragment

select design decision

atomic fragment

S
E
L
E
C
T

record strategy selection

select justification object/
chosen alternative

atomic fragment

Fig. 8: Composed trace fragmentintegrate change requests(simplified).

The fragment described above is reused for the proposal phase of another project.
The project management decides that in this project it is sufficient to justify the change
by stating the responsible stakeholder. In other words, the two other alternatives of the
strategy selection fragment should not be offered. Since two of the three alternatives
of the strategy selection fragments are blocked, the chosen alternative needs not to be
recorded by the process observation step. Moreover the project manager decides that
no dependencies should be created between the stakeholder initiated the changes and
the modified or created specification parts.

We use our filter mechanism to adapt the method fragmentintegrate change request
according to the new requirements of the project manager. We define
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• one strategy filter which blocks the alternativesselect contract partsand select
design decisionsof the strategy selection fragmentselect justification object;

• one method filter which prevents the execution of the atomic fragmentcreate
dependency; instead of associating an information filter with the atomic fragment
to block its entire output;

• one information filter which blocks the recording of the information about the
chosen alternatives. This filter is associated to therecord strategy selection
fragment.

design
decision

contract
statements

agent specification
objects

based_on dependency link

recordsselect contract parts

justification
object

create dependency
atomic fragment

select responsible agent

select design decision

S
E
L
E
C
T

record strategy selection
select justification object/

chosen alternative

change
specification

composed trace
fragment

composed trace fragment

strategy selection fragment: select justification object

composed trace fragment: integrate change request

atomic fragment

atomic fragment

atomic fragment

Fig. 9: Adapted trace fragment integrate justified change(simplified)

The application of these filters leads to the trace fragment(s) depicted in figure 9.
The parts of the trace fragment which are not executed, i.e., prevented by the filters,
are depicted in grey. This changes could be achieved without any re–modeling of the
composed trace and strategy selection fragments and without any reprogramming of
the atomic method fragments.

6 Conclusion and Future Work

Our approach to method–driven trace capture [Pohlet al., 1997] enables the definition
of project–specific trace information and trace capture strategies. Based on this
definitions the user is guided in capturing the required project-specific trace information.
Originating from its application in case studies two main shortcomings of the approach
were recognized: adapting trace fragments to varying traces during a project required a
significant effort for (re–)modeling and (re–)programming; managing and maintaining
the trace fragments became almost impossible due to redundant parts of the introduced
fragments and a rapidly increasing amount of trace fragments.

The filter–mechanism presented in this paper avoids the two shortcomings. Based
on a set of requirements for trace filters we have defined three types of filters:

• information filters block certain information types from being stored in the
repository;

• strategy filtersrestrict the alternative trace strategies offered to the user;
• method filtersprevent a trace fragment from being executed.

A filter can be defined for particular project phases or specific trace fragments. The
filter definitions influence the recording of the traces during a project phase and/or
during the execution of a trace fragment.

To enforce the recording of certain information we have defined two filter modes:
preventand permit. We defined propagation rules for nested filters to determine all
filters to be applied for a trace fragment whenever it is executed and specified how to
resolve resulting contradictory filter definitions.
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To support the systematic definition of filters we provided a set of rules for their
application.

The filter mechanism was validated by integrating it into the TECHMOD and
PRO–ART 2.0 environments and by applying it to small examples. Early experience
confirms that trace filters significantly reduce the necessary effort to adapt trace
fragments and facilitates the management and maintenance of the method base.

The development oftool supportfor the definition and application of filters will be
focus of our future work. Such support should employ the defined rules for applying
filters and provide mechanisms to check the effects of filters on the trace fragment
definitions.
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[Bröhl and Dr̈oschel, 1993] A.P. Br̈ohl and W. Dr̈oschel.Das V–Modell. Oldenbourg Verlag,
1993.
[Collery, 1988] A. Collery. Traceability, the New Strategic Challenge for Companies, its Tool,
Character Reading in Industrial Circles. InProc. of the 19th Intl. Symposium on Automotive
Technology and Automation, with Particular Reference to Cell Control and Quality Management
Systems for the Manufacturing Industries, volume 1, pages 251–260, Monte Carlo, Monaco,
October 1988. Allied Automation.
[Conklin and Begeman, 1988] J. Conklin and M.J. Begeman. gIBIS: A Hypertext Tool for
Exploratory Policy Discussion.ACM Transactions on Office Information Systems, 6(4):303–331,
1988.
[DoD-2167A, 1988] DoD-2167A. Military Standard: Defense System Software Development.
1988. U.S. Dept. of Defense.
[Dömgeset al., 1996] R. Dömges, K. Pohl, M. Jarke, B. Lohmann, and W. Marquardt. PRO–
ART/CE — An Environment for Managing Chemical Process Simulation Models. InProc. of
the 10th Europ. Simulation Multiconference, pages 1012–1017, Budapest, Hungary, June 1996.
[Gotel, 1996] O. Gotel.Contribution Structures for Requirements Engineering. PhD thesis,
Imperial College of Science, Technology, and Medicine, London, England, 1996.
[IEE, 1991] IEE. Proceedings of the IEE Colloquium on Tools, Techniques for Maintaining
Traceability During Design. London, England, December 1991.
[ISO, 1991] ISO.ISO9000–3: Quality Management and Quality Assurance Standards. Interna-
tional Institute for Standardization, Genf, Switzerland, 1991.
[Jarkeet al., 1994] M. Jarke, K. Pohl, C. Rolland, and J.-R. Schmitt. Experience-Based Method
Evaluation and Improvement: A Process Modeling Approach. InIFIP WG 8.1 Conference CRIS
’94, Maastricht, The Netherlands, 1994.
[Kaindl, 1993] H. Kaindl. The Missing Link in Requirements Engineering.ACM SIGSOFT
Software Engineering Notes, 19(2):30–39, 1993.
[Marconi Systems Technology, 1996] Marconi Systems Technology. RTM (Requirements &
Traceability Management) – Marketing Information, 1996.
[Paulk et al., 1993] M. Paulk, B. Curtis, M. Chrissis, and C. Weber. Capability Maturity Model
for Software: Version 1.1. Technical Report SEI-93–TR-24, Software Engineering Institute,
Carnegie Mellon University, Pittsburg, Pennsylvenia, USA, February 1993.

14



[Pinheiro and Goguen, 1996] F.A.C. Pinheiro and J.A. Goguen. An Object–Oriented Tool for
Tracing Requirements.IEEE Software, pages 52–64, March 1996.
[Pohl and D̈omges, 1997] K. Pohl and R. Dömges. An Environment for Model–Based Trace
Capture. InProc. of the Intl. Conf. on Software Engineering and Knowledge Engineering,
Madrid, Spain, June 1997.
[Pohl and Weidenhaupt, 1997] K. Pohl and K. Weidenhaupt. A Contextual Approach for
Process–Integrated Tools. InProc. of the 6th Europ. Software Engineering Conference, Zürich,
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