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Abstract: Traceability is a prerequisite for managing the evolution of (software) sys-
tems. Assuring overall traceability of a system development process, i.e., capturing and
interrelating all possible data, is almost impossible and by far too expensive and labor
intensive. To minimize the information to be recorded and to reduce the additional costs
the types of trace information to be captured should be adjusted to project–specific needs,
e.g., intended trace usage, time and money available.

In this paper we present an approach which supports method–driven trace capture. The
project manager defines the trace information and the trace steps required for recording
this information according to the actual needs in explicit traceability (method) models.
In addition, the trace steps are integrated with the method definition used to guide the
product development process. Based on the so gained extended method definition, the
stakeholders are guided in capturing the defined trace information and trace capture
is even partially automated. We report on experiments made with the prototypical
implementation of the approach and discuss possible extensions.

† CREWS Report Series 97–03. A version of this paper appears in theProceedings of the 9th International
Conference on Advanced Information System Engineering, Barcelona, Spain, June 18–20, 1997.
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1 Introduction

Traceable system development is required by many software development frameworks
(e.g., V–Modell [2], DoD–2167A [6]) as well as quality and process improvement
frameworks, like ISO 9000–3 [13] and CMM [19]. The importance of traceability,
especially in requirements engineering, and the expected benefits are for example
emphasized by [12;28;24]. Traceable system specifications are essential for change
integration, lead to less errors during system development, play an important role in
contracts, and improve the acceptance of the developed system.

Recent research contributions either define a comprehensive framework for trace-
ability (e.g., REMAP [29], PRO–ART [23]) or consider different aspects of traceability,
e.g., the annotation of requirements specifications using hypertext (e.g., [17;26]), con-
tribution structures (e.g., [10]), design decisions (e.g., [4]), goals and organizational
aspects (e.g., [35;34]), and experience–based process improvement (e.g., [15]). To-
gether they define a comprehensive set of information which have to be recorded for
assuring traceability. However, recording all this information during the whole system
development process and for all system components is by far too expensive and time
consuming. In addition, it is quite likely that a lot of the recorded information will
never be used.

To reduce the effort for capturing and maintaining trace information, theinformation
to be recorded should be defined according to the expected trace usage. For example,
for mission critical system components the recording of the goals, the decisions and the
contribution structures may be required, whereas for prototypical components capturing
the basic product evolution may be sufficient.

Existing commercial tools (e.g., DOORS [32], RDD–100 [5], SLATE [33]) and
prototypical environments (e.g., TOOR [20]) focus on the persistent recording and the
maintenance of trace information. In contrast to the above research contributions, they
define only a few generic information types which can be specialized by the user of the
system. Thus, in principle, existing tools enable the project manager to define the kind
of information to be recorded according to the actual needs. But they lack two other
important features. First, they provideno means for defining how, when, and by whom
the trace information should be captured. Most tools provide means for defining the
types of information to be recorded but do neither support the definition of the specific
method steps (trace steps) by which the information is recorded nor the definition of the
situation in which the information has to be recorded. For example, a project manager
can define an information type for design decisions. But s/he can neither define that
design decisions have to be recorded together with their arguments nor when, e.g., for
which artifacts, and by whom, e.g., by the project manager, the decisions should be
recorded. Second, they provideno computer–based, active methodical guidance for
capturing the trace information. Reminding the stakeholders about the information to
be captured, enforcing or even automating the recording of the information is essential,
especially if the information to be recorded varies from project to project. This could
be achieved by using the defined trace steps within a computer–based environment to
guide the stakeholders in capturing the defined trace information.

Project–specific and method–driven trace captureovercomes the above mentioned
shortcomings. It empowers the process–owner to model the trace information and the
trace steps to be performed for recording this information according to the actual needs.
The integration of the so gained traceability (method) models with existing method
definitions and their use in a process–integrated engineering environment provides the
basis for partially automated trace capture, and for guiding the stakeholders in capturing
the defined trace information.
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Fig. 1: Extended product information and extended method steps
In section 2 we classify the kinds of information to be recorded and the method

steps by which the information is recorded. We argue that trace steps should be
explicitly defined and, in addition, integrated with the methods used for guiding the
development process. In section 3 we outline the principle approaches for defining the
trace steps and for guiding the stakeholders in their trace capture job according to the
definitions. Based on these principle approaches we have implemented two prototypical
trace–environments which support the stakeholders in their trace capture job (section 4).
Finally, we compare our approach for method–driven trace capture with other research
contributions (section 5) and provide an outlook on future work (section 6).

