dblp.uni-trier.dewww.uni-trier.de

J. David Schaffer Vis

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeerX - CSB - MetaPress - Google - Bing - Yahoo

*2009
27EEJ. David Schaffer, Heike Sichtig, Craig B. Laramee: A series of failed and partially successful fitness functions for evolving spiking neural networks. GECCO (Companion) 2009: 2661-2664
2008
26EEHeike Sichtig, J. David Schaffer, Craig B. Laramee: SSNNS -: a suite of tools to explore spiking neural networks. GECCO (Companion) 2008: 1787-1790
2003
25EELalitha Agnihotri, Nevenka Dimitrova, Thomas McGee, Sylvie Jeannin, J. David Schaffer, Jan Nesvadba: Envolvable Visual Commercial Detector. CVPR (2) 2003: 79-84
2002
24 J. David Schaffer, Lalitha Agnihotri, Nevenka Dimitrova, Thomas McGee, Sylvie Jeannin: Improving Digital Video Commercial Detectors With Genetic Algorithms. GECCO 2002: 1212-1218
2000
23 Srinivas Gutta, Kaushal Kurapati, K. P. Lee, Jacquelyn Martino, John Milanski, J. David Schaffer, John Zimmerman: TV Content Recommender System. AAAI/IAAI 2000: 1121-1122
22 Keith E. Mathias, Larry J. Eshelman, J. David Schaffer, Lex Augusteijn, Paul F. Hoogendijk, Rik van de Wiel: Code Compaction Using Genetic Algorithms. GECCO 2000: 710-717
1998
21 J. David Schaffer, Murali Mani, Larry J. Eshelman, Keith E. Mathias: The Effect of Incest Prevention on Genetic Drift. FOGA 1998: 235-244
20EEKeith E. Mathias, J. David Schaffer, Larry J. Eshelman, Murali Mani: The Effects of Control Parameters and Restarts on Search Stagnation in Evolutionary Programming. PPSN 1998: 398-407
1997
19 Larry J. Eshelman, Keith E. Mathias, J. David Schaffer: Crossover Operator Biases: Exploiting the Population Distribution. ICGA 1997: 354-361
1996
18 Larry J. Eshelman, Keith E. Mathias, J. David Schaffer: Convergence Controlled Variation. FOGA 1996: 203-224
1994
17 Larry J. Eshelman, J. David Schaffer: Productive Recombination and Propagating and Preserving Schemata. FOGA 1994: 299-313
1993
16 J. David Schaffer, Larry J. Eshelman: Designing Multiplierless Digital Filters Using Genetic Algorithms. ICGA 1993: 439-444
15 Larry J. Eshelman, J. David Schaffer: Crossover's Niche. ICGA 1993: 9-14
1992
14 Larry J. Eshelman, J. David Schaffer: Real-Coded Genetic Algorithms and Interval-Schemata. FOGA 1992: 187-202
1991
13 Larry J. Eshelman, J. David Schaffer: Preventing Premature Convergence in Genetic Algorithms by Preventing Incest. ICGA 1991: 115-122
12 J. David Schaffer, Larry J. Eshelman: On Crossover as an Evolutionarily Viable Strategy. ICGA 1991: 61-68
1990
11 J. David Schaffer, Larry J. Eshelman, Daniel Offutt: Spurious Correlations and Premature Convergence in Genetic Algorithms. FOGA 1990: 102-112
1989
10 J. David Schaffer: Proceedings of the 3rd International Conference on Genetic Algorithms, George Mason University, Fairfax, Virginia, USA, June 1989 Morgan Kaufmann 1989
9 Larry J. Eshelman, Rich Caruana, J. David Schaffer: Biases in the Crossover Landscape. ICGA 1989: 10-19
8 J. David Schaffer, Rich Caruana, Larry J. Eshelman, Rajarshi Das: A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization. ICGA 1989: 51-60
7 Rich Caruana, Larry J. Eshelman, J. David Schaffer: Representation and Hidden Bias II: Eliminating Defining Length Bias in Genetic Search via Shuffle Crossover. IJCAI 1989: 750-755
6 Rich Caruana, J. David Schaffer, Larry J. Eshelman: Using Multiple Representations to Improve Inductive Bias: Gray and Binary Coding for Genetic Algorithms. ML 1989: 375-378
1988
5 Rich Caruana, J. David Schaffer: Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms. ML 1988: 153-161
1987
4 J. David Schaffer, Amy Morishima: An Adaptive Crossover Distribution Mechanism for Genetic Algorithms. ICGA 1987: 36-40
1985
3 J. David Schaffer: Learning Multiclass Pattern Discrimination. ICGA 1985: 74-79
2 J. David Schaffer: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. ICGA 1985: 93-100
1 J. David Schaffer, John J. Grefenstette: Multi-Objective Learning via Genetic Algorithms. IJCAI 1985: 593-595

Coauthor Index

1Lalitha Agnihotri [24] [25]
2Lex Augusteijn [22]
3Rich Caruana [5] [6] [7] [8] [9]
4Rajarshi Das [8]
5Nevenka Dimitrova [24] [25]
6Larry J. Eshelman [6] [7] [8] [9] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]
7John J. Grefenstette [1]
8Srinivas Gutta [23]
9Paul F. Hoogendijk [22]
10Sylvie Jeannin [24] [25]
11Kaushal Kurapati [23]
12Craig B. Laramee [26] [27]
13K. P. Lee [23]
14Murali Mani [20] [21]
15Jacquelyn Martino [23]
16Keith E. Mathias [18] [19] [20] [21] [22]
17Thomas McGee [24] [25]
18John Milanski [23]
19Amy Morishima [4]
20Jan Nesvadba [25]
21Daniel Offutt [11]
22Heike Sichtig [26] [27]
23Rik van de Wiel [22]
24John Zimmerman [23]

Colors in the list of coauthors

Copyright © Tue Nov 3 08:52:44 2009 by Michael Ley (ley@uni-trier.de)