2 Project–Specific Definition of Trace Information and Trace Steps

In this section, we discuss (1) extensions to the concepts of the product under devel-
opment and the development process which are required for traceability and (2) how
these extensions can be related to existing process models (and tools).

2.1 Definition of Extended Product

We classify the information to be recorded for enabling traceability into four cate-
gories, namelyproduct, supplementary product, process observation,and dependency
information (left part of figure 1).

Product information includes all the information which belongs to the product
under development and is determined by the (set of) method(s) applied during system
development. If we use, for example, an Entity–Relationship (ER) method, the
product information subsumes the (name of the) ER–diagram, the defined entities and
relationships, the associations between entities and relationships, the cardinalities of
these associations, etc.

Supplementary product informationsubsumes additional (product) artifacts which
must be recorded to enable traceable system development, for example annotations
which provide explanations (e.g., [17]), contribution structures (e.g., [10]), goals and
organizational information (e.g., [35;34]), and design decisions (e.g., [4]).

Process observation informationsubsumes data about the process by which the
(supplementary) product has been produced. This may include information about the
executed method steps (e.g., a review), the date and the time of their execution, the
substeps of complex method steps, the sequence in which method steps were executed,
and the agents (i.e., humans and/or tools) performing the process.
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Dependency informationrepresents relations between the three information cate-
gories defined above. More precisely, dependency links (see left part of figure 1) are
used to interrelate

(1) product parts, e.g., to represent that two product parts are inconsistent or
contradictory, or to capture a versioning–relationship between product parts;

(2) process observation information, e.g., to link a sequence of steps to the agent
who performed it;

(3) (supplementary) products and process observation information, e.g., to associate
product parts with the process steps by which they were produced;

(4) supplementary products, e.g., to associate decisions with informal meeting notes
which support or object a decision;

(5) supplementary products and products, e.g., to justify that a certain model part
was introduced according to a decision or business goal.

We call the four categories of informationextended product (information)and the latter
three categoriestrace information.

2.2 Definition of Extended Method Steps

For recording this information four basic types of (extended) method steps are required
(see right part of figure 1).

Process stepsrecord information about the product under development. Existing
methods define the guidance provided for the stakeholders during product development
through the definition ofprocess stepsand their ordering. For example, ER–process
steps provide guidance for creating, modifying, and deleting ER diagrams, entities, and
relationships.

Supplementary product stepsdefine how to create and capture information of a partic-
ular supplementary product (part), e.g., decisions and their arguments or contribution
structures.

Process observation stepscapture information about the execution of process steps
and supplementary product steps by monitoring the actual process execution. For
example, a process observation step may record all process steps performed during the
integration of a change.

Dependency stepscapture the dependencies between the artifacts created by process
steps, supplementary product steps, and process observation steps. For example, a
dependency step may define that the products changed during a particular change
integration must be related to the change approval.

We name the latter three types of method stepstrace steps.

2.3 Automated versus Interactive Trace Capture

The degree of automated trace capture depends on the kind of information to be
recorded, i.e., on the type of (extended) method step.

Process and supplementary product steps:Capturing the information about products
and supplementary products requires the involvement of a stakeholder. Exceptions are
(1) products or supplementary products which can be derived based on the formal
product structures, e.g., structural relationships between product parts or between
different products like the relations between ER–diagrams and DFDs; and (2) artifacts
which are produced through transformation approaches, e.g., by transforming ER
diagrams into a relational schema or requirements documents into design documents.

Process observation steps:Information about the execution of process and supple-
mentary product steps can be automatically recorded (by process observation steps). A
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process observation step monitors the process execution and thus must be aware about
the executed process and supplementary product steps, their sequence, and their de-
fined relations. User interaction is only required if the product is created and modified
outside the computer–based environment or if information not known within the envi-
ronment has to be recorded. For example, capturing the agents performing a process
step may require user interactions by which the agents are made known to the system
(if they can not be deduced, e.g., from the user–login).

Dependency steps:If a dependency can be defined at thetype level, i.e., it holds for
all instances of the type, a particular dependency link between the instances of these
types can be automatically created. Similarly, a dependency link can be automatically
created if it can be derived from the formal definition of process, supplementary product,
and/or process observation steps. For example, a dependency step can define that the
process observation data of each process and supplementary product step have to be
related to the products which were affected by them. In this case, the dependency link
between the artifacts and the process observation data can be automatically created
since it was defined on the type level. Likewise, a change integration step may define
that all the products created, modified or deleted during its execution are related to the
change approval by which the modifications are justified, i.e., the dependency links
between the product parts and the change approval can be automatically created.

In contrast, user interaction is required if the creation of a dependency depends on
the actualinstance of a type, i.e., if only a “may–be” relation can be defined at the
type level. For example, if informal contractual statements should be related to the
design artifacts, the user has to select the parts of the informal statements which should
be related to a particular part of the design document. In general, user interaction is
required if the creation of a dependency link requires semantic knowledge which is not
represented in the product, supplementary product or extended method definitions.

2.4 Extended Methods: Interrelating Trace and Process Steps

To enable the guidance of the stakeholders during system development, it is not
sufficient to define the trace steps and the types of information to be recorded. In
addition the process owner has to definewhen, i.e., in which (process) situations, the
defined trace steps have to be executed. This requires that the trace steps are integrated
with the process steps defined by the method. The principal kinds of interrelations are
depicted in figure 2 and described below.
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Fig. 2: Interrelating trace and process steps
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Process stepsandsupplementary product steps(see middle of figure 2) are composed
into complex method steps which guide the user in creating the products and the
required trace information. The output of one step is often (partially) used as input
of the subsequent process or supplementary product step. For example, the following
sequence of steps guides the user in integrating meeting minutes into the product: (1)
record the minutes of a meeting; (2) structure the decisions recorded in the minutes;
(3) integrate the decisions into the existing products. Each of the three steps can itself
be further decomposed. Such complex steps may include branches or loops (not shown
in figure 2).

Process observation steps(see lower part of figure 2) monitor and record the
execution of process and supplementary product steps. To assure that the relevant
observation data is recorded, the process owner has to define which steps should
be observed and, in addition, which information has to be recorded for each step.
The execution of process observation steps can be automated if the process steps are
executed within the computer–based environment. The involvement of the stakeholders
is only required if (additional) information not known within the environment has to be
recorded, e.g., process steps which have been performed outside of the environment.

Dependency steps(see upper part of figure 2) create dependencies between the
artifacts used/produced by a single or a sequence of process and/or supplementary
product steps, or between the process observation data and the artifacts used/produced
by process/supplementary product steps. Consequently, dependency steps are heavily
interrelated with all other process steps. They have to be aware which artifacts are
produced and used by each process and supplementary product step and about the
actual observation data recorded for a process step.

The interrelation of the various process and trace steps results in the definition of
what we callextended method.

2.5 Modelling Trace Capture According to the Actual Needs

According to our definition of an extended method, the process owner (e.g. the project
manager) must define the (product and trace) information to be captured and the types
of extended method steps for recording this information. In addition, through the
interrelations of the four types of method steps the process owner must define when a
particular process or trace step has to be executed.

There are two complementary ways for defining the trace information and the trace
steps according to the project–specific needs. The process owner can define the trace
steps to be executed and thereby implicitly define the information to be captured. On the
other hand, s/he can define the trace information and retrieve the trace steps by which
this information can be captured from a method base. The second way is especially
interesting if a large repertoire of trace steps exists. Of course, the process owner can
also apply a combination of both.

As a consequence, the modelling language used for defining the extended method
must provide means for expressing the different kinds of method steps, for specifying
the interrelations between those steps, and for composing them to larger method
fragments. Since the execution of an extended method step additionally depends on
the current process situation, the language must provide concepts for representing the
situations in which a certain step should be executed.

3 Method–Driven Trace Capture

So far we have defined four types of extended product information and the correspond-

6



ing types of extended method steps by which the information is automatically and/or
interactively recorded and interrelated. In addition, we have argued that trace and
method definitions have to be integrated to enable guided trace capture.

The aim of this section is twofold. First, we propose a contextual language (process
meta model) for defining the trace and process steps and sketch its use for the definition
of a project–specific extended method (section 3.1). Second, we outline an approach
for a computer–based environment which is able to support the stakeholders in their
trace capture job according to the explicit method definitions (section 3.2).

3.1 Defining and Interrelating Trace and Process Steps

It is obvious, especially for creative processes, that the system development method
cannot be fully predefined. Instead, method fragments should be defined and, depending
on the actual process situation, be activated to guide the stakeholders performing the
process (see [24] for details).

A large amount of modelling languages have been proposed from various disciplines
(e.g., [9;24;1]). We therefore do not aim in defining a new method definition language.
Instead, we propose to use the NATURE process meta model (cf., [30;25;24;16]) for
defining the method fragments since it provides concepts for the situative definition of
method fragments, empowers an easy integration of trace and process steps due to the
uniform definition of automated, semi–automated and composed method steps, and has
proven useful for modelling creative processes (see [21;24] for a detailed description
and comparison with other languages).

The NATURE Process Meta Model
Figure 3 depicts the key concepts of the NATURE process meta model and their
relationships using the OMT notation.
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Fig. 3: The NATURE process meta model

A situation is built from parts of theproductundergoing the development process.
An intentionreflects the goal to be achieved in a given situation. Acontextrepresents
a meaningful relation between a situation and an intention which is applicable in the
given situation. A context isactivatedif its situation is valid and its intention is chosen.
The notion of context is further specialized into executable, choice, and plan contexts.

Executable contextsrepresent the part of the process definition which can be strictly
enforced, or even automated, i.e., the user does not have any choice what to do next. An
executable context is operationalized by performing theaction related to this context.
Performing the action changes the product and may thus generate new situations.

Choice contextsrepresent the part of the process definition, in which the user has to
make a decision. Within a choice context, at least twoalternatives exist. An alternative
can be another choice, executable, or plan context. When a choice context is activated
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the user can choose one of the alternatives, or even introduce a new one. For each
alternative,arguments (pros and/or cons) can be provided to guide the user in choosing
one of the alternatives.

Plan contextsdefine a strategy to fulfill a particular intention (goal); i.e., they define a
certain order on a subset of arbitrary contexts (plan, choice, and/or executable contexts).
A plan context can be supported by forcing the user to deal with the contexts in the
order defined by the plan.

Defining Trace Steps Using the NATURE Process Meta Model
Using the NATURE process meta model the process–owner can define the
project–specific trace steps by which the required trace information is being recorded
as well as the required extended method fragments. For each trace step and method
fragment, the process owner must define the situations in which it has to be applied.

Executable contextsare used to define atomic trace steps, i.e., trace steps which can
be executed by a tool and by which a certain type of information is being recorded, e.g.,
process observation data. Executable contexts can be automatically executed (e.g., if
embedded in a plan context) or their execution can be initiated by the user performing
the process.

If there are alternative ways to record the required information, the process–owner
defines the possible alternatives usingchoice contexts. As a result, the user performing
the process has to choose one of the defined alternatives. Among others, a choice
context can be used to enable the user to decide (depending on the actual process status,
e.g., the time and resources available) if fine–grained (defined by a plan context) or
coarse–grained (defined by an executable context) trace information are recorded. For
example, the process–owner may leave it to the user if a decision is just recorded by an
unstructured text, or by stating the available alternatives together with their rationales.

Finally, the process–owner is empowered to define complex trace steps (plan
contexts) by combining elementary steps (executable contexts), user selections (choice
contexts) and other plan contexts. Plan contexts are also used to integrate trace steps
with the method definitions into extended method fragments. For example, a plan
context can be used to define the following sequence of extended method steps: (1)
record the minutes of the meeting in textual form (complex trace step defined as plan
context); (2) structure the decisions made in the meeting (plan context which defines
a set of supplementary trace steps required for recording a decision); (3) relate the
meeting minutes with the decisions (automated dependency step defined as executable
context); (4) integrate the decisions into the existing product (complex plan context
which relates method steps, e.g., the definition of an entity, and dependency steps, e.g.,
the creation of a dependency between the created entity and the recorded decision).

By defining additional contexts and/or removing or adapting existing ones the
process–owner is empowered to adjust the trace information to be recorded according
to project–specific needs.

3.2 Model–Based Method Execution

Besides the definition of the extended method (trace steps and their integration with the
method definition), the adaptation of the user guidance offered by a computer–based en-
vironment according to the method definition is essential for providing project–specific
trace capture support; especially if the traces to be recorded vary from project to project.

Process–Centered Engineering Environments (PCEEs, [9]) in principle enable such
an adaptation. They can be divided into three conceptually distinguishable domains
(figure 4a, [24]).
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The modelling domaincomprises all activities for defining and maintaining process
models using a formal language with an underlying operational semantics which enables
the mechanical interpretation of the models. Theenactment domainencompasses what
takes place in a PCEE to support (guide, enforce, control) process performance; this
is essentially a mechanical interpretation of the process models by a so–called process
engine. Theperformance domainis defined as the set of actual activities conducted by
human agents and non–human agents (e.g., computers).

The interactions between these domains characterize the way in which model–based
process support is provided. A process model is first instantiated within the modelling
domain and passed to the enactment domain, i.e., process parameters like resources and
time scheduling are bound to project–specific values. Based on the interpretation of the
instantiated model, the enactment domain supports, controls, and monitors the activities
of the performance domain. The performance domain provides feedback information
about the current process performance status to the enactment domain as a prerequisite
for adjusting process model enactment to the actual process performance and enabling
branches, backtracks, and loops in process model enactment.

Thus, this coarse–grained, principal mechanism provided by PCEEs is suitable for
supporting process execution based on explicit method definitions.

4 Implementation of Method–Driven Trace Environments

4.1 Process–Integrated Modelling Environments

In addition to the coarse–grained process support provided by PCEEs, fine–grained
support is required to enable method–driven trace capture. Hence, as mentioned
before, the computer–based tools used to perform the process must adapt their behavior
according to the contextual definition of the extended method and must allow the
activation of extended method steps by the user. For example, they must be able to
acquire additional (supplementary) product information and to create dependency links
between product parts as defined in the extended method. These capabilities are not
provided by existing PCEEs (see [24] for details).

We have extended the PCEE approach resulting in a framework for
process–integrated environments, called PRIME (PRocess Integrated Modelling
Environments, see [27] for a detailed description). In comparison with existing
PCEEs, PRIME supports the recording of all four types of extended product infor-
mation through process–integrated tools which are able to adapt their user interfaces
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according to the method definition. For example, the PRIME–tools are able to restrict
the selectable menu items and product parts according to the choice context definitions,
or they request additional information from the user if defined, e.g., as a plan context.
Moreover, the enactment domain records the execution of plan contexts and is
empowered to influence the behavior of the process–integrated tools according to the
actual process situation, e.g., according to the plan context currently being enacted.
In addition, the process–integration provided by PRIME empowers the user to initiate
the execution of predefined method fragments: the user can initiate the execution of a
method fragment which guides her/him in the trace capture task whenever the current
process situation requires the recording of a particular kind of trace information.

4.2 Two Prototypical Process–Integrated Modelling Environments

Based on the PRIME approach we have implemented two prototypicaltrace environ-
ments: TECHMOD (TracedEngineering ofCHemical processMODels) and PRO–ART
2.0 (Process andRepOsitory basedApproach forRequirementsTraceability; [23]). Our
overall approach of method–driven trace capture has been validated by using the two
environments in small case studies [7;24].

The TECHMOD environment was implemented in cooperation with a chemical
engineering department [14;7]. It supports the stakeholders in capturing the defined
trace information during the modelling of complex chemical processes according to
the extended method definition. The coarse–grained architecture of TECHMOD is
depicted in figure 4b.

The performance domainof TECHMOD consists of various editing and browsing
tools for creating and modifying product parts (e.g., a flowsheet and an equation
editor for defining chemical process models), for capturing supplementary products
(e.g., a hypertext editor and a decision editor for recording design decisions) and a
(graphical) dependency editor for user driven creation and inspection of dependencies.
The elementary actions provided by the tools for recording the defined information are
associated with executable contexts, while choice contexts are employed by these tools
to offer alternative ways for recording the required information.

The enactment domainconsists of a process engine which interprets the extended
method definition (plan contexts), and controls and monitors the tools of the perfor-
mance domain. During the interpretation the process observation data of plan contexts
are recorded by the process engine. The necessary message exchange between the
tools of the performance domain and the process engine is controlled by a communi-
cation server. The extended method model and the product and trace information are
persistently stored in a process repository of themodelling domain.

4.3 Method–Driven Trace Capture: A Brief Example

We characterize the support for method–driven trace capture provided by TECHMOD
using a small example. The example shows how a chemical engineer is supported in
the recording of project–specific trace information according to the extended method
definition. It deals with the integration of meeting notes into an existing chemical
process model and illustrates the capabilities of TECHMOD in guiding and reminding
the stakeholder about the recording of

• supplementary products through the execution of project–specific trace steps;

• the creation of dependency links by automated and interactive dependency steps;

• the recording of project–specific process observation data.
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The structure of a chemical process is modelled (like data flow diagrams) at different
levels of detail (cf., [18]) using three different classes of material entities:devices
(e.g., reactors, evaporators; depicted by a large rectangular box)connections(e.g., a
pipe between an evaporator and a reactor; depicted as filled bars) andenvironmental
terminals (depicted as squares with one– or double–sided arrows). A device like
a reactor stores extensive quantities like mass or energy and transforms its internal
state variables (e.g., temperature, pressure) according to known fluxes acting from
the environment on the device. In contrast, a connection provides the fluxes to
the adjacent devices according to driving forces determined by the states of those
devices. Both, devices and connections, can be decomposed into aggregates of devices
and connections of arbitrary complexity. Each elementary device and connection
is described by a distinct set of mathematical equations. Environmental terminals
represent (like terminators in SA) external entities which receive and/or provide fluxes
to the chemical process.

Recording Project–Specific Supplementary Products
The chemical engineer enters the notes of the last meeting using the hypertext editor.
After editing, the chemical engineer saves the new minutes. According to the extended
method definition TECHMOD reminds the chemical engineer to explicitly structure the
decisions stated in the meeting notes using the decision editor. Moreover, the recording
of the decisions in an IBIS like structure is guided according to a plan context definition;
i.e., the engineer is requested to enter the issue of the decision, the chosen position,
the alternative positions, as well as the pro and contra arguments for each alternative
(cf., the decisionmodel heat flux exchange, upper left part of figure 5).

Interactive Recording of Dependencies
According to the extended method definition, the engineer is additionally asked by
the TECHMOD environment to provide (informal) rationales for the decisions. Since
this information cannot be derived automatically from an informal text the chemical
engineer has to interactively select the pieces to be linked to the decision (cf., lower
right part of figure 5). The selected parts of the meeting notes are then related to the
decision by executing a dependency step which creates the appropriate dependency link
(cf., dependency editor/browser in the lower left part of figure 5).

Adapting the method definition according to the needs of another project or of later
project phases would automatically result in a different behavior of the TECHMOD
environment. For example, if the extended method defines that the recording of the
name of a decision is sufficient, the TECHMOD environment will only request the user
to enter the name of the decision; instead of providing a detailed decision structure.

Automated Recording of Dependencies
During the integration of the decision into the existing chemical process model (defined
by a plan context) all model components changed or created are automatically related
to the decision. More precisely a connectionheat flux, its corresponding mathematical
equations and an environmental terminalheat source would be created and are related to
the decisionmodel heat flux exchange through the automated execution of dependency
steps defined in the plan context. In other words, these dependencies are derived from
the process execution and the creation of the dependencies requires no user interactions.

Recording Process Observation Data
Besides the above mentioned trace information also process observation data is auto-
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Fig. 5: Interrelating (informal) rationales with decisions

matically recorded by process observation steps. For example, object representations of
the executed process steps are created and linked to the inputs and outputs of the steps.
As stated before, the recording of the process observation data requires no user inter-
actions. Among others, the process observation data make the process itself traceable
and provide an invaluable source for experience–based process improvement.

Summarizing, the tools of the TECHMOD environment adapt their behavior ac-
cording to the actual definition of the extended method. Thereby TECHMOD actively
reminds the stakeholder about the recording of the defined trace information and au-
tomatically records trace information during process execution according to the actual
extended method definition, i.e., TECHMOD supports project–specific, method–driven
trace capture.

5 Related Work

Method engineering (e.g., [11;1]) and process modelling (e.g., [31;9]) concentrate on
the definition of the “classical” system development method and provide typically
no means for defining and/or adapting the kinds of trace information to be recorded
to project–specific needs. Existing traceability frameworks (e.g., [28;22;10]) provide
comprehensive descriptions of the informations to be recorded but offer no means for
supporting the recording of these information.

Computer–based environments which support traceability differ in terms of the struc-
ture provided for trace information, their abilities to adapt the trace information to be
recorded according to project–specific needs, and the degree of guided and/or automated
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support for trace capture. Environments like DOORS [32], RDD–100 [5], RTM [3],
SLATE [33], TOOR [20], and XTie–RT [8] support the definition of project–specific
trace information. However, they only provide generic operations for capturing and
retrieving the trace information and thus do not support the method–driven capture of
the defined trace information. In other words, if existing CASE or traceability tools
support the project–specific definition of trace information, the traces must be manually
recorded, apart from simple text–parsing mechanisms or transformation facilities, and
no guidance is provided for the stakeholders in capturing the defined information.

Process–Centered Engineering Environments partially support the automated and
guided recording of trace information, but only on a coarse–grained level due to their
inability to adapt the behavior of the interactive tools used for process performance.
For method–driven trace capture process–integrated tools, as provided by the PRIME
approach, are needed which enable active guidance based on the extended method
definitions.

6 Conclusion and Future Work

In this paper we presented an approach for a project–specific and method–driven
capturing of trace information. We proposed to explicitly define the trace information
together with the trace steps by which the defined information is recorded according
to project–specific needs. We distinguished between four kinds of information, namely
products, supplementary products, process observation data, and dependency links
and the corresponding method steps by which this information is interactively or
automatically recorded.

We then argued that the defined trace steps need to be integrated with the (classical)
method definition to form anextended method. The formal definition of the extended
method builds the foundation for automated trace capture and for guiding/reminding
the stakeholder during the process execution in capturing the defined trace information
at the right times.

For defining the extended method we use the NATURE process meta model since
it allows a situative definition of the identified steps and empowers an easy integration
of trace and process steps due to its uniform definition of automated, semi–automated
and composed method steps.

For providing active guidance to the stakeholder and for automating the record-
ing of the trace information we use our PRIME approach, an extension of PCEEs
(Process–Centered Engineering Environments). In contrast to PCEEs, PRIME offers
process–integrated tools which are able to adapt their behavior according to the ex-
tended method definition. This capability empowers a computer–based environment to
provide active and project–specific trace capture support for the stakeholders according
to an extended method definition.

Based on the PRIME approach, we have implemented two prototypical environments
(TECHMOD and PRO–ART 2.0). These environments were used in small case studies
which confirmed our assumption that project–specific, method–driven trace capture
helps the stakeholders to record the requested trace information, avoids the recording
of unnecessary trace information, and due to the automated recording of traces reduces
the work load of the process performers.

Besides positive feedback we identified two main issues which will be the focus of
our future investigations. First, methodical and tool support is needed for the definition
of the trace information, the trace steps and their integration with method definitions.
Among others a trace definition environment should support the reuse of extended
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method fragments. Second, similar to the guidance provided for the trace capture,
the user has to be supported in the trace usage. Therefore trace usage has to be
integrated into the extended method definition and appropriate visualizations of the
recorded (trace) information have to be provided.
